La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis

Identifieur interne : 000226 ( PascalFrancis/Corpus ); précédent : 000225; suivant : 000227

A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis

Auteurs : Joyce Chiang ; Z. Jane Wang ; Martin J. Mckeown

Source :

RBID : Pascal:12-0104801

Descripteurs français

English descriptors

Abstract

Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1053-587X
A02 01      @0 ITPRED
A03   1    @0 IEEE trans. signal process.
A05       @2 60
A06       @2 1
A08 01  1  ENG  @1 A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis
A11 01  1    @1 CHIANG (Joyce)
A11 02  1    @1 WANG (Z. Jane)
A11 03  1    @1 MCKEOWN (Martin J.)
A14 01      @1 Department of Electrical and Computer Engineering, The University of British Columbia @2 Vancouver, BC V6T 1Z4 @3 CAN @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Medicine (Neurology), The University of British Columbia @2 Vancouver, BC V6T 2B5 @3 CAN @Z 3 aut.
A20       @1 453-465
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 222E3 @5 354000508869520350
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 36 ref.
A47 01  1    @0 12-0104801
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on signal processing
A66 01      @0 USA
C01 01    ENG  @0 Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.
C02 01  X    @0 002B28C
C02 02  X    @0 001D04A04A2
C02 03  X    @0 001D04A03
C03 01  X  FRE  @0 Modèle autorégressif @5 01
C03 01  X  ENG  @0 Autoregressive model @5 01
C03 01  X  SPA  @0 Modelo autorregresivo @5 01
C03 02  X  FRE  @0 Electroencéphalographie @5 02
C03 02  X  ENG  @0 Electroencephalography @5 02
C03 02  X  SPA  @0 Electroencefalografía @5 02
C03 03  X  FRE  @0 Connexité @5 03
C03 03  X  ENG  @0 Connectedness @5 03
C03 03  X  SPA  @0 Conexidad @5 03
C03 04  X  FRE  @0 Volume @5 04
C03 04  X  ENG  @0 Volume @5 04
C03 04  X  SPA  @0 Volumen @5 04
C03 05  X  FRE  @0 Méthode section divisée @5 05
C03 05  X  ENG  @0 Multistage method @5 05
C03 06  X  FRE  @0 Espace état @5 06
C03 06  X  ENG  @0 State space @5 06
C03 06  X  SPA  @0 Espacio estado @5 06
C03 07  X  FRE  @0 Causalité @5 07
C03 07  X  ENG  @0 Causality @5 07
C03 07  X  SPA  @0 Causalidad @5 07
C03 08  X  FRE  @0 Processus multivarié @5 08
C03 08  X  ENG  @0 Multivariate process @5 08
C03 08  X  SPA  @0 Proceso multivariable @5 08
C03 09  3  FRE  @0 Processus autorégressif @5 09
C03 09  3  ENG  @0 Autoregressive processes @5 09
C03 10  X  FRE  @0 Bruit non gaussien @5 10
C03 10  X  ENG  @0 Non gaussian noise @5 10
C03 10  X  SPA  @0 Ruido no gaussiano @5 10
C03 11  X  FRE  @0 Maximum vraisemblance @5 11
C03 11  X  ENG  @0 Maximum likelihood @5 11
C03 11  X  SPA  @0 Maxima verosimilitud @5 11
C03 12  X  FRE  @0 Précision @5 12
C03 12  X  ENG  @0 Accuracy @5 12
C03 12  X  SPA  @0 Precisión @5 12
C03 13  X  FRE  @0 Tâche poursuite @5 13
C03 13  X  ENG  @0 Tracking task @5 13
C03 13  X  SPA  @0 Tarea persecución @5 13
C03 14  X  FRE  @0 Rétroaction @5 14
C03 14  X  ENG  @0 Feedback regulation @5 14
C03 14  X  SPA  @0 Retroacción @5 14
C03 15  X  FRE  @0 Cohérence @5 15
C03 15  X  ENG  @0 Coherence @5 15
C03 15  X  SPA  @0 Coherencia @5 15
C03 16  X  FRE  @0 Extraction information @5 16
C03 16  X  ENG  @0 Information extraction @5 16
C03 16  X  SPA  @0 Extracción información @5 16
C03 17  X  FRE  @0 Maladie @5 17
C03 17  X  ENG  @0 Disease @5 17
C03 17  X  SPA  @0 Enfermedad @5 17
C03 18  X  FRE  @0 Traitement signal @5 46
C03 18  X  ENG  @0 Signal processing @5 46
C03 18  X  SPA  @0 Procesamiento señal @5 46
C07 01  X  FRE  @0 Traitement information @5 18
C07 01  X  ENG  @0 Information processing @5 18
C07 01  X  SPA  @0 Procesamiento información @5 18
N21       @1 079
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0104801 INIST
ET : A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis
AU : CHIANG (Joyce); WANG (Z. Jane); MCKEOWN (Martin J.)
AF : Department of Electrical and Computer Engineering, The University of British Columbia/Vancouver, BC V6T 1Z4/Canada (1 aut., 2 aut.); Department of Medicine (Neurology), The University of British Columbia/Vancouver, BC V6T 2B5/Canada (3 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on signal processing; ISSN 1053-587X; Coden ITPRED; Etats-Unis; Da. 2012; Vol. 60; No. 1; Pp. 453-465; Bibl. 36 ref.
LA : Anglais
EA : Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.
CC : 002B28C; 001D04A04A2; 001D04A03
FD : Modèle autorégressif; Electroencéphalographie; Connexité; Volume; Méthode section divisée; Espace état; Causalité; Processus multivarié; Processus autorégressif; Bruit non gaussien; Maximum vraisemblance; Précision; Tâche poursuite; Rétroaction; Cohérence; Extraction information; Maladie; Traitement signal
FG : Traitement information
ED : Autoregressive model; Electroencephalography; Connectedness; Volume; Multistage method; State space; Causality; Multivariate process; Autoregressive processes; Non gaussian noise; Maximum likelihood; Accuracy; Tracking task; Feedback regulation; Coherence; Information extraction; Disease; Signal processing
EG : Information processing
SD : Modelo autorregresivo; Electroencefalografía; Conexidad; Volumen; Espacio estado; Causalidad; Proceso multivariable; Ruido no gaussiano; Maxima verosimilitud; Precisión; Tarea persecución; Retroacción; Coherencia; Extracción información; Enfermedad; Procesamiento señal
LO : INIST-222E3.354000508869520350
ID : 12-0104801

Links to Exploration step

Pascal:12-0104801

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis</title>
<author>
<name sortKey="Chiang, Joyce" sort="Chiang, Joyce" uniqKey="Chiang J" first="Joyce" last="Chiang">Joyce Chiang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Z Jane" sort="Wang, Z Jane" uniqKey="Wang Z" first="Z. Jane" last="Wang">Z. Jane Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckeown, Martin J" sort="Mckeown, Martin J" uniqKey="Mckeown M" first="Martin J." last="Mckeown">Martin J. Mckeown</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Medicine (Neurology), The University of British Columbia</s1>
<s2>Vancouver, BC V6T 2B5</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0104801</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0104801 INIST</idno>
<idno type="RBID">Pascal:12-0104801</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000226</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis</title>
<author>
<name sortKey="Chiang, Joyce" sort="Chiang, Joyce" uniqKey="Chiang J" first="Joyce" last="Chiang">Joyce Chiang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Z Jane" sort="Wang, Z Jane" uniqKey="Wang Z" first="Z. Jane" last="Wang">Z. Jane Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mckeown, Martin J" sort="Mckeown, Martin J" uniqKey="Mckeown M" first="Martin J." last="Mckeown">Martin J. Mckeown</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Medicine (Neurology), The University of British Columbia</s1>
<s2>Vancouver, BC V6T 2B5</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on signal processing</title>
<title level="j" type="abbreviated">IEEE trans. signal process.</title>
<idno type="ISSN">1053-587X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on signal processing</title>
<title level="j" type="abbreviated">IEEE trans. signal process.</title>
<idno type="ISSN">1053-587X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accuracy</term>
<term>Autoregressive model</term>
<term>Autoregressive processes</term>
<term>Causality</term>
<term>Coherence</term>
<term>Connectedness</term>
<term>Disease</term>
<term>Electroencephalography</term>
<term>Feedback regulation</term>
<term>Information extraction</term>
<term>Maximum likelihood</term>
<term>Multistage method</term>
<term>Multivariate process</term>
<term>Non gaussian noise</term>
<term>Signal processing</term>
<term>State space</term>
<term>Tracking task</term>
<term>Volume</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle autorégressif</term>
<term>Electroencéphalographie</term>
<term>Connexité</term>
<term>Volume</term>
<term>Méthode section divisée</term>
<term>Espace état</term>
<term>Causalité</term>
<term>Processus multivarié</term>
<term>Processus autorégressif</term>
<term>Bruit non gaussien</term>
<term>Maximum vraisemblance</term>
<term>Précision</term>
<term>Tâche poursuite</term>
<term>Rétroaction</term>
<term>Cohérence</term>
<term>Extraction information</term>
<term>Maladie</term>
<term>Traitement signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1053-587X</s0>
</fA01>
<fA02 i1="01">
<s0>ITPRED</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. signal process.</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHIANG (Joyce)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Z. Jane)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MCKEOWN (Martin J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Medicine (Neurology), The University of British Columbia</s1>
<s2>Vancouver, BC V6T 2B5</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>453-465</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222E3</s2>
<s5>354000508869520350</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0104801</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on signal processing</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B28C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A04A2</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D04A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modèle autorégressif</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Autoregressive model</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelo autorregresivo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electroencéphalographie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electroencephalography</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electroencefalografía</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Connexité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Connectedness</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Conexidad</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Volume</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Volume</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Volumen</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode section divisée</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Multistage method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Espace état</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>State space</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espacio estado</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Causalité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Causality</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Causalidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Processus multivarié</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Multivariate process</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Proceso multivariable</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Processus autorégressif</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Autoregressive processes</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Bruit non gaussien</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Non gaussian noise</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ruido no gaussiano</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Maximum vraisemblance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Maximum likelihood</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Maxima verosimilitud</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Précision</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Accuracy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Precisión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Tâche poursuite</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tracking task</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tarea persecución</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cohérence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Coherence</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Coherencia</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Extraction information</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Information extraction</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Extracción información</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Maladie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Disease</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Enfermedad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Traitement signal</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Signal processing</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Procesamiento señal</s0>
<s5>46</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Traitement information</s0>
<s5>18</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Information processing</s0>
<s5>18</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Procesamiento información</s0>
<s5>18</s5>
</fC07>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0104801 INIST</NO>
<ET>A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis</ET>
<AU>CHIANG (Joyce); WANG (Z. Jane); MCKEOWN (Martin J.)</AU>
<AF>Department of Electrical and Computer Engineering, The University of British Columbia/Vancouver, BC V6T 1Z4/Canada (1 aut., 2 aut.); Department of Medicine (Neurology), The University of British Columbia/Vancouver, BC V6T 2B5/Canada (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on signal processing; ISSN 1053-587X; Coden ITPRED; Etats-Unis; Da. 2012; Vol. 60; No. 1; Pp. 453-465; Bibl. 36 ref.</SO>
<LA>Anglais</LA>
<EA>Studying brain connectivity has provided new insights to the understanding of brain function. While connectivity measures are conventionally computed from electroencephalogram (EEG) signals directly, the presence of volume conduction represents a serious confound affecting interpretation of results. A common solution is to use a two-stage approach which involves estimating underlying brain sources from scalp EEG recordings and subsequently estimating the connectivity between the inferred sources. Recently, a state-space framework which jointly models the instantaneous mixing effects of volume conduction and the causal relationships between underlying brain sources is proposed. In this paper, we extend the state-space framework and model the source activity by a generalized multivariate autoregressive (mAR) process with possibly non-Gaussian noise. A maximum likelihood estimation approach is developed which allows simultaneous estimation of both the mixing matrix and AR model parameters directly from scalp EEG. The proposed technique was verified with simulated EEG data generated using the single-shell spherical head model and demonstrated improved estimation accuracies compared to conventional two-stage connectivity estimation approaches. Furthermore, the proposed technique was applied to EEG data collected from normal and Parkinson's subjects performing a right-handed force-tracking task with differing amounts of visual feedback. The partial directed coherence (PDC) between sources showed significant differences between groups and conditions. These results suggest that the proposed technique is a powerful method to extract connectivity information from EEG recordings.</EA>
<CC>002B28C; 001D04A04A2; 001D04A03</CC>
<FD>Modèle autorégressif; Electroencéphalographie; Connexité; Volume; Méthode section divisée; Espace état; Causalité; Processus multivarié; Processus autorégressif; Bruit non gaussien; Maximum vraisemblance; Précision; Tâche poursuite; Rétroaction; Cohérence; Extraction information; Maladie; Traitement signal</FD>
<FG>Traitement information</FG>
<ED>Autoregressive model; Electroencephalography; Connectedness; Volume; Multistage method; State space; Causality; Multivariate process; Autoregressive processes; Non gaussian noise; Maximum likelihood; Accuracy; Tracking task; Feedback regulation; Coherence; Information extraction; Disease; Signal processing</ED>
<EG>Information processing</EG>
<SD>Modelo autorregresivo; Electroencefalografía; Conexidad; Volumen; Espacio estado; Causalidad; Proceso multivariable; Ruido no gaussiano; Maxima verosimilitud; Precisión; Tarea persecución; Retroacción; Coherencia; Extracción información; Enfermedad; Procesamiento señal</SD>
<LO>INIST-222E3.354000508869520350</LO>
<ID>12-0104801</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000226 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000226 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0104801
   |texte=   A Generalized Multivariate Autoregressive (GmAR)-Based Approach for EEG Source Connectivity Analysis
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022