La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.

Identifieur interne : 000955 ( Main/Exploration ); précédent : 000954; suivant : 000956

Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.

Auteurs : Pete B. Shull [République populaire de Chine] ; Wisit Jirattigalachote [États-Unis] ; Michael A. Hunt [Canada] ; Mark R. Cutkosky [États-Unis] ; Scott L. Delp [États-Unis]

Source :

RBID : pubmed:24768525

English descriptors

Abstract

The proliferation of miniaturized electronics has fueled a shift toward wearable sensors and feedback devices for the mass population. Quantified self and other similar movements involving wearable systems have gained recent interest. However, it is unclear what the clinical impact of these enabling technologies is on human gait. The purpose of this review is to assess clinical applications of wearable sensing and feedback for human gait and to identify areas of future research. Four electronic databases were searched to find articles employing wearable sensing or feedback for movements of the foot, ankle, shank, thigh, hip, pelvis, and trunk during gait. We retrieved 76 articles that met the inclusion criteria and identified four common clinical applications: (1) identifying movement disorders, (2) assessing surgical outcomes, (3) improving walking stability, and (4) reducing joint loading. Characteristics of knee and trunk motion were the most frequent gait parameters for both wearable sensing and wearable feedback. Most articles performed testing on healthy subjects, and the most prevalent patient populations were osteoarthritis, vestibular loss, Parkinson's disease, and post-stroke hemiplegia. The most widely used wearable sensors were inertial measurement units (accelerometer and gyroscope packaged together) and goniometers. Haptic (touch) and auditory were the most common feedback sensations. This review highlights the current state of the literature and demonstrates substantial potential clinical benefits of wearable sensing and feedback. Future research should focus on wearable sensing and feedback in patient populations, in natural human environments outside the laboratory such as at home or work, and on continuous, long-term monitoring and intervention.

DOI: 10.1016/j.gaitpost.2014.03.189
PubMed: 24768525


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.</title>
<author>
<name sortKey="Shull, Pete B" sort="Shull, Pete B" uniqKey="Shull P" first="Pete B" last="Shull">Pete B. Shull</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address: pshull@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jirattigalachote, Wisit" sort="Jirattigalachote, Wisit" uniqKey="Jirattigalachote W" first="Wisit" last="Jirattigalachote">Wisit Jirattigalachote</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Michael A" sort="Hunt, Michael A" uniqKey="Hunt M" first="Michael A" last="Hunt">Michael A. Hunt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physical Therapy, University of British Columbia, Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cutkosky, Mark R" sort="Cutkosky, Mark R" uniqKey="Cutkosky M" first="Mark R" last="Cutkosky">Mark R. Cutkosky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Delp, Scott L" sort="Delp, Scott L" uniqKey="Delp S" first="Scott L" last="Delp">Scott L. Delp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24768525</idno>
<idno type="pmid">24768525</idno>
<idno type="doi">10.1016/j.gaitpost.2014.03.189</idno>
<idno type="wicri:Area/PubMed/Corpus">000805</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000805</idno>
<idno type="wicri:Area/PubMed/Curation">000805</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000805</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000805</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000805</idno>
<idno type="wicri:Area/Ncbi/Merge">001739</idno>
<idno type="wicri:Area/Ncbi/Curation">001739</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001739</idno>
<idno type="wicri:Area/Main/Merge">000957</idno>
<idno type="wicri:Area/Main/Curation">000955</idno>
<idno type="wicri:Area/Main/Exploration">000955</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.</title>
<author>
<name sortKey="Shull, Pete B" sort="Shull, Pete B" uniqKey="Shull P" first="Pete B" last="Shull">Pete B. Shull</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address: pshull@sjtu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
<wicri:noRegion>Shanghai 200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jirattigalachote, Wisit" sort="Jirattigalachote, Wisit" uniqKey="Jirattigalachote W" first="Wisit" last="Jirattigalachote">Wisit Jirattigalachote</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Michael A" sort="Hunt, Michael A" uniqKey="Hunt M" first="Michael A" last="Hunt">Michael A. Hunt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Physical Therapy, University of British Columbia, Vancouver, BC</wicri:regionArea>
<wicri:noRegion>BC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cutkosky, Mark R" sort="Cutkosky, Mark R" uniqKey="Cutkosky M" first="Mark R" last="Cutkosky">Mark R. Cutkosky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Delp, Scott L" sort="Delp, Scott L" uniqKey="Delp S" first="Scott L" last="Delp">Scott L. Delp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Gait & posture</title>
<idno type="eISSN">1879-2219</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Ankle (physiology)</term>
<term>Biofeedback, Psychology (instrumentation)</term>
<term>Clothing</term>
<term>Craniocerebral Trauma (physiopathology)</term>
<term>Equipment Design</term>
<term>Feedback, Sensory (physiology)</term>
<term>Foot (physiology)</term>
<term>Gait (physiology)</term>
<term>Hemiplegia (physiopathology)</term>
<term>Humans</term>
<term>Knee (physiology)</term>
<term>Leg (physiology)</term>
<term>Monitoring, Ambulatory (instrumentation)</term>
<term>Movement (physiology)</term>
<term>Movement Disorders (physiopathology)</term>
<term>Osteoarthritis (physiopathology)</term>
<term>Parkinson Disease (physiopathology)</term>
<term>Reference Values</term>
<term>Remote Sensing Technology (instrumentation)</term>
<term>Transducers</term>
<term>Walking (physiology)</term>
<term>Weight-Bearing (physiology)</term>
<term>Wireless Technology (instrumentation)</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Biofeedback, Psychology</term>
<term>Monitoring, Ambulatory</term>
<term>Remote Sensing Technology</term>
<term>Wireless Technology</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ankle</term>
<term>Feedback, Sensory</term>
<term>Foot</term>
<term>Gait</term>
<term>Knee</term>
<term>Leg</term>
<term>Movement</term>
<term>Walking</term>
<term>Weight-Bearing</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Craniocerebral Trauma</term>
<term>Hemiplegia</term>
<term>Movement Disorders</term>
<term>Osteoarthritis</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Clothing</term>
<term>Equipment Design</term>
<term>Humans</term>
<term>Reference Values</term>
<term>Transducers</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The proliferation of miniaturized electronics has fueled a shift toward wearable sensors and feedback devices for the mass population. Quantified self and other similar movements involving wearable systems have gained recent interest. However, it is unclear what the clinical impact of these enabling technologies is on human gait. The purpose of this review is to assess clinical applications of wearable sensing and feedback for human gait and to identify areas of future research. Four electronic databases were searched to find articles employing wearable sensing or feedback for movements of the foot, ankle, shank, thigh, hip, pelvis, and trunk during gait. We retrieved 76 articles that met the inclusion criteria and identified four common clinical applications: (1) identifying movement disorders, (2) assessing surgical outcomes, (3) improving walking stability, and (4) reducing joint loading. Characteristics of knee and trunk motion were the most frequent gait parameters for both wearable sensing and wearable feedback. Most articles performed testing on healthy subjects, and the most prevalent patient populations were osteoarthritis, vestibular loss, Parkinson's disease, and post-stroke hemiplegia. The most widely used wearable sensors were inertial measurement units (accelerometer and gyroscope packaged together) and goniometers. Haptic (touch) and auditory were the most common feedback sensations. This review highlights the current state of the literature and demonstrates substantial potential clinical benefits of wearable sensing and feedback. Future research should focus on wearable sensing and feedback in patient populations, in natural human environments outside the laboratory such as at home or work, and on continuous, long-term monitoring and intervention.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Shull, Pete B" sort="Shull, Pete B" uniqKey="Shull P" first="Pete B" last="Shull">Pete B. Shull</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Jirattigalachote, Wisit" sort="Jirattigalachote, Wisit" uniqKey="Jirattigalachote W" first="Wisit" last="Jirattigalachote">Wisit Jirattigalachote</name>
</region>
<name sortKey="Cutkosky, Mark R" sort="Cutkosky, Mark R" uniqKey="Cutkosky M" first="Mark R" last="Cutkosky">Mark R. Cutkosky</name>
<name sortKey="Delp, Scott L" sort="Delp, Scott L" uniqKey="Delp S" first="Scott L" last="Delp">Scott L. Delp</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Hunt, Michael A" sort="Hunt, Michael A" uniqKey="Hunt M" first="Michael A" last="Hunt">Michael A. Hunt</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000955 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000955 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24768525
   |texte=   Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24768525" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ParkinsonCanadaV1 

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022