La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY

Identifieur interne : 000055 ( PascalFrancis/Checkpoint ); précédent : 000054; suivant : 000056

REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY

Auteurs : D. Lee [États-Unis] ; D. Y. Henriques [Canada] ; J. Snider [États-Unis] ; D. Song [États-Unis] ; H. Poizner [États-Unis]

Source :

RBID : Pascal:13-0270350

Descripteurs français

English descriptors

Abstract

Deep brain stimulation of the subthalamic nucleus (STN DBS) provides a unique window into human brain function since it can reversibly alter the functioning of specific brain circuits. Basal ganglia-cortical circuits are thought to be excessively noisy in patients with Parkinson's disease (PD), based in part on the lack of specificity of proprioceptive signals in basal ganglia-thalamic-cortical circuits in monkey models of the disease. PD patients are known to have deficits in proprioception, but the effects are often subtle, with paradigms typically restricted to one or two joint movements in a plane. Moreover, the effects of STN DBS on proprioception are virtually unexplored. We tested the following hypotheses: first, that PD patients will show substantial deficits in unconstrained, multi-joint proprioception, and, second, that STN DBS will improve multi-joint proprioception. Twelve PD patients with bilaterally implanted electrodes in the subthalamic nucleus and 12 age-matched healthy subjects were asked to position the left hand at a location that was proprioceptively defined in 3D space with the right hand. In a second condition, subjects were provided visual feedback during the task so that they were not forced to rely on proprioception. Overall, with STN DBS switched off, PD patients showed significantly larger proprioceptive localization errors, and greater variability in endpoint localizations than the control subjects. Visual feedback partially normalized PD performance, and demonstrated that the errors in proprioceptive localization were not simply due to a difficulty in executing the movements or in remembering target locations. Switching STN DBS on significantly reduced localization errors from those of control subjects when patients moved without visual feedback relative to when they moved with visual feedback (when proprioception was not required). However, this reduction in localization errors without vision came at the cost of increased localization variability.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0270350

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY</title>
<author>
<name sortKey="Lee, D" sort="Lee, D" uniqKey="Lee D" first="D." last="Lee">D. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Henriques, D Y" sort="Henriques, D Y" uniqKey="Henriques D" first="D. Y." last="Henriques">D. Y. Henriques</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Kinesiology & Health Science Centre for Vision Research, York University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Snider, J" sort="Snider, J" uniqKey="Snider J" first="J." last="Snider">J. Snider</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, D" sort="Song, D" uniqKey="Song D" first="D." last="Song">D. Song</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poizner, H" sort="Poizner, H" uniqKey="Poizner H" first="H." last="Poizner">H. Poizner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Graduate Program in Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0270350</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0270350 INIST</idno>
<idno type="RBID">Pascal:13-0270350</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000078</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000B55</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000055</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000055</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY</title>
<author>
<name sortKey="Lee, D" sort="Lee, D" uniqKey="Lee D" first="D." last="Lee">D. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Henriques, D Y" sort="Henriques, D Y" uniqKey="Henriques D" first="D. Y." last="Henriques">D. Y. Henriques</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Kinesiology & Health Science Centre for Vision Research, York University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Snider, J" sort="Snider, J" uniqKey="Snider J" first="J." last="Snider">J. Snider</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, D" sort="Song, D" uniqKey="Song D" first="D." last="Song">D. Song</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Poizner, H" sort="Poizner, H" uniqKey="Poizner H" first="H." last="Poizner">H. Poizner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Graduate Program in Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>San Diego, CA</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Deep brain stimulation</term>
<term>Human</term>
<term>Parkinson disease</term>
<term>Proprioception</term>
<term>Subthalamic nucleus</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Proprioception</term>
<term>Noyau sousthalamique</term>
<term>Maladie de Parkinson</term>
<term>Homme</term>
<term>Stimulation cérébrale profonde</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deep brain stimulation of the subthalamic nucleus (STN DBS) provides a unique window into human brain function since it can reversibly alter the functioning of specific brain circuits. Basal ganglia-cortical circuits are thought to be excessively noisy in patients with Parkinson's disease (PD), based in part on the lack of specificity of proprioceptive signals in basal ganglia-thalamic-cortical circuits in monkey models of the disease. PD patients are known to have deficits in proprioception, but the effects are often subtle, with paradigms typically restricted to one or two joint movements in a plane. Moreover, the effects of STN DBS on proprioception are virtually unexplored. We tested the following hypotheses: first, that PD patients will show substantial deficits in unconstrained, multi-joint proprioception, and, second, that STN DBS will improve multi-joint proprioception. Twelve PD patients with bilaterally implanted electrodes in the subthalamic nucleus and 12 age-matched healthy subjects were asked to position the left hand at a location that was proprioceptively defined in 3D space with the right hand. In a second condition, subjects were provided visual feedback during the task so that they were not forced to rely on proprioception. Overall, with STN DBS switched off, PD patients showed significantly larger proprioceptive localization errors, and greater variability in endpoint localizations than the control subjects. Visual feedback partially normalized PD performance, and demonstrated that the errors in proprioceptive localization were not simply due to a difficulty in executing the movements or in remembering target locations. Switching STN DBS on significantly reduced localization errors from those of control subjects when patients moved without visual feedback relative to when they moved with visual feedback (when proprioception was not required). However, this reduction in localization errors without vision came at the cost of increased localization variability.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0306-4522</s0>
</fA01>
<fA02 i1="01">
<s0>NRSCDN</s0>
</fA02>
<fA03 i2="1">
<s0>Neuroscience</s0>
</fA03>
<fA05>
<s2>244</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEE (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HENRIQUES (D. Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SNIDER (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SONG (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>POIZNER (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Neural Computation, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Kinesiology & Health Science Centre for Vision Research, York University</s1>
<s2>Toronto</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Graduate Program in Neurosciences, University of California</s1>
<s2>San Diego, CA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>99-112</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17194</s2>
<s5>354000509078650090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0270350</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neuroscience</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Deep brain stimulation of the subthalamic nucleus (STN DBS) provides a unique window into human brain function since it can reversibly alter the functioning of specific brain circuits. Basal ganglia-cortical circuits are thought to be excessively noisy in patients with Parkinson's disease (PD), based in part on the lack of specificity of proprioceptive signals in basal ganglia-thalamic-cortical circuits in monkey models of the disease. PD patients are known to have deficits in proprioception, but the effects are often subtle, with paradigms typically restricted to one or two joint movements in a plane. Moreover, the effects of STN DBS on proprioception are virtually unexplored. We tested the following hypotheses: first, that PD patients will show substantial deficits in unconstrained, multi-joint proprioception, and, second, that STN DBS will improve multi-joint proprioception. Twelve PD patients with bilaterally implanted electrodes in the subthalamic nucleus and 12 age-matched healthy subjects were asked to position the left hand at a location that was proprioceptively defined in 3D space with the right hand. In a second condition, subjects were provided visual feedback during the task so that they were not forced to rely on proprioception. Overall, with STN DBS switched off, PD patients showed significantly larger proprioceptive localization errors, and greater variability in endpoint localizations than the control subjects. Visual feedback partially normalized PD performance, and demonstrated that the errors in proprioceptive localization were not simply due to a difficulty in executing the movements or in remembering target locations. Switching STN DBS on significantly reduced localization errors from those of control subjects when patients moved without visual feedback relative to when they moved with visual feedback (when proprioception was not required). However, this reduction in localization errors without vision came at the cost of increased localization variability.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17G</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B17A01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Proprioception</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Proprioception</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Propiocepción</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Noyau sousthalamique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Subthalamic nucleus</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Núcleo subtalámico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Maladie de Parkinson</s0>
<s2>NM</s2>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s2>NM</s2>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s2>NM</s2>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Stimulation cérébrale profonde</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Deep brain stimulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Pathologie du système nerveux</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>21</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>21</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Pathologie de l'encéphale</s0>
<s5>22</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>22</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>22</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Syndrome extrapyramidal</s0>
<s5>23</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>23</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>23</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Pathologie du système nerveux central</s0>
<s5>24</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>24</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>24</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>25</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>25</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>25</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>26</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>26</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>26</s5>
</fC07>
<fN21>
<s1>259</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Lee, D" sort="Lee, D" uniqKey="Lee D" first="D." last="Lee">D. Lee</name>
</noRegion>
<name sortKey="Poizner, H" sort="Poizner, H" uniqKey="Poizner H" first="H." last="Poizner">H. Poizner</name>
<name sortKey="Poizner, H" sort="Poizner, H" uniqKey="Poizner H" first="H." last="Poizner">H. Poizner</name>
<name sortKey="Snider, J" sort="Snider, J" uniqKey="Snider J" first="J." last="Snider">J. Snider</name>
<name sortKey="Song, D" sort="Song, D" uniqKey="Song D" first="D." last="Song">D. Song</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Henriques, D Y" sort="Henriques, D Y" uniqKey="Henriques D" first="D. Y." last="Henriques">D. Y. Henriques</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000055 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000055 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:13-0270350
   |texte=   REACHING TO PROPRIOCEPTIVELY DEFINED TARGETS IN PARKINSON'S DISEASE: EFFECTS OF DEEP BRAIN STIMULATION THERAPY
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022