La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera

Identifieur interne : 002734 ( Istex/Corpus ); précédent : 002733; suivant : 002735

Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera

Auteurs : N. J. Hardebol ; R. N. Pysklywec ; R. Stephenson

Source :

RBID : ISTEX:33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C

Abstract

A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge‐driven convection. This paper aims at outlining the implications of such edge‐driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back‐arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back‐arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge‐driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge‐driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge‐driven flow.

Url:
DOI: 10.1029/2011JB008431

Links to Exploration step

ISTEX:33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
<author>
<name sortKey="Hardebol, N J" sort="Hardebol, N J" uniqKey="Hardebol N" first="N. J." last="Hardebol">N. J. Hardebol</name>
<affiliation>
<mods:affiliation>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: n.j.hardebol@tudelft.nl</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pysklywec, R N" sort="Pysklywec, R N" uniqKey="Pysklywec R" first="R. N." last="Pysklywec">R. N. Pysklywec</name>
<affiliation>
<mods:affiliation>Department of Geology, University of Toronto, Toronto, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stephenson, R" sort="Stephenson, R" uniqKey="Stephenson R" first="R." last="Stephenson">R. Stephenson</name>
<affiliation>
<mods:affiliation>School of Geosciences, University of Aberdeen, Aberdeen, UK</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2011JB008431</idno>
<idno type="url">https://api-v5.istex.fr/document/33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002734</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
<author>
<name sortKey="Hardebol, N J" sort="Hardebol, N J" uniqKey="Hardebol N" first="N. J." last="Hardebol">N. J. Hardebol</name>
<affiliation>
<mods:affiliation>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: n.j.hardebol@tudelft.nl</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pysklywec, R N" sort="Pysklywec, R N" uniqKey="Pysklywec R" first="R. N." last="Pysklywec">R. N. Pysklywec</name>
<affiliation>
<mods:affiliation>Department of Geology, University of Toronto, Toronto, Ontario, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stephenson, R" sort="Stephenson, R" uniqKey="Stephenson R" first="R." last="Stephenson">R. Stephenson</name>
<affiliation>
<mods:affiliation>School of Geosciences, University of Aberdeen, Aberdeen, UK</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-01">2012-01</date>
<biblScope unit="volume">117</biblScope>
<biblScope unit="issue">B1</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C</idno>
<idno type="DOI">10.1029/2011JB008431</idno>
<idno type="ArticleID">2011JB008431</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge‐driven convection. This paper aims at outlining the implications of such edge‐driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back‐arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back‐arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge‐driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge‐driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge‐driven flow.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>N. J. Hardebol</name>
<affiliations>
<json:string>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</json:string>
<json:string>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</json:string>
<json:string>E-mail: n.j.hardebol@tudelft.nl</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. N. Pysklywec</name>
<affiliations>
<json:string>Department of Geology, University of Toronto, Toronto, Ontario, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Stephenson</name>
<affiliations>
<json:string>School of Geosciences, University of Aberdeen, Aberdeen, UK</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Canadian Cordillera</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>edge‐driven flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lithosphere temperature</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface deflection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface heat flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>upper mantle convection</value>
</json:item>
</subject>
<articleId>
<json:string>2011JB008431</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<qualityIndicators>
<score>9.5</score>
<pdfVersion>1.6</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1618</abstractCharCount>
<pdfWordCount>10274</pdfWordCount>
<pdfCharCount>63902</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>250</abstractWordCount>
</qualityIndicators>
<title>Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>117</volume>
<issue>B1</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>18</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
<json:item>
<value>EXPLORATION GEOPHYSICS</value>
</json:item>
<json:item>
<value>Continental structures</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Earth's interior: dynamics</value>
</json:item>
<json:item>
<value>Rheology of the lithosphere and mantle</value>
</json:item>
<json:item>
<value>STRUCTURAL GEOLOGY</value>
</json:item>
<json:item>
<value>Rheology: general</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Continental contractional orogenic belts and inversion tectonics</value>
</json:item>
<json:item>
<value>Continental tectonics: general</value>
</json:item>
<json:item>
<value>Dynamics of lithosphere and mantle: general</value>
</json:item>
<json:item>
<value>Heat generation and transport</value>
</json:item>
<json:item>
<value>Rheology: general</value>
</json:item>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1029/2011JB008431</json:string>
</doi>
<id>33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2012 by the American Geophysical Union</p>
</availability>
<date>2012</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
<author xml:id="author-1">
<persName>
<forename type="first">N. J.</forename>
<surname>Hardebol</surname>
</persName>
<email>n.j.hardebol@tudelft.nl</email>
<affiliation>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</affiliation>
<affiliation>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">R. N.</forename>
<surname>Pysklywec</surname>
</persName>
<affiliation>Department of Geology, University of Toronto, Toronto, Ontario, Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">R.</forename>
<surname>Stephenson</surname>
</persName>
<affiliation>School of Geosciences, University of Aberdeen, Aberdeen, UK</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-01"></date>
<biblScope unit="volume">117</biblScope>
<biblScope unit="issue">B1</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C</idno>
<idno type="DOI">10.1029/2011JB008431</idno>
<idno type="ArticleID">2011JB008431</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge‐driven convection. This paper aims at outlining the implications of such edge‐driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back‐arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back‐arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge‐driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge‐driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge‐driven flow.</p>
</abstract>
<abstract style="short">
<p>Intraplate lateral temperature transitions trigger edge‐drive mantle flow The transition can trigger crustal thinning and shape surface heat flow pattern A dry olivine mantle lithosphere maintains temperature transition</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Canadian Cordillera</term>
</item>
<item>
<term>edge‐driven flow</term>
</item>
<item>
<term>lithosphere temperature</term>
</item>
<item>
<term>surface deflection</term>
</item>
<item>
<term>surface heat flow</term>
</item>
<item>
<term>upper mantle convection</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
<item>
<term>EXPLORATION GEOPHYSICS</term>
</item>
<item>
<term>Continental structures</term>
</item>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Earth's interior: dynamics</term>
</item>
<item>
<term>Rheology of the lithosphere and mantle</term>
</item>
<item>
<term>STRUCTURAL GEOLOGY</term>
</item>
<item>
<term>Rheology: general</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Continental contractional orogenic belts and inversion tectonics</term>
</item>
<item>
<term>Continental tectonics: general</term>
</item>
<item>
<term>Dynamics of lithosphere and mantle: general</term>
</item>
<item>
<term>Heat generation and transport</term>
</item>
<item>
<term>Rheology: general</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-04-18">Received</change>
<change when="2011-11-18">Registration</change>
<change when="2012-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb16935">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi>10.1002/jgrb.v117.B1</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="117">117</numbering>
<numbering type="journalIssue">B1</numbering>
</numberingGroup>
<coverDate startDate="2012-01">January 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="90" status="forIssue">
<doi>10.1029/2011JB008431</doi>
<idGroup>
<id type="editorialOffice" value="2011JB008431"></id>
<id type="society" value="B01408"></id>
<id type="unit" value="JGRB16935"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Geodesy and Gravity/Tectonophysics</title>
<title type="tocHeading1">Geodesy and Gravity/Tectonophysics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2012 by the American Geophysical Union</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-04-18"></event>
<event type="manuscriptRevised" date="2011-11-07"></event>
<event type="manuscriptAccepted" date="2011-11-18"></event>
<event type="firstOnline" date="2012-01-28"></event>
<event type="publishedOnlineFinalForm" date="2012-01-28"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0905">Continental structures</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1236">Rheology of the lithosphere and mantle</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8032">Rheology: general</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8102">Continental contractional orogenic belts and inversion tectonics</subject>
<subject href="http://psi.agu.org/taxonomy5/8110">Continental tectonics: general</subject>
<subject href="http://psi.agu.org/taxonomy5/8120">Dynamics of lithosphere and mantle: general</subject>
<subject href="http://psi.agu.org/taxonomy5/8130">Heat generation and transport</subject>
<subject href="http://psi.agu.org/taxonomy5/8160">Rheology: general</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb16935-cit-0000" type="self">
<author>
<familyName>Hardebol</familyName>
,
<givenNames>N. J.</givenNames>
</author>
,
<author>
<givenNames>R. N.</givenNames>
<familyName>Pysklywec</familyName>
</author>
, and
<author>
<givenNames>R.</givenNames>
<familyName>Stephenson</familyName>
</author>
(
<pubYear year="2012">2012</pubYear>
),
<articleTitle>Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>117</vol>
, B01408, doi:
<accessionId ref="info:doi/10.1029/2011JB008431">10.1029/2011JB008431</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB16935.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="11100"></count>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
<title type="shortAuthors">HARDEBOL ET AL.</title>
<title type="short">GEODYNAMICS AT LITHOSPHERE TEMPERATURE TRANSITION</title>
</titleGroup>
<creators>
<creator xml:id="jgrb16935-cr-0001" creatorRole="author" affiliationRef="#jgrb16935-aff-0001 #jgrb16935-aff-0002">
<personName>
<givenNames>N. J.</givenNames>
<familyName>Hardebol</familyName>
</personName>
<contactDetails>
<email>n.j.hardebol@tudelft.nl</email>
</contactDetails>
</creator>
<creator xml:id="jgrb16935-cr-0002" creatorRole="author" affiliationRef="#jgrb16935-aff-0003">
<personName>
<givenNames>R. N.</givenNames>
<familyName>Pysklywec</familyName>
</personName>
</creator>
<creator xml:id="jgrb16935-cr-0003" creatorRole="author" affiliationRef="#jgrb16935-aff-0004">
<personName>
<givenNames>R.</givenNames>
<familyName>Stephenson</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="jgrb16935-aff-0001" countryCode="NL" type="organization">
<unparsedAffiliation>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb16935-aff-0002" countryCode="NL" type="organization">
<unparsedAffiliation>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb16935-aff-0003" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Geology, University of Toronto, Toronto, Ontario, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="jgrb16935-aff-0004" countryCode="GB" type="organization">
<unparsedAffiliation>School of Geosciences, University of Aberdeen, Aberdeen, UK</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb16935-kwd-0001">Canadian Cordillera</keyword>
<keyword xml:id="jgrb16935-kwd-0002">edge‐driven flow</keyword>
<keyword xml:id="jgrb16935-kwd-0003">lithosphere temperature</keyword>
<keyword xml:id="jgrb16935-kwd-0004">surface deflection</keyword>
<keyword xml:id="jgrb16935-kwd-0005">surface heat flow</keyword>
<keyword xml:id="jgrb16935-kwd-0006">upper mantle convection</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16935:jgrb16935-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16935:jgrb16935-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16935:jgrb16935-sup-0003-t03"></mediaResource>
<caption>Tab‐delimited Table 3.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb16935-para-0001" label="1">A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge‐driven convection. This paper aims at outlining the implications of such edge‐driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back‐arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back‐arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge‐driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge‐driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge‐driven flow.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrb16935-para-0002">
<list style="bulleted">
<listItem>Intraplate lateral temperature transitions trigger edge‐drive mantle flow</listItem>
<listItem>The transition can trigger crustal thinning and shape surface heat flow pattern</listItem>
<listItem>A dry olivine mantle lithosphere maintains temperature transition</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GEODYNAMICS AT LITHOSPHERE TEMPERATURE TRANSITION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera</title>
</titleInfo>
<name type="personal">
<namePart type="given">N. J.</namePart>
<namePart type="family">Hardebol</namePart>
<affiliation>Formerly at Netherlands Research Centre for Integrated Solid Earth Sciences, Faculty of Earth and Life Science, VU University Amsterdam, Amsterdam, Netherlands</affiliation>
<affiliation>Now at Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands</affiliation>
<affiliation>E-mail: n.j.hardebol@tudelft.nl</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. N.</namePart>
<namePart type="family">Pysklywec</namePart>
<affiliation>Department of Geology, University of Toronto, Toronto, Ontario, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Stephenson</namePart>
<affiliation>School of Geosciences, University of Aberdeen, Aberdeen, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-01</dateIssued>
<dateCaptured encoding="w3cdtf">2011-04-18</dateCaptured>
<dateValid encoding="w3cdtf">2011-11-18</dateValid>
<edition>Hardebol, N. J., R. N. Pysklywec, and R. Stephenson (2012), Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera, J. Geophys. Res., 117, B01408, doi:10.1029/2011JB008431.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">3</extent>
<extent unit="words">11100</extent>
</physicalDescription>
<abstract>A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge‐driven convection. This paper aims at outlining the implications of such edge‐driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back‐arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back‐arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge‐driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge‐driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge‐driven flow.</abstract>
<abstract type="short">Intraplate lateral temperature transitions trigger edge‐drive mantle flow The transition can trigger crustal thinning and shape surface heat flow pattern A dry olivine mantle lithosphere maintains temperature transition</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3.</note>
<subject>
<genre>keywords</genre>
<topic>Canadian Cordillera</topic>
<topic>edge‐driven flow</topic>
<topic>lithosphere temperature</topic>
<topic>surface deflection</topic>
<topic>surface heat flow</topic>
<topic>upper mantle convection</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0905">Continental structures</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1213">Earth's interior: dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1236">Rheology of the lithosphere and mantle</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8032">Rheology: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8102">Continental contractional orogenic belts and inversion tectonics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8110">Continental tectonics: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8120">Dynamics of lithosphere and mantle: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8130">Heat generation and transport</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8160">Rheology: general</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Geodesy and Gravity/Tectonophysics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B1</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C</identifier>
<identifier type="DOI">10.1029/2011JB008431</identifier>
<identifier type="ArticleID">2011JB008431</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2012 by the American Geophysical Union</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002734 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002734 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:33CF7DA34B1B19C802AFD313C84DFFEDE0F23E8C
   |texte=   Small‐scale convection at a continental back‐arc to craton transition: Application to the southern Canadian Cordillera
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022