La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS

Identifieur interne : 002908 ( Istex/Corpus ); précédent : 002907; suivant : 002909

LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS

Auteurs : A. Mark Jellinek ; Michael Manga

Source :

RBID : ISTEX:23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8

Abstract

The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.

Url:
DOI: 10.1029/2003RG000144

Links to Exploration step

ISTEX:23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
<author>
<name sortKey="Jellinek, A Mark" sort="Jellinek, A Mark" uniqKey="Jellinek A" first="A. Mark" last="Jellinek">A. Mark Jellinek</name>
<affiliation>
<mods:affiliation>Geophysical Laboratories, Department of Physics, University of Toronto, Ontario, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: markj@physics.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manga, Michael" sort="Manga, Michael" uniqKey="Manga M" first="Michael" last="Manga">Michael Manga</name>
<affiliation>
<mods:affiliation>Department of Earth and Planetary Science, University of California, California, Berkeley, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1029/2003RG000144</idno>
<idno type="url">https://api-v5.istex.fr/document/23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002908</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
<author>
<name sortKey="Jellinek, A Mark" sort="Jellinek, A Mark" uniqKey="Jellinek A" first="A. Mark" last="Jellinek">A. Mark Jellinek</name>
<affiliation>
<mods:affiliation>Geophysical Laboratories, Department of Physics, University of Toronto, Ontario, Toronto, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: markj@physics.utoronto.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Manga, Michael" sort="Manga, Michael" uniqKey="Manga M" first="Michael" last="Manga">Michael Manga</name>
<affiliation>
<mods:affiliation>Department of Earth and Planetary Science, University of California, California, Berkeley, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Reviews of Geophysics</title>
<title level="j" type="abbrev">Rev. Geophys.</title>
<idno type="ISSN">8755-1209</idno>
<idno type="eISSN">1944-9208</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-09">2004-09</date>
<biblScope unit="volume">42</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">8755-1209</idno>
</series>
<idno type="istex">23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8</idno>
<idno type="DOI">10.1029/2003RG000144</idno>
<idno type="ArticleID">2003RG000144</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">8755-1209</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>A. Mark Jellinek</name>
<affiliations>
<json:string>Geophysical Laboratories, Department of Physics, University of Toronto, Ontario, Toronto, Canada</json:string>
<json:string>E-mail: markj@physics.utoronto.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael Manga</name>
<affiliations>
<json:string>Department of Earth and Planetary Science, University of California, California, Berkeley, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hot spots</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mantle plumes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thermochemical convection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ocean island basalt geochemistry</value>
</json:item>
</subject>
<articleId>
<json:string>2003RG000144</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2618</abstractCharCount>
<pdfWordCount>26598</pdfWordCount>
<pdfCharCount>158018</pdfCharCount>
<pdfPageCount>35</pdfPageCount>
<abstractWordCount>390</abstractWordCount>
</qualityIndicators>
<title>LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Reviews of Geophysics</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1944-9208</json:string>
</doi>
<issn>
<json:string>8755-1209</json:string>
</issn>
<eissn>
<json:string>1944-9208</json:string>
</eissn>
<publisherId>
<json:string>ROG</json:string>
</publisherId>
<volume>42</volume>
<issue>3</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>35</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Evolution of the atmosphere</value>
</json:item>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Planetary geochemistry</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Earth's interior: composition and state</value>
</json:item>
<json:item>
<value>Earth's interior: dynamics</value>
</json:item>
<json:item>
<value>Earth's interior: composition and state</value>
</json:item>
<json:item>
<value>Earth's interior: dynamics</value>
</json:item>
<json:item>
<value>GEOMAGNETISM AND PALEOMAGNETISM</value>
</json:item>
<json:item>
<value>Paleomagnetic secular variation</value>
</json:item>
<json:item>
<value>PLANETARY SCIENCES: SOLID SURFACE PLANETS</value>
</json:item>
<json:item>
<value>Atmospheres</value>
</json:item>
<json:item>
<value>Composition</value>
</json:item>
<json:item>
<value>PLANETARY SCIENCES: FLUID PLANETS</value>
</json:item>
<json:item>
<value>Atmospheres</value>
</json:item>
<json:item>
<value>Composition</value>
</json:item>
<json:item>
<value>PLANETARY SCIENCES: COMETS AND SMALL BODIES</value>
</json:item>
<json:item>
<value>Atmospheres</value>
</json:item>
<json:item>
<value>Composition</value>
</json:item>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Core</value>
</json:item>
<json:item>
<value>Mantle</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Tectonophysics: Dynamics, convection currents and mantle plumes</value>
</json:item>
<json:item>
<value>Evolution of the Earth</value>
</json:item>
<json:item>
<value>Earth's interior: composition and state</value>
</json:item>
<json:item>
<value>Earth's interior: composition and state</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geochemistry & geophysics</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1029/2003RG000144</json:string>
</doi>
<id>23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2004 by the American Geophysical Union.</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
<author xml:id="author-1">
<persName>
<forename type="first">A. Mark</forename>
<surname>Jellinek</surname>
</persName>
<email>markj@physics.utoronto.ca</email>
<affiliation>Geophysical Laboratories, Department of Physics, University of Toronto, Ontario, Toronto, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Michael</forename>
<surname>Manga</surname>
</persName>
<affiliation>Department of Earth and Planetary Science, University of California, California, Berkeley, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Reviews of Geophysics</title>
<title level="j" type="abbrev">Rev. Geophys.</title>
<idno type="pISSN">8755-1209</idno>
<idno type="eISSN">1944-9208</idno>
<idno type="DOI">10.1002/(ISSN)1944-9208</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-09"></date>
<biblScope unit="volume">42</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8</idno>
<idno type="DOI">10.1029/2003RG000144</idno>
<idno type="ArticleID">2003RG000144</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>hot spots</term>
</item>
<item>
<term>mantle plumes</term>
</item>
<item>
<term>thermochemical convection</term>
</item>
<item>
<term>ocean island basalt geochemistry</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Evolution of the atmosphere</term>
</item>
<item>
<term>GEOCHEMISTRY</term>
</item>
<item>
<term>Planetary geochemistry</term>
</item>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Earth's interior: composition and state</term>
</item>
<item>
<term>Earth's interior: dynamics</term>
</item>
<item>
<term>Earth's interior: composition and state</term>
</item>
<item>
<term>Earth's interior: dynamics</term>
</item>
<item>
<term>GEOMAGNETISM AND PALEOMAGNETISM</term>
</item>
<item>
<term>Paleomagnetic secular variation</term>
</item>
<item>
<term>PLANETARY SCIENCES: SOLID SURFACE PLANETS</term>
</item>
<item>
<term>Atmospheres</term>
</item>
<item>
<term>Composition</term>
</item>
<item>
<term>PLANETARY SCIENCES: FLUID PLANETS</term>
</item>
<item>
<term>Atmospheres</term>
</item>
<item>
<term>Composition</term>
</item>
<item>
<term>PLANETARY SCIENCES: COMETS AND SMALL BODIES</term>
</item>
<item>
<term>Atmospheres</term>
</item>
<item>
<term>Composition</term>
</item>
<item>
<term>SEISMOLOGY</term>
</item>
<item>
<term>Core</term>
</item>
<item>
<term>Mantle</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Tectonophysics: Dynamics, convection currents and mantle plumes</term>
</item>
<item>
<term>Evolution of the Earth</term>
</item>
<item>
<term>Earth's interior: composition and state</term>
</item>
<item>
<term>Earth's interior: composition and state</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-10-31">Received</change>
<change when="2004-06-10">Registration</change>
<change when="2004-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="rog1605">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-9208</doi>
<issn type="print">8755-1209</issn>
<issn type="electronic">1944-9208</issn>
<idGroup>
<id type="product" value="ROG"></id>
<id type="coden" value="REGEEP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="REVIEWS OF GEOPHYSICS">Reviews of Geophysics</title>
<title type="short">Rev. Geophys.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/rog.v42.3</doi>
<numberingGroup>
<numbering type="journalVolume" number="42">42</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2004-09">September 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="20" type="article" status="forIssue">
<doi>10.1029/2003RG000144</doi>
<idGroup>
<id type="editorialOffice" value="2003RG000144"></id>
<id type="society" value="RG3002"></id>
<id type="unit" value="ROG1605"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="35"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2004 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-10-31"></event>
<event type="manuscriptRevised" date="2004-04-27"></event>
<event type="manuscriptAccepted" date="2004-06-10"></event>
<event type="firstOnline" date="2004-09-14"></event>
<event type="publishedOnlineFinalForm" date="2004-09-14"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1060">Planetary geochemistry</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1212">Earth's interior: composition and state</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1212">Earth's interior: composition and state</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1500">GEOMAGNETISM AND PALEOMAGNETISM</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1522">Paleomagnetic secular variation</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5400">PLANETARY SCIENCES: SOLID SURFACE PLANETS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5405">Atmospheres</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5410">Composition</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5700">PLANETARY SCIENCES: FLUID PLANETS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5704">Atmospheres</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/5709">Composition</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/6000">PLANETARY SCIENCES: COMETS AND SMALL BODIES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/6005">Atmospheres</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/6008">Composition</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7207">Core</subject>
<subject href="http://psi.agu.org/taxonomy5/7208">Mantle</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8121">Tectonophysics: Dynamics, convection currents and mantle plumes</subject>
<subject href="http://psi.agu.org/taxonomy5/8125">Evolution of the Earth</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8124">Earth's interior: composition and state</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8124">Earth's interior: composition and state</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="rog1605-cit-0000" type="self">
<author>
<familyName>Jellinek</familyName>
,
<givenNames>A. M.</givenNames>
</author>
, and
<author>
<givenNames>M.</givenNames>
<familyName>Manga</familyName>
</author>
(
<pubYear year="2004">2004</pubYear>
),
<articleTitle>LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</articleTitle>
,
<journalTitle>Rev. Geophys.</journalTitle>
,
<vol>42</vol>
, RG3002, doi:
<accessionId ref="info:doi/10.1029/2003RG000144">10.1029/2003RG000144</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:ROG.ROG1605.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="17"></count>
<count type="tableTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
<title type="short">LONG‐LIVED MANTLE PLUMES</title>
<title type="shortAuthors">Jellinek and Manga</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="rog1605-cr-0001" affiliationRef="#rog1605-aff-0001">
<personName>
<givenNames>A. Mark</givenNames>
<familyName>Jellinek</familyName>
</personName>
<contactDetails>
<email normalForm="markj@physics.utoronto.ca">markj@physics.utoronto.ca</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="rog1605-cr-0002" affiliationRef="#rog1605-aff-0002">
<personName>
<givenNames>Michael</givenNames>
<familyName>Manga</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="CA" type="organization" xml:id="rog1605-aff-0001">
<orgDiv>Geophysical Laboratories, Department of Physics</orgDiv>
<orgName>University of Toronto</orgName>
<address>
<city>Toronto</city>
<countryPart>Ontario</countryPart>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="rog1605-aff-0002">
<orgDiv>Department of Earth and Planetary Science</orgDiv>
<orgName>University of California</orgName>
<address>
<city>Berkeley</city>
<countryPart>California</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="rog1605-kwd-0001">hot spots</keyword>
<keyword xml:id="rog1605-kwd-0002">mantle plumes</keyword>
<keyword xml:id="rog1605-kwd-0003">thermochemical convection</keyword>
<keyword xml:id="rog1605-kwd-0004">ocean island basalt geochemistry</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="rog1605-para-0001" label="1">The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>LONG‐LIVED MANTLE PLUMES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS</title>
</titleInfo>
<name type="personal">
<namePart type="given">A. Mark</namePart>
<namePart type="family">Jellinek</namePart>
<affiliation>Geophysical Laboratories, Department of Physics, University of Toronto, Ontario, Toronto, Canada</affiliation>
<affiliation>E-mail: markj@physics.utoronto.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Manga</namePart>
<affiliation>Department of Earth and Planetary Science, University of California, California, Berkeley, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2004-09</dateIssued>
<dateCaptured encoding="w3cdtf">2003-10-31</dateCaptured>
<dateValid encoding="w3cdtf">2004-06-10</dateValid>
<edition>Jellinek, A. M., and M. Manga (2004), LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS, Rev. Geophys., 42, RG3002, doi:10.1029/2003RG000144.</edition>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">17</extent>
<extent unit="tables">1</extent>
</physicalDescription>
<abstract>The existence, spatial distribution, and style of volcanism on terrestrial planets is an expression of their internal dynamics and evolution. On Earth a physical link has been proposed between hot spots, regions with particularly persistent, localized, and high rates of volcanism, and underlying deep mantle plumes. Such mantle plumes are thought to be constructed of large spherical heads and narrow trailing conduits. This plume model has provided a way to interpret observable phenomena including the volcanological, petrological, and geochemical evolution of ocean island volcanoes, the relative motion of plates, continental breakup, global heat flow, and the Earth's magnetic field within the broader framework of the thermal history of our planet. Despite the plume model's utility the underlying dynamics giving rise to hot spots as long‐lived stable features have remained elusive. Accordingly, in this review we combine results from new and published observational, analog, theoretical, and numerical studies to address two key questions: (1) Why might mantle plumes in the Earth have a head‐tail structure? (2) How can mantle plumes and hot spots persist for large geological times? We show first that the characteristic head‐tail structure of mantle plumes, which is a consequence of hot upwellings having a low viscosity, is likely a result of strong cooling of the mantle by large‐scale stirring driven by plate tectonics. Second, we show that the head‐tail structure of such plumes is a necessary but insufficient condition for their longevity. Third, we synthesize seismological, geodynamic, geomagnetic, and geochemical constraints on the structure and composition of the lowermost mantle to argue that the source regions for most deep mantle plumes contain dense, low‐viscosity material within D″ composed of partial melt, outer core material, or a mixture of both (i.e., a “dense layer”). Fourth, using results from laboratory experiments on thermochemical convection and new theoretical scaling analyses, we argue that the longevity of mantle plumes in the Earth is a consequence of the interactions between plate tectonics, core cooling, and dense, low‐viscosity material within D″. Conditions leading to Earth‐like mantle plumes are highly specific and may thus be unique to our own planet. Furthermore, long‐lived hot spots should not a priori be anticipated on other terrestrial planets and moons. Our analysis leads to self‐consistent predictions for the longevity of mantle plumes, topography on the dense layer, and composition of ocean island basalts that are consistent with observations.</abstract>
<subject>
<genre>keywords</genre>
<topic>hot spots</topic>
<topic>mantle plumes</topic>
<topic>thermochemical convection</topic>
<topic>ocean island basalt geochemistry</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Reviews of Geophysics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Rev. Geophys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1060">Planetary geochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1212">Earth's interior: composition and state</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1212">Earth's interior: composition and state</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1500">GEOMAGNETISM AND PALEOMAGNETISM</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1522">Paleomagnetic secular variation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5400">PLANETARY SCIENCES: SOLID SURFACE PLANETS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5405">Atmospheres</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5410">Composition</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5700">PLANETARY SCIENCES: FLUID PLANETS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5704">Atmospheres</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5709">Composition</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/6000">PLANETARY SCIENCES: COMETS AND SMALL BODIES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/6005">Atmospheres</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/6008">Composition</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7207">Core</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7208">Mantle</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8121">Tectonophysics: Dynamics, convection currents and mantle plumes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8125">Evolution of the Earth</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8124">Earth's interior: composition and state</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8124">Earth's interior: composition and state</topic>
</subject>
<identifier type="ISSN">8755-1209</identifier>
<identifier type="eISSN">1944-9208</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-9208</identifier>
<identifier type="CODEN">REGEEP</identifier>
<identifier type="PublisherID">ROG</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>35</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8</identifier>
<identifier type="DOI">10.1029/2003RG000144</identifier>
<identifier type="ArticleID">2003RG000144</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2004 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:23A5723D3C4C0E5E0195DA1A1E4645E63ADFE6A8
   |texte=   LINKS BETWEEN LONG‐LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022