La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of the human pedunculopontine nucleus region in voluntary movements

Identifieur interne : 000388 ( PascalFrancis/Corpus ); précédent : 000387; suivant : 000389

Involvement of the human pedunculopontine nucleus region in voluntary movements

Auteurs : E. W. Tsang ; C. Hamani ; E. Moro ; F. Mazzella ; Y. Y. Poon ; A. M. Lozano ; R. Chen

Source :

RBID : Pascal:10-0453740

Descripteurs français

English descriptors

Abstract

Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0028-3878
A02 01      @0 NEURAI
A03   1    @0 Neurology
A05       @2 75
A06       @2 11
A08 01  1  ENG  @1 Involvement of the human pedunculopontine nucleus region in voluntary movements
A11 01  1    @1 TSANG (E. W.)
A11 02  1    @1 HAMANI (C.)
A11 03  1    @1 MORO (E.)
A11 04  1    @1 MAZZELLA (F.)
A11 05  1    @1 POON (Y. Y.)
A11 06  1    @1 LOZANO (A. M.)
A11 07  1    @1 CHEN (R.)
A14 01      @1 Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network @3 CAN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut. @Z 7 aut.
A14 02      @1 Division of Neurology, Department of Medicine, University of Toronto @2 Ontario @3 CAN @Z 1 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 03      @1 Division of Neurosurgery, Department of Surgery, University of Toronto @2 Ontario @3 CAN @Z 2 aut. @Z 6 aut.
A14 04      @1 Institute of Medical Science, University of Toronto @2 Ontario @3 CAN @Z 1 aut. @Z 6 aut. @Z 7 aut.
A20       @1 950-959
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 6345 @5 354000191283970040
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 40 ref.
A47 01  1    @0 10-0453740
A60       @1 P
A61       @0 A
A64 01  1    @0 Neurology
A66 01      @0 USA
C01 01    ENG  @0 Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.
C02 01  X    @0 002B17
C02 02  X    @0 002B05C02D
C03 01  X  FRE  @0 Pathologie du système nerveux @5 01
C03 01  X  ENG  @0 Nervous system diseases @5 01
C03 01  X  SPA  @0 Sistema nervioso patología @5 01
C03 02  X  FRE  @0 Homme @5 09
C03 02  X  ENG  @0 Human @5 09
C03 02  X  SPA  @0 Hombre @5 09
N21       @1 298
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0453740 INIST
ET : Involvement of the human pedunculopontine nucleus region in voluntary movements
AU : TSANG (E. W.); HAMANI (C.); MORO (E.); MAZZELLA (F.); POON (Y. Y.); LOZANO (A. M.); CHEN (R.)
AF : Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network/Canada (1 aut., 2 aut., 3 aut., 6 aut., 7 aut.); Division of Neurology, Department of Medicine, University of Toronto/Ontario/Canada (1 aut., 4 aut., 5 aut., 7 aut.); Division of Neurosurgery, Department of Surgery, University of Toronto/Ontario/Canada (2 aut., 6 aut.); Institute of Medical Science, University of Toronto/Ontario/Canada (1 aut., 6 aut., 7 aut.)
DT : Publication en série; Niveau analytique
SO : Neurology; ISSN 0028-3878; Coden NEURAI; Etats-Unis; Da. 2010; Vol. 75; No. 11; Pp. 950-959; Bibl. 40 ref.
LA : Anglais
EA : Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.
CC : 002B17; 002B05C02D
FD : Pathologie du système nerveux; Homme
ED : Nervous system diseases; Human
SD : Sistema nervioso patología; Hombre
LO : INIST-6345.354000191283970040
ID : 10-0453740

Links to Exploration step

Pascal:10-0453740

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Involvement of the human pedunculopontine nucleus region in voluntary movements</title>
<author>
<name sortKey="Tsang, E W" sort="Tsang, E W" uniqKey="Tsang E" first="E. W." last="Tsang">E. W. Tsang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hamani, C" sort="Hamani, C" uniqKey="Hamani C" first="C." last="Hamani">C. Hamani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Neurosurgery, Department of Surgery, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moro, E" sort="Moro, E" uniqKey="Moro E" first="E." last="Moro">E. Moro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mazzella, F" sort="Mazzella, F" uniqKey="Mazzella F" first="F." last="Mazzella">F. Mazzella</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poon, Y Y" sort="Poon, Y Y" uniqKey="Poon Y" first="Y. Y." last="Poon">Y. Y. Poon</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Neurosurgery, Department of Surgery, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, R" sort="Chen, R" uniqKey="Chen R" first="R." last="Chen">R. Chen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0453740</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0453740 INIST</idno>
<idno type="RBID">Pascal:10-0453740</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000388</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Involvement of the human pedunculopontine nucleus region in voluntary movements</title>
<author>
<name sortKey="Tsang, E W" sort="Tsang, E W" uniqKey="Tsang E" first="E. W." last="Tsang">E. W. Tsang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hamani, C" sort="Hamani, C" uniqKey="Hamani C" first="C." last="Hamani">C. Hamani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Neurosurgery, Department of Surgery, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moro, E" sort="Moro, E" uniqKey="Moro E" first="E." last="Moro">E. Moro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mazzella, F" sort="Mazzella, F" uniqKey="Mazzella F" first="F." last="Mazzella">F. Mazzella</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Poon, Y Y" sort="Poon, Y Y" uniqKey="Poon Y" first="Y. Y." last="Poon">Y. Y. Poon</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lozano, A M" sort="Lozano, A M" uniqKey="Lozano A" first="A. M." last="Lozano">A. M. Lozano</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Neurosurgery, Department of Surgery, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chen, R" sort="Chen, R" uniqKey="Chen R" first="R." last="Chen">R. Chen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neurology</title>
<title level="j" type="abbreviated">Neurology</title>
<idno type="ISSN">0028-3878</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neurology</title>
<title level="j" type="abbreviated">Neurology</title>
<idno type="ISSN">0028-3878</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Human</term>
<term>Nervous system diseases</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pathologie du système nerveux</term>
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-3878</s0>
</fA01>
<fA02 i1="01">
<s0>NEURAI</s0>
</fA02>
<fA03 i2="1">
<s0>Neurology</s0>
</fA03>
<fA05>
<s2>75</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Involvement of the human pedunculopontine nucleus region in voluntary movements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TSANG (E. W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAMANI (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MORO (E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAZZELLA (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>POON (Y. Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LOZANO (A. M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHEN (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Neurology, Department of Medicine, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Neurosurgery, Department of Surgery, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institute of Medical Science, University of Toronto</s1>
<s2>Ontario</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>950-959</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6345</s2>
<s5>354000191283970040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>40 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0453740</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neurology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05C02D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Pathologie du système nerveux</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Homme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Human</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>09</s5>
</fC03>
<fN21>
<s1>298</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0453740 INIST</NO>
<ET>Involvement of the human pedunculopontine nucleus region in voluntary movements</ET>
<AU>TSANG (E. W.); HAMANI (C.); MORO (E.); MAZZELLA (F.); POON (Y. Y.); LOZANO (A. M.); CHEN (R.)</AU>
<AF>Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Research Institute, University Health Network/Canada (1 aut., 2 aut., 3 aut., 6 aut., 7 aut.); Division of Neurology, Department of Medicine, University of Toronto/Ontario/Canada (1 aut., 4 aut., 5 aut., 7 aut.); Division of Neurosurgery, Department of Surgery, University of Toronto/Ontario/Canada (2 aut., 6 aut.); Institute of Medical Science, University of Toronto/Ontario/Canada (1 aut., 6 aut., 7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Neurology; ISSN 0028-3878; Coden NEURAI; Etats-Unis; Da. 2010; Vol. 75; No. 11; Pp. 950-959; Bibl. 40 ref.</SO>
<LA>Anglais</LA>
<EA>Objective: The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. Methods: We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. Results: Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. Conclusions: Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.</EA>
<CC>002B17; 002B05C02D</CC>
<FD>Pathologie du système nerveux; Homme</FD>
<ED>Nervous system diseases; Human</ED>
<SD>Sistema nervioso patología; Hombre</SD>
<LO>INIST-6345.354000191283970040</LO>
<ID>10-0453740</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000388 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000388 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0453740
   |texte=   Involvement of the human pedunculopontine nucleus region in voluntary movements
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022