La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system

Identifieur interne : 002744 ( Istex/Corpus ); précédent : 002743; suivant : 002745

A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system

Auteurs : A. De Ruiter

Source :

RBID : ISTEX:FC57542AE7BBAD888BD824D3218653B99CDD42BE

Abstract

This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.

Url:
DOI: 10.1243/09544100JAERO633

Links to Exploration step

ISTEX:FC57542AE7BBAD888BD824D3218653B99CDD42BE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
<author wicri:is="90%">
<name sortKey="De Ruiter, A" sort="De Ruiter, A" uniqKey="De Ruiter A" first="A" last="De Ruiter">A. De Ruiter</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, aderuite@mae.carleton.ca</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FC57542AE7BBAD888BD824D3218653B99CDD42BE</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1243/09544100JAERO633</idno>
<idno type="url">https://api-v5.istex.fr/document/FC57542AE7BBAD888BD824D3218653B99CDD42BE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002744</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002744</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
<author wicri:is="90%">
<name sortKey="De Ruiter, A" sort="De Ruiter, A" uniqKey="De Ruiter A" first="A" last="De Ruiter">A. De Ruiter</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, aderuite@mae.carleton.ca</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</title>
<idno type="ISSN">0954-4100</idno>
<idno type="eISSN">2041-3025</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage UK: London, England</pubPlace>
<date type="published" when="2010">2010</date>
<biblScope unit="volume">224</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="787">787</biblScope>
<biblScope unit="page" to="802">802</biblScope>
</imprint>
<idno type="ISSN">0954-4100</idno>
</series>
<idno type="istex">FC57542AE7BBAD888BD824D3218653B99CDD42BE</idno>
<idno type="DOI">10.1243/09544100JAERO633</idno>
<idno type="ArticleID">10.1243_09544100JAERO633</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0954-4100</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.</div>
</front>
</TEI>
<istex>
<corpusName>sage</corpusName>
<author>
<json:item>
<name>A de Ruiter</name>
<affiliations>
<json:string>Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, aderuite@mae.carleton.ca</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<value>spacecraft attitude determination</value>
</json:item>
<json:item>
<value>computational simplicity</value>
</json:item>
<json:item>
<value>suboptimal filtering</value>
</json:item>
</subject>
<articleId>
<json:string>10.1243_09544100JAERO633</json:string>
</articleId>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.</abstract>
<qualityIndicators>
<score>6.44</score>
<pdfWordCount>7821</pdfWordCount>
<pdfCharCount>41862</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>16</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>120</abstractWordCount>
<abstractCharCount>934</abstractCharCount>
</qualityIndicators>
<title>A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0954-4100</json:string>
</issn>
<eissn>
<json:string>2041-3025</json:string>
</eissn>
<publisherId>
<json:string>PIG</json:string>
</publisherId>
<volume>224</volume>
<issue>7</issue>
<pages>
<first>787</first>
<last>802</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, mechanical</json:string>
<json:string>engineering, aerospace</json:string>
</wos>
<scienceMetrix></scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1243/09544100JAERO633</json:string>
</doi>
<id>FC57542AE7BBAD888BD824D3218653B99CDD42BE</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/FC57542AE7BBAD888BD824D3218653B99CDD42BE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/FC57542AE7BBAD888BD824D3218653B99CDD42BE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/FC57542AE7BBAD888BD824D3218653B99CDD42BE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage UK: London, England</pubPlace>
<availability>
<p>© 2010 Institution of Mechanical Engineers</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
<author xml:id="author-1">
<persName>
<forename type="first">A</forename>
<surname>de Ruiter</surname>
</persName>
<affiliation>Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, aderuite@mae.carleton.ca</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</title>
<idno type="pISSN">0954-4100</idno>
<idno type="eISSN">2041-3025</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage UK: London, England</pubPlace>
<date type="published" when="2010"></date>
<biblScope unit="volume">224</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="787">787</biblScope>
<biblScope unit="page" to="802">802</biblScope>
</imprint>
</monogr>
<idno type="istex">FC57542AE7BBAD888BD824D3218653B99CDD42BE</idno>
<idno type="DOI">10.1243/09544100JAERO633</idno>
<idno type="ArticleID">10.1243_09544100JAERO633</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<abstract>
<p>This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>spacecraft attitude determination</term>
</item>
<item>
<term>computational simplicity</term>
</item>
<item>
<term>suboptimal filtering</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/FC57542AE7BBAD888BD824D3218653B99CDD42BE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus sage not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">PIG</journal-id>
<journal-id journal-id-type="hwp">sppig</journal-id>
<journal-title>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</journal-title>
<issn pub-type="ppub">0954-4100</issn>
<issn pub-type="epub">2041-3025</issn>
<publisher>
<publisher-name>SAGE Publications</publisher-name>
<publisher-loc>Sage UK: London, England</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1243/09544100JAERO633</article-id>
<article-id pub-id-type="publisher-id">10.1243_09544100JAERO633</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>de Ruiter</surname>
<given-names>A</given-names>
</name>
<xref ref-type="aff" rid="aff1-09544100JAERO633">1</xref>
</contrib>
</contrib-group>
<aff id="aff1-09544100JAERO633">
<label>1</label>
Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada,
<email xlink:href="aderuite@mae.carleton.ca">aderuite@mae.carleton.ca</email>
</aff>
<pub-date pub-type="epub-ppub">
<day>1</day>
<month>7</month>
<year>2010</year>
</pub-date>
<volume>224</volume>
<issue>7</issue>
<fpage>787</fpage>
<lpage>802</lpage>
<permissions>
<copyright-statement>© 2010 Institution of Mechanical Engineers</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder content-type="other">Institution of Mechanical Engineers</copyright-holder>
</permissions>
<abstract>
<title>Abstract</title>
<p>This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>spacecraft attitude determination</kwd>
<kwd>computational simplicity</kwd>
<kwd>suboptimal filtering</kwd>
</kwd-group>
</article-meta>
</front>
<back>
<ref-list>
<title>References</title>
<ref id="bibr1-09544100JAERO633">
<label>1</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>De Ruiter</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>‘Robust implementation of Kalman filter for INS correction’</article-title>
<source>Actual Problems of Aviation and Aerospace Systems: Processes, Models, Experiment</source>
<volume>123</volume>
(
<year>2007</year>
):
<fpage>25</fpage>
</citation>
</ref>
<ref id="bibr2-09544100JAERO633">
<label>2</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lefferts</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Markley</surname>
<given-names>F. L.</given-names>
</name>
<name>
<surname>Shuster</surname>
<given-names>M. D.</given-names>
</name>
</person-group>
<article-title>‘Kalman filtering for spacecraft attitude determination’</article-title>
<source>AIAA J. Guid.</source>
<volume>55</volume>
(
<year>1982</year>
):
<fpage>417</fpage>
<lpage>429</lpage>
</citation>
</ref>
<ref id="bibr3-09544100JAERO633">
<label>3</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crassidis</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Markley</surname>
<given-names>F. L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>‘Survey of nonlinear attitude estimation methods’</article-title>
<source>AIAA J. Guid. Control Dyn.</source>
<volume>301</volume>
(
<year>2007</year>
):
<fpage>12</fpage>
<lpage>28</lpage>
</citation>
</ref>
<ref id="bibr4-09544100JAERO633">
<label>4</label>
<citation citation-type="other">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yoshihara</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ngo-Phong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>B. S.</given-names>
</name>
<name>
<surname>de Ruiter</surname>
<given-names>A.</given-names>
</name>
</person-group>
<source>‘Nanosatellite mission for demonstrating formation keeping technology with aerodynamic drag’</source>
. In Proceedings of the 11th International Space Conference of Pacific Basin Societies (ISCOPS), Beijing, China, 16-18 May 2007.</citation>
</ref>
<ref id="bibr5-09544100JAERO633">
<label>5</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thienel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sanner</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
<article-title>‘A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise’</article-title>
<source>IEEE Trans. Autom. Control</source>
<volume>4811</volume>
(
<year>2003</year>
):
<fpage>2011</fpage>
<lpage>2015</lpage>
</citation>
</ref>
<ref id="bibr6-09544100JAERO633">
<label>6</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thienel</surname>
<given-names>J. K.</given-names>
</name>
<name>
<surname>Sanner</surname>
<given-names>R. M.</given-names>
</name>
</person-group>
<article-title>‘Hubble space telescope angular velocity estimation during the robotic servicing mission’</article-title>
<source>AIAA J. Guid. Control Dyn.</source>
<volume>301</volume>
(
<year>2007</year>
):
<fpage>29</fpage>
<lpage>34</lpage>
</citation>
</ref>
<ref id="bibr7-09544100JAERO633">
<label>7</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salcudean</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>‘A globally convergent angular velocity observer for rigid body motion’</article-title>
<source>IEEE Trans. Autom. Control</source>
<volume>3612</volume>
(
<year>1991</year>
):
<fpage>1493</fpage>
<lpage>1497</lpage>
</citation>
</ref>
<ref id="bibr8-09544100JAERO633">
<label>8</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Wertz</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
<source>Spacecraft attitude determination and control</source>
(
<publisher-loc>Dordrecht, Holland</publisher-loc>
:
<publisher-name>Kluwer Academic Publishers</publisher-name>
<year>1978</year>
)</citation>
</ref>
<ref id="bibr9-09544100JAERO633">
<label>9</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shuster</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S. D.</given-names>
</name>
</person-group>
<article-title>‘Three-axis attitude determination from vector observations’</article-title>
<source>AIAA J. Guid. Control</source>
<volume>41</volume>
(
<year>1981</year>
):
<fpage>70</fpage>
<lpage>77</lpage>
</citation>
</ref>
<ref id="bibr10-09544100JAERO633">
<label>10</label>
<citation citation-type="book">
<person-group person-group-type="editor">
<name>
<surname>Cohen</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Parkinson</surname>
<given-names>B. W.</given-names>
</name>
<name>
<surname>Spilker</surname>
<given-names>J. J.</given-names>
</name>
</person-group>
<article-title>‘Attitude determination’</article-title>
<source>Global positioning system: theory and applications</source>
(
<publisher-loc>Washington, DC</publisher-loc>
:
<publisher-name>AIAA</publisher-name>
<year>1996</year>
):
<fpage>519</fpage>
<lpage>538</lpage>
</citation>
</ref>
<ref id="bibr11-09544100JAERO633">
<label>11</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Hughes</surname>
<given-names>P. C.</given-names>
</name>
</person-group>
<source>Spacecraft attitude dynamics</source>
(
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Dover Publications</publisher-name>
<year>2004</year>
)</citation>
</ref>
<ref id="bibr12-09544100JAERO633">
<label>12</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shuster</surname>
<given-names>M. D.</given-names>
</name>
</person-group>
<article-title>‘A survey of attitude representations’</article-title>
<source>J. Astronaut. Sci.</source>
<volume>414</volume>
(
<year>1993</year>
):
<fpage>439</fpage>
<lpage>573</lpage>
</citation>
</ref>
<ref id="bibr13-09544100JAERO633">
<label>13</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farrenkopf</surname>
<given-names>R. L.</given-names>
</name>
</person-group>
<article-title>‘Analytic steady-state accuracy solutions for two common spacecraft attitude estimators’</article-title>
<source>AIAA J. Guid. Control</source>
<volume>14</volume>
(
<year>1978</year>
):
<fpage>282</fpage>
<lpage>284</lpage>
</citation>
</ref>
<ref id="bibr14-09544100JAERO633">
<label>14</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Markley</surname>
<given-names>F. L.</given-names>
</name>
</person-group>
<article-title>‘Attitude error representations for Kalman filtering’</article-title>
<source>AIAA J. Guid. Control Dyn.</source>
<volume>265</volume>
(
<year>2003</year>
):
<fpage>311</fpage>
<lpage>317</lpage>
</citation>
</ref>
<ref id="bibr15-09544100JAERO633">
<label>15</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Simon</surname>
<given-names>D.</given-names>
</name>
</person-group>
<source>Optimal state estimation</source>
(
<publisher-loc>New Jersey</publisher-loc>
:
<publisher-name>John Wiley</publisher-name>
<year>2006</year>
)</citation>
</ref>
<ref id="bibr16-09544100JAERO633">
<label>16</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Gelb</surname>
<given-names>A.</given-names>
</name>
</person-group>
<source>Applied optimal estimation</source>
(
<publisher-loc>Cambridge, Massachusetts</publisher-loc>
:
<publisher-name>The M.I.T. Press</publisher-name>
<year>1974</year>
)</citation>
</ref>
<ref id="bibr17-09544100JAERO633">
<label>17</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Kolmogorov</surname>
<given-names>A. N.</given-names>
</name>
<name>
<surname>Fomin</surname>
<given-names>S. V.</given-names>
</name>
</person-group>
<source>Introductory real analysis</source>
(
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Dover Publications</publisher-name>
<year>1975</year>
)</citation>
</ref>
<ref id="bibr18-09544100JAERO633">
<label>18</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Khalil</surname>
<given-names>H.</given-names>
</name>
</person-group>
<source>Nonlinear systems</source>
(
<publisher-loc>Upper Saddle River, New Jersey</publisher-loc>
:
<publisher-name>Prentice-Hall</publisher-name>
<year>1995</year>
)</citation>
</ref>
<ref id="bibr19-09544100JAERO633">
<label>19</label>
<citation citation-type="book">
<person-group person-group-type="editor">
<name>
<surname>Lasalle</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Basar</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>‘An invariance principle in the theory of stability’</article-title>
<source>Control theory, twenty-five seminal papers (1932-1981)</source>
(
<publisher-loc>New York</publisher-loc>
:
<publisher-name>IEEE Press</publisher-name>
<year>2001</year>
):
<fpage>309</fpage>
<lpage>320</lpage>
</citation>
</ref>
<ref id="bibr20-09544100JAERO633">
<label>20</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Ioannou</surname>
<given-names>P. A.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J.</given-names>
</name>
</person-group>
<source>Robust adaptive control</source>
(
<publisher-loc>Upper Saddle River, New Jersey</publisher-loc>
:
<publisher-name>Prentice-Hall</publisher-name>
<year>1995</year>
)</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">de Ruiter</namePart>
<affiliation>Department of Mechanical and Aerospace, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, aderuite@mae.carleton.ca</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>SAGE Publications</publisher>
<place>
<placeTerm type="text">Sage UK: London, England</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>This article presents a simple Kalman filter implementation for correcting gyro-determined satellite attitude estimates with attitude measurements made using external sensors such as sun sensors, magnetometers, star trackers, and so on. This article first generalizes a recently developed non-linear observer for the gyro-corrected attitude determination problem. By implementing the steady-state Kalman filter in the framework of this non-linear observer, a computationally simple filter is obtained with suboptimal steady-state performance. This is important for applications where computational power is limited, such as in micro-/nano-satellite applications. Additionally, in the absence of process and measurement noise, this implementation of the Kalman filter is globally stable. The resulting filter uses constant steady-state Kalman filter gains. It is demonstrated that close-to-optimal steady-state performance is obtained.</abstract>
<subject>
<genre>Keywords</genre>
<topic>spacecraft attitude determination</topic>
<topic>computational simplicity</topic>
<topic>suboptimal filtering</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0954-4100</identifier>
<identifier type="eISSN">2041-3025</identifier>
<identifier type="PublisherID">PIG</identifier>
<identifier type="PublisherID-hwp">sppig</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>224</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>787</start>
<end>802</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">FC57542AE7BBAD888BD824D3218653B99CDD42BE</identifier>
<identifier type="DOI">10.1243/09544100JAERO633</identifier>
<identifier type="ArticleID">10.1243_09544100JAERO633</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Institution of Mechanical Engineers</accessCondition>
<recordInfo>
<recordContentSource>SAGE</recordContentSource>
<recordOrigin>Institution of Mechanical Engineers</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002744 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002744 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FC57542AE7BBAD888BD824D3218653B99CDD42BE
   |texte=   A simple suboptimal Kalman filter implementation for a gyro-corrected satellite attitude determination system
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022