La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Trace element geochemistry of CR chondrite metal

Identifieur interne : 002974 ( Istex/Corpus ); précédent : 002973; suivant : 002975

Trace element geochemistry of CR chondrite metal

Auteurs : Emmanuel Jacquet ; Marine Paulhiac-Pison ; Olivier Alard ; Anton T. Kearsley ; Matthieu Gounelle

Source :

RBID : ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB

Abstract

We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.

Url:
DOI: 10.1111/maps.12212

Links to Exploration step

ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author>
<name sortKey="Jacquet, Emmanuel" sort="Jacquet, Emmanuel" uniqKey="Jacquet E" first="Emmanuel" last="Jacquet">Emmanuel Jacquet</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ejacquet@cita.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paulhiac Ison, Marine" sort="Paulhiac Ison, Marine" uniqKey="Paulhiac Ison M" first="Marine" last="Paulhiac-Pison">Marine Paulhiac-Pison</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kearsley, Anton T" sort="Kearsley, Anton T" uniqKey="Kearsley A" first="Anton T." last="Kearsley">Anton T. Kearsley</name>
<affiliation>
<mods:affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gounelle, Matthieu" sort="Gounelle, Matthieu" uniqKey="Gounelle M" first="Matthieu" last="Gounelle">Matthieu Gounelle</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1111/maps.12212</idno>
<idno type="url">https://api-v5.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002974</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002974</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author>
<name sortKey="Jacquet, Emmanuel" sort="Jacquet, Emmanuel" uniqKey="Jacquet E" first="Emmanuel" last="Jacquet">Emmanuel Jacquet</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ejacquet@cita.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paulhiac Ison, Marine" sort="Paulhiac Ison, Marine" uniqKey="Paulhiac Ison M" first="Marine" last="Paulhiac-Pison">Marine Paulhiac-Pison</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Alard, Olivier" sort="Alard, Olivier" uniqKey="Alard O" first="Olivier" last="Alard">Olivier Alard</name>
<affiliation>
<mods:affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kearsley, Anton T" sort="Kearsley, Anton T" uniqKey="Kearsley A" first="Anton T." last="Kearsley">Anton T. Kearsley</name>
<affiliation>
<mods:affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gounelle, Matthieu" sort="Gounelle, Matthieu" uniqKey="Gounelle M" first="Matthieu" last="Gounelle">Matthieu Gounelle</name>
<affiliation>
<mods:affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Meteoritics & Planetary Science</title>
<title level="j" type="abbrev">Meteorit Planet Sci</title>
<idno type="ISSN">1086-9379</idno>
<idno type="eISSN">1945-5100</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-10">2013-10</date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1981">1981</biblScope>
<biblScope unit="page" to="1999">1999</biblScope>
</imprint>
<idno type="ISSN">1086-9379</idno>
</series>
<idno type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<idno type="DOI">10.1111/maps.12212</idno>
<idno type="ArticleID">MAPS12212</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1086-9379</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Emmanuel Jacquet</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</json:string>
<json:string>E-mail: ejacquet@cita.utoronto.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marine Paulhiac‐Pison</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Olivier Alard</name>
<affiliations>
<json:string>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Anton T. Kearsley</name>
<affiliations>
<json:string>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>Matthieu Gounelle</name>
<affiliations>
<json:string>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</json:string>
<json:string>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>MAPS12212</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</abstract>
<qualityIndicators>
<score>10</score>
<pdfVersion>1.7</pdfVersion>
<pdfPageSize>595.276 x 790.866 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2051</abstractCharCount>
<pdfWordCount>9951</pdfWordCount>
<pdfCharCount>62943</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>288</abstractWordCount>
</qualityIndicators>
<title>Trace element geochemistry of CR chondrite metal</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Meteoritics & Planetary Science</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1945-5100</json:string>
</doi>
<issn>
<json:string>1086-9379</json:string>
</issn>
<eissn>
<json:string>1945-5100</json:string>
</eissn>
<publisherId>
<json:string>MAPS</json:string>
</publisherId>
<volume>48</volume>
<issue>10</issue>
<pages>
<first>1981</first>
<last>1999</last>
<total>19</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Original Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1111/maps.12212</json:string>
</doi>
<id>34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>© 2013 The Meteoritical Society© The Meteoritical Society, 2013.</p>
</availability>
<date>2013-09-24</date>
</publicationStmt>
<notesStmt>
<note>Table S1: Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</note>
<note>Institut Universitaire de France</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Trace element geochemistry of CR chondrite metal</title>
<author xml:id="author-1">
<persName>
<forename type="first">Emmanuel</forename>
<surname>Jacquet</surname>
</persName>
<email>ejacquet@cita.utoronto.ca</email>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Marine</forename>
<surname>Paulhiac‐Pison</surname>
</persName>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Olivier</forename>
<surname>Alard</surname>
</persName>
<affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Anton T.</forename>
<surname>Kearsley</surname>
</persName>
<affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Matthieu</forename>
<surname>Gounelle</surname>
</persName>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Meteoritics & Planetary Science</title>
<title level="j" type="abbrev">Meteorit Planet Sci</title>
<idno type="pISSN">1086-9379</idno>
<idno type="eISSN">1945-5100</idno>
<idno type="DOI">10.1111/(ISSN)1945-5100</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-10"></date>
<biblScope unit="volume">48</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1981">1981</biblScope>
<biblScope unit="page" to="1999">1999</biblScope>
</imprint>
</monogr>
<idno type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</idno>
<idno type="DOI">10.1111/maps.12212</idno>
<idno type="ArticleID">MAPS12212</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013-09-24</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Original Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-11-27">Received</change>
<change when="2013-08-07">Registration</change>
<change when="2013-09-24">Created</change>
<change when="2013-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:id="maps12212" xml:lang="en">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1945-5100</doi>
<issn type="print">1086-9379</issn>
<issn type="electronic">1945-5100</issn>
<idGroup>
<id type="product" value="MAPS"></id>
</idGroup>
<titleGroup>
<title type="main" sort="METEORITICS AND PLANETARY SCIENCE">Meteoritics & Planetary Science</title>
<title type="short">Meteorit Planet Sci</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10110">
<doi origin="wiley">10.1111/maps.2013.48.issue-10</doi>
<copyright ownership="thirdParty">© 2013 The Meteoritical Society</copyright>
<numberingGroup>
<numbering type="journalVolume" number="48">48</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2013-10">October 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="130" status="forIssue" type="article">
<doi>10.1111/maps.12212</doi>
<idGroup>
<id type="unit" value="MAPS12212"></id>
</idGroup>
<countGroup>
<count number="19" type="pageTotal"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Original Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">© The Meteoritical Society, 2013.</copyright>
<eventGroup>
<event date="2012-11-27" type="manuscriptReceived"></event>
<event date="2013-08-07" type="manuscriptAccepted"></event>
<event agent="SPS" date="2013-09-24" type="xmlCreated"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.2.6 mode:FullText" date="2013-11-06"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-10-15"></event>
<event type="firstOnline" date="2013-10-15"></event>
<event type="publishedOnlineFinalForm" date="2013-11-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1981</numbering>
<numbering type="pageLast">1999</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author. E‐mail:
<email>ejacquet@cita.utoronto.ca</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MAPS.MAPS12212.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Trace element geochemistry of
<fc>CR</fc>
chondrite metal</title>
<title type="shortAuthors">E. Jacquet et al.</title>
</titleGroup>
<creators>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0002" corresponding="yes" creatorRole="author" xml:id="maps12212-cr-0001">
<personName>
<givenNames>Emmanuel</givenNames>
<familyName>Jacquet</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0003" creatorRole="author" xml:id="maps12212-cr-0002">
<personName>
<givenNames>Marine</givenNames>
<familyName>Paulhiac‐Pison</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0004" creatorRole="author" xml:id="maps12212-cr-0003">
<personName>
<givenNames>Olivier</givenNames>
<familyName>Alard</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0005" creatorRole="author" xml:id="maps12212-cr-0004">
<personName>
<givenNames>Anton T.</givenNames>
<familyName>Kearsley</familyName>
</personName>
</creator>
<creator affiliationRef="#maps12212-aff-0001 #maps12212-aff-0006" creatorRole="author" xml:id="maps12212-cr-0005">
<personName>
<givenNames>Matthieu</givenNames>
<familyName>Gounelle</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0001">
<orgDiv>Laboratoire de Minéralogie et Cosmochimie du Muséum</orgDiv>
<orgName>CNRS & Muséum National d'Histoire Naturelle</orgName>
<address>
<street>UMR 7202</street>
<street>57 rue Cuvier</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="maps12212-aff-0002">
<orgDiv>Canadian Institute for Theoretical Astrophysics</orgDiv>
<orgName>University of Toronto</orgName>
<address>
<street>60 St Georges Street</street>
<city>Toronto</city>
<countryPart>ON</countryPart>
<postCode>M5S 3H8</postCode>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0003">
<orgName>Ecole Normale Supérieure de Paris</orgName>
<address>
<street>45 rue d'Ulm</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0004">
<orgDiv>Géosciences Montpellier</orgDiv>
<orgName>Université de Montpellier II</orgName>
<address>
<street>UMR 5243</street>
<street>Place E. Bataillon</street>
<postCode>34095</postCode>
<city>Montpellier Cedex 5</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="GB" type="organization" xml:id="maps12212-aff-0005">
<orgDiv>Impacts and Astromaterials Research Centre</orgDiv>
<orgDiv>Department of Mineralogy</orgDiv>
<orgName>The Natural History Museum</orgName>
<address>
<city>London</city>
<postCode>SW7 5BD</postCode>
<country>UK</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="maps12212-aff-0006">
<orgDiv>Institut Universitaire de France</orgDiv>
<orgName>Maison des Universités</orgName>
<address>
<street>103 boulevard Saint‐Michel</street>
<postCode>75005</postCode>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
</affiliationGroup>
<fundingInfo>
<fundingAgency>Institut Universitaire de France</fundingAgency>
</fundingInfo>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supporting" mimeType="application/msexcel" href="urn-x:wiley:10869379:media:maps12212:maps12212-sup-0001-TableS1"></mediaResource>
<caption>
<b>Table S1:</b>
Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:id="maps12212-abs-0001">
<title type="main">Abstract</title>
<p>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (
<fc>LA</fc>
<fc>ICP</fc>
<fc>MS</fc>
) of metal grains from nine different
<fc>CR</fc>
chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in
<fc>CR</fc>
chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (
<fc>PGE</fc>
)‐rich condensates before mixing with lower temperature
<fc>PGE</fc>
‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h
<sup>−1</sup>
), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Trace element geochemistry of CR chondrite metal</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Trace element geochemistry of CR chondrite metal</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Jacquet</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St Georges Street, ON, M5S 3H8, Toronto, Canada</affiliation>
<affiliation>E-mail: ejacquet@cita.utoronto.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Paulhiac‐Pison</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Ecole Normale Supérieure de Paris, 45 rue d'Ulm, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Alard</namePart>
<affiliation>Géosciences Montpellier, Université de Montpellier II, UMR 5243Place E. Bataillon, 34095, Montpellier Cedex 5, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anton T.</namePart>
<namePart type="family">Kearsley</namePart>
<affiliation>Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, SW7 5BD, London, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthieu</namePart>
<namePart type="family">Gounelle</namePart>
<affiliation>Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS & Muséum National d'Histoire Naturelle, UMR 720257 rue Cuvier, 75005, Paris, France</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 103 boulevard Saint‐Michel, 75005, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-10</dateIssued>
<dateCreated encoding="w3cdtf">2013-09-24</dateCreated>
<dateCaptured encoding="w3cdtf">2012-11-27</dateCaptured>
<dateValid encoding="w3cdtf">2013-08-07</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>We report trace element analyses by laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) of metal grains from nine different CR chondrites, distinguishing grains from chondrule interior (“interior grains”), chondrule surficial shells (“margin grains”), and the matrix (“isolated grains”). Save for a few anomalous grains, Ni‐normalized trace element patterns are similar for all three petrographic settings, with largely unfractionated refractory siderophile elements and depleted volatile Au, Cu, Ag, S. All three types of grains are interpreted to derive from a common precursor approximated by the least‐melted, fine‐grained objects in CR chondrites. This also excludes recondensation of metal vapor as the origin of the bulk of margin grains. The metal precursors were presumably formed by incomplete condensation, with evidence for high‐temperature isolation of refractory platinum‐group‐element (PGE)‐rich condensates before mixing with lower temperature PGE‐depleted condensates. The rounded shape of the Ni‐rich, interior grains shows that they were molten and that they equilibrated with silicates upon slow cooling (1–100 K h−1), largely by oxidation/evaporation of Fe, hence their high Pd content, for example. We propose that Ni‐poorer, amoeboid margin grains, often included in the pyroxene‐rich periphery common to type I chondrules, result from less intense processing of a rim accreted onto the chondrule subsequent to the melting event recorded by the interior grains. This means either that there were two separate heating events, which formed olivine/interior grains and pyroxene/margin grains, respectively, between which dust was accreted around the chondrule, or that there was a single high‐temperature event, of which the chondrule margin records a late “quenching phase,” in which case dust accreted onto chondrules while they were molten. In the latter case, high dust concentrations in the chondrule‐forming region (at least three orders of magnitude above minimum mass solar nebula models) are indicated.</abstract>
<note type="additional physical form">Table S1: Composition and petrographical data of analyzed metal grains. Trace element concentrations are given in ppm for LA‐ICP‐MS data and wt% for EMPA. For metal grains sited in chondrules, electron microprobe analyses (in wt%) of olivine are also tabulated. n.a. = not available, b.d. = below detection (typically 0.03 wt% for EMP analyses).</note>
<note type="funding">Institut Universitaire de France</note>
<relatedItem type="host">
<titleInfo>
<title>Meteoritics & Planetary Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Meteorit Planet Sci</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Original Article</topic>
</subject>
<identifier type="ISSN">1086-9379</identifier>
<identifier type="eISSN">1945-5100</identifier>
<identifier type="DOI">10.1111/(ISSN)1945-5100</identifier>
<identifier type="PublisherID">MAPS</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>48</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1981</start>
<end>1999</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB</identifier>
<identifier type="DOI">10.1111/maps.12212</identifier>
<identifier type="ArticleID">MAPS12212</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2013 The Meteoritical Society© The Meteoritical Society, 2013.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002974 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002974 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:34F2D2BAACA7F53EF5C7FD3E0B3C222EB9A2FBCB
   |texte=   Trace element geochemistry of CR chondrite metal
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022