La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province

Identifieur interne : 002898 ( Istex/Corpus ); précédent : 002897; suivant : 002899

Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province

Auteurs : Francis Dudás

Source :

RBID : ISTEX:97C463EA58E72661DA5294D604F7EF9D8C5B73FC

Abstract

Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO2‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.

Url:
DOI: 10.1029/91JB00246

Links to Exploration step

ISTEX:97C463EA58E72661DA5294D604F7EF9D8C5B73FC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
<author wicri:is="90%">
<name sortKey="Dudas, Francis" sort="Dudas, Francis" uniqKey="Dudas F" first="Francis" last="Dudás">Francis Dudás</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:97C463EA58E72661DA5294D604F7EF9D8C5B73FC</idno>
<date when="1991" year="1991">1991</date>
<idno type="doi">10.1029/91JB00246</idno>
<idno type="url">https://api-v5.istex.fr/document/97C463EA58E72661DA5294D604F7EF9D8C5B73FC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002898</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002898</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
<author wicri:is="90%">
<name sortKey="Dudas, Francis" sort="Dudas, Francis" uniqKey="Dudas F" first="Francis" last="Dudás">Francis Dudás</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1991-07-30">1991-07-30</date>
<biblScope unit="volume">96</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="13261">13261</biblScope>
<biblScope unit="page" to="13277">13277</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">97C463EA58E72661DA5294D604F7EF9D8C5B73FC</idno>
<idno type="DOI">10.1029/91JB00246</idno>
<idno type="ArticleID">91JB00246</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO2‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Francis Ö. Dudás</name>
</json:item>
</author>
<articleId>
<json:string>91JB00246</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO2‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>636 x 811 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2979</abstractCharCount>
<pdfWordCount>10064</pdfWordCount>
<pdfCharCount>87514</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>410</abstractWordCount>
</qualityIndicators>
<title>Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>96</volume>
<issue>B8</issue>
<pages>
<first>13261</first>
<last>13277</last>
<total>17</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>EXPLORATION GEOPHYSICS</value>
</json:item>
<json:item>
<value>Continental structures</value>
</json:item>
<json:item>
<value>Continental structures</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Mineralogy, Petrology, and Rock Chemistry: Igneous petrology</value>
</json:item>
<json:item>
<value>Mineralogy, Petrology, and Rock Chemistry: Geochronology (radiometric)</value>
</json:item>
<json:item>
<value>Mineralogy, Petrology, and Rock Chemistry: Minor and trace element composition</value>
</json:item>
<json:item>
<value>STRUCTURAL GEOLOGY</value>
</json:item>
<json:item>
<value>Continental neotectonics</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Continental neotectonics</value>
</json:item>
<json:item>
<value>Continental tectonics: extensional</value>
</json:item>
<json:item>
<value>Continental tectonics: general</value>
</json:item>
<json:item>
<value>Papers on Physics and Chemistry of Minerals and Rocks Volcanology</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>1991</publicationDate>
<copyrightDate>1991</copyrightDate>
<doi>
<json:string>10.1029/91JB00246</json:string>
</doi>
<id>97C463EA58E72661DA5294D604F7EF9D8C5B73FC</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/97C463EA58E72661DA5294D604F7EF9D8C5B73FC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/97C463EA58E72661DA5294D604F7EF9D8C5B73FC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/97C463EA58E72661DA5294D604F7EF9D8C5B73FC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 1991 by the American Geophysical Union.</p>
</availability>
<date>1991</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
<author xml:id="author-1">
<persName>
<forename type="first">Francis Ö.</forename>
<surname>Dudás</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1991-07-30"></date>
<biblScope unit="volume">96</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="13261">13261</biblScope>
<biblScope unit="page" to="13277">13277</biblScope>
</imprint>
</monogr>
<idno type="istex">97C463EA58E72661DA5294D604F7EF9D8C5B73FC</idno>
<idno type="DOI">10.1029/91JB00246</idno>
<idno type="ArticleID">91JB00246</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1991</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO2‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>EXPLORATION GEOPHYSICS</term>
</item>
<item>
<term>Continental structures</term>
</item>
<item>
<term>Continental structures</term>
</item>
<item>
<term>MINERALOGY AND PETROLOGY</term>
</item>
<item>
<term>Mineralogy, Petrology, and Rock Chemistry: Igneous petrology</term>
</item>
<item>
<term>Mineralogy, Petrology, and Rock Chemistry: Geochronology (radiometric)</term>
</item>
<item>
<term>Mineralogy, Petrology, and Rock Chemistry: Minor and trace element composition</term>
</item>
<item>
<term>STRUCTURAL GEOLOGY</term>
</item>
<item>
<term>Continental neotectonics</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Continental neotectonics</term>
</item>
<item>
<term>Continental tectonics: extensional</term>
</item>
<item>
<term>Continental tectonics: general</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Papers on Physics and Chemistry of Minerals and Rocks Volcanology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1990-12-18">Received</change>
<change when="1991-01-15">Registration</change>
<change when="1991-07-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/97C463EA58E72661DA5294D604F7EF9D8C5B73FC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb8127">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi>10.1002/jgrb.v96.B8</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="96">96</numbering>
<numbering type="journalIssue">B8</numbering>
</numberingGroup>
<coverDate startDate="1991-07-30">30 July 1991</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="50" status="forIssue">
<doi>10.1029/91JB00246</doi>
<idGroup>
<id type="editorialOffice" value="91JB00246"></id>
<id type="unit" value="JGRB8127"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Papers on Physics and Chemistry of Minerals and Rocks Volcanology</title>
<title type="tocHeading1">Papers on Physics and Chemistry of Minerals and Rocks Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 1991 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1990-12-18"></event>
<event type="manuscriptAccepted" date="1991-01-15"></event>
<event type="publishedPrint" date="1991-07-30"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-28"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">13261</numbering>
<numbering type="pageLast">13277</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0905">Continental structures</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0905">Continental structures</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3640">Mineralogy, Petrology, and Rock Chemistry: Igneous petrology</subject>
<subject href="http://psi.agu.org/taxonomy5/3635">Mineralogy, Petrology, and Rock Chemistry: Geochronology (radiometric)</subject>
<subject href="http://psi.agu.org/taxonomy5/3670">Mineralogy, Petrology, and Rock Chemistry: Minor and trace element composition</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8002">Continental neotectonics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8107">Continental neotectonics</subject>
<subject href="http://psi.agu.org/taxonomy5/8109">Continental tectonics: extensional</subject>
<subject href="http://psi.agu.org/taxonomy5/8110">Continental tectonics: general</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb8127-cit-0000" type="self">
<author>
<familyName>Dudás</familyName>
,
<givenNames>F.</givenNames>
</author>
(
<pubYear year="1991">1991</pubYear>
),
<articleTitle>Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
, 96(
<issue>B8</issue>
),
<pageFirst>13261</pageFirst>
<pageLast>13277</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/91JB00246">10.1029/91JB00246</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB8127.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
<title type="shortAuthors">Dudás</title>
</titleGroup>
<creators>
<creator xml:id="jgrb8127-cr-0001">
<personName>
<givenNames>Francis Ö.</givenNames>
<familyName>Dudás</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb8127-para-0001">Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO
<sub>2</sub>
‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francis Ö.</namePart>
<namePart type="family">Dudás</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1991-07-30</dateIssued>
<dateCaptured encoding="w3cdtf">1990-12-18</dateCaptured>
<dateValid encoding="w3cdtf">1991-01-15</dateValid>
<edition>Dudás, F. (1991), Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province, J. Geophys. Res., 96(B8), 13261–13277, doi:10.1029/91JB00246.</edition>
<copyrightDate encoding="w3cdtf">1991</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Tectonic models have postulated that subduction of a flat‐lying oceanic plate was intimately linked with mid‐Eocene magmatism in the northwestern United States and have assumed that this linkage is expressed in the geochemical characteristics of igneous rocks. Geochemical data from the Crazy Mountains in south central Montana can be interpreted as indicating the presence of a subduction‐related chemical component. Because radiogenic isotopic data for these rocks restrict the major chemical events in their mantle source to the Late Cretaceous‐Early Tertiary (50–100 Ma) and the mid‐Proterozoic (1.6–1.8 Ga), subduction during one or both of these periods is the most plausible explanation for the origin of the arc‐like geochemical features. Assessment of geologic and tectonic constraints, however, indicates that Late Cretaceous‐Early Tertiary subduction cannot explain the regional distribution, the contemporaneity, and the compositional range of the Eocene igneous rocks. The Eocene magmatic event does not show interpretable age progressions, as most subduction‐related models suggest. There is considerable geographic overlap in the chemical characteristics of the Eocene igneous rocks, so that chemical zoning cannot be demonstrated south of the U.S.‐Canada border. The zone of igneous activity was diffuse and discontinuous, unlike most subduction‐related magmatic arcs. The presence of thick lithospheric mantle beneath the Archean Wyoming craton presents difficulties for models that involve subduction of a flat‐lying slab. The lithospheric mantle probably controlled the depth of subduction and probably forced the slab to depths greater than those of plausible source regions for subalkalic, mantle‐derived basalts. Flat slab subduction models cannot account for the thermal inputs required for extensive magmatism. Subduction‐related models fail to explain the CO2‐rich character of alkalic magmatism in central Montana. The arc‐like geochemical patterns in the Crazy Mountains samples could result either from subduction unrelated to Late Cretaceous‐Early Tertiary events, or from mantle geochemical processes that are unrelated to subduction. If geochemical processes unrelated to subduction are involved, trace element discrimination diagrams are misleading and are inadequate criteria for interpreting the tectonic environment. The evidence for mid‐Proterozoic chemical modification of the mantle beneath the Wyoming craton suggests that the arc‐like character could be inherited from subduction events between 1.6 and 1.9 Ga, but a specific mid‐Proterozoic subduction geometry cannot be identified. Alternative tectonic models for Eocene magmatism can be built around plausible heating or decompression mechanisms for regional magma generation. The advection of a thermal anomaly by mantle upwelling, or regional uplift related to the thickening‐flexure‐rebound cycle in the Cordillera to the west could have triggered the regional Eocene magmatic event.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0905">Continental structures</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0905">Continental structures</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3640">Mineralogy, Petrology, and Rock Chemistry: Igneous petrology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3635">Mineralogy, Petrology, and Rock Chemistry: Geochronology (radiometric)</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3670">Mineralogy, Petrology, and Rock Chemistry: Minor and trace element composition</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8002">Continental neotectonics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8107">Continental neotectonics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8109">Continental tectonics: extensional</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8110">Continental tectonics: general</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Papers on Physics and Chemistry of Minerals and Rocks Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>96</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B8</number>
</detail>
<extent unit="pages">
<start>13261</start>
<end>13277</end>
<total>17</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">97C463EA58E72661DA5294D604F7EF9D8C5B73FC</identifier>
<identifier type="DOI">10.1029/91JB00246</identifier>
<identifier type="ArticleID">91JB00246</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1991 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002898 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002898 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:97C463EA58E72661DA5294D604F7EF9D8C5B73FC
   |texte=   Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana Alkalic Province
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022