La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand

Identifieur interne : 002625 ( Istex/Corpus ); précédent : 002624; suivant : 002626

Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand

Auteurs : M. Scherwath ; H. Kopp ; E. R. Flueh ; S. A. Henrys ; R. Sutherland ; V. M. Stagpoole ; D. H. N. Barker ; M. E. Reyners ; D. G. Bassett ; L. Planert ; A. Dannowski

Source :

RBID : ISTEX:0FD897630F2D10D75AF58448D57331C96D23ACB6

Abstract

Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.

Url:
DOI: 10.1029/2009JB006645

Links to Exploration step

ISTEX:0FD897630F2D10D75AF58448D57331C96D23ACB6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
<author>
<name sortKey="Scherwath, M" sort="Scherwath, M" uniqKey="Scherwath M" first="M." last="Scherwath">M. Scherwath</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mscherwath@ifm-geomar.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kopp, H" sort="Kopp, H" uniqKey="Kopp H" first="H." last="Kopp">H. Kopp</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flueh, E R" sort="Flueh, E R" uniqKey="Flueh E" first="E. R." last="Flueh">E. R. Flueh</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Henrys, S A" sort="Henrys, S A" uniqKey="Henrys S" first="S. A." last="Henrys">S. A. Henrys</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sutherland, R" sort="Sutherland, R" uniqKey="Sutherland R" first="R." last="Sutherland">R. Sutherland</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stagpoole, V M" sort="Stagpoole, V M" uniqKey="Stagpoole V" first="V. M." last="Stagpoole">V. M. Stagpoole</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barker, D H N" sort="Barker, D H N" uniqKey="Barker D" first="D. H. N." last="Barker">D. H. N. Barker</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reyners, M E" sort="Reyners, M E" uniqKey="Reyners M" first="M. E." last="Reyners">M. E. Reyners</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bassett, D G" sort="Bassett, D G" uniqKey="Bassett D" first="D. G." last="Bassett">D. G. Bassett</name>
<affiliation>
<mods:affiliation>School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Planert, L" sort="Planert, L" uniqKey="Planert L" first="L." last="Planert">L. Planert</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dannowski, A" sort="Dannowski, A" uniqKey="Dannowski A" first="A." last="Dannowski">A. Dannowski</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0FD897630F2D10D75AF58448D57331C96D23ACB6</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1029/2009JB006645</idno>
<idno type="url">https://api-v5.istex.fr/document/0FD897630F2D10D75AF58448D57331C96D23ACB6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002625</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002625</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
<author>
<name sortKey="Scherwath, M" sort="Scherwath, M" uniqKey="Scherwath M" first="M." last="Scherwath">M. Scherwath</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: mscherwath@ifm-geomar.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kopp, H" sort="Kopp, H" uniqKey="Kopp H" first="H." last="Kopp">H. Kopp</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flueh, E R" sort="Flueh, E R" uniqKey="Flueh E" first="E. R." last="Flueh">E. R. Flueh</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Henrys, S A" sort="Henrys, S A" uniqKey="Henrys S" first="S. A." last="Henrys">S. A. Henrys</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sutherland, R" sort="Sutherland, R" uniqKey="Sutherland R" first="R." last="Sutherland">R. Sutherland</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stagpoole, V M" sort="Stagpoole, V M" uniqKey="Stagpoole V" first="V. M." last="Stagpoole">V. M. Stagpoole</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Barker, D H N" sort="Barker, D H N" uniqKey="Barker D" first="D. H. N." last="Barker">D. H. N. Barker</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reyners, M E" sort="Reyners, M E" uniqKey="Reyners M" first="M. E." last="Reyners">M. E. Reyners</name>
<affiliation>
<mods:affiliation>GNS Science, Lower Hutt, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bassett, D G" sort="Bassett, D G" uniqKey="Bassett D" first="D. G." last="Bassett">D. G. Bassett</name>
<affiliation>
<mods:affiliation>School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Planert, L" sort="Planert, L" uniqKey="Planert L" first="L." last="Planert">L. Planert</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dannowski, A" sort="Dannowski, A" uniqKey="Dannowski A" first="A." last="Dannowski">A. Dannowski</name>
<affiliation>
<mods:affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2010-06">2010-06</date>
<biblScope unit="volume">115</biblScope>
<biblScope unit="issue">B6</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">0FD897630F2D10D75AF58448D57331C96D23ACB6</idno>
<idno type="DOI">10.1029/2009JB006645</idno>
<idno type="ArticleID">2009JB006645</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>M. Scherwath</name>
<affiliations>
<json:string>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</json:string>
<json:string>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</json:string>
<json:string>E-mail: mscherwath@ifm-geomar.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. Kopp</name>
<affiliations>
<json:string>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. R. Flueh</name>
<affiliations>
<json:string>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. A. Henrys</name>
<affiliations>
<json:string>GNS Science, Lower Hutt, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Sutherland</name>
<affiliations>
<json:string>GNS Science, Lower Hutt, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>V. M. Stagpoole</name>
<affiliations>
<json:string>GNS Science, Lower Hutt, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. H. N. Barker</name>
<affiliations>
<json:string>GNS Science, Lower Hutt, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. E. Reyners</name>
<affiliations>
<json:string>GNS Science, Lower Hutt, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. G. Bassett</name>
<affiliations>
<json:string>School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. Planert</name>
<affiliations>
<json:string>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Dannowski</name>
<affiliations>
<json:string>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>subduction accretion and erosion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>underplating</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>subduction mass balance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fore‐arc basin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hikurangi margin</value>
</json:item>
</subject>
<articleId>
<json:string>2009JB006645</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1793</abstractCharCount>
<pdfWordCount>11767</pdfWordCount>
<pdfCharCount>72633</pdfCharCount>
<pdfPageCount>23</pdfPageCount>
<abstractWordCount>256</abstractWordCount>
</qualityIndicators>
<title>Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Solid Earth</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<volume>115</volume>
<issue>B6</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>23</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
<json:item>
<value>EXPLORATION GEOPHYSICS</value>
</json:item>
<json:item>
<value>Seismic methods</value>
</json:item>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Subduction zone processes</value>
</json:item>
<json:item>
<value>GEODESY AND GRAVITY</value>
</json:item>
<json:item>
<value>Rheology of the lithosphere and mantle</value>
</json:item>
<json:item>
<value>MARINE GEOLOGY AND GEOPHYSICS</value>
</json:item>
<json:item>
<value>Marine seismics</value>
</json:item>
<json:item>
<value>Subduction zone processes</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Subduction zone processes</value>
</json:item>
<json:item>
<value>SEISMOLOGY</value>
</json:item>
<json:item>
<value>Lithosphere</value>
</json:item>
<json:item>
<value>Seismic instruments and networks</value>
</json:item>
<json:item>
<value>STRUCTURAL GEOLOGY</value>
</json:item>
<json:item>
<value>Local crustal structure</value>
</json:item>
<json:item>
<value>TECTONOPHYSICS</value>
</json:item>
<json:item>
<value>Subduction zone processes</value>
</json:item>
<json:item>
<value>VOLCANOLOGY</value>
</json:item>
<json:item>
<value>Subduction zone processes</value>
</json:item>
<json:item>
<value>Geodesy and Gravity/Tectonophysics</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1029/2009JB006645</json:string>
</doi>
<id>0FD897630F2D10D75AF58448D57331C96D23ACB6</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/0FD897630F2D10D75AF58448D57331C96D23ACB6/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/0FD897630F2D10D75AF58448D57331C96D23ACB6/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/0FD897630F2D10D75AF58448D57331C96D23ACB6/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2010 by the American Geophysical Union.</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
<author xml:id="author-1">
<persName>
<forename type="first">M.</forename>
<surname>Scherwath</surname>
</persName>
<email>mscherwath@ifm-geomar.de</email>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<affiliation>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">H.</forename>
<surname>Kopp</surname>
</persName>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">E. R.</forename>
<surname>Flueh</surname>
</persName>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">S. A.</forename>
<surname>Henrys</surname>
</persName>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">R.</forename>
<surname>Sutherland</surname>
</persName>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">V. M.</forename>
<surname>Stagpoole</surname>
</persName>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">D. H. N.</forename>
<surname>Barker</surname>
</persName>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">M. E.</forename>
<surname>Reyners</surname>
</persName>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">D. G.</forename>
<surname>Bassett</surname>
</persName>
<affiliation>School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand</affiliation>
</author>
<author xml:id="author-10">
<persName>
<forename type="first">L.</forename>
<surname>Planert</surname>
</persName>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
</author>
<author xml:id="author-11">
<persName>
<forename type="first">A.</forename>
<surname>Dannowski</surname>
</persName>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2010-06"></date>
<biblScope unit="volume">115</biblScope>
<biblScope unit="issue">B6</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">0FD897630F2D10D75AF58448D57331C96D23ACB6</idno>
<idno type="DOI">10.1029/2009JB006645</idno>
<idno type="ArticleID">2009JB006645</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>subduction accretion and erosion</term>
</item>
<item>
<term>underplating</term>
</item>
<item>
<term>subduction mass balance</term>
</item>
<item>
<term>fore‐arc basin</term>
</item>
<item>
<term>Hikurangi margin</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
<item>
<term>EXPLORATION GEOPHYSICS</term>
</item>
<item>
<term>Seismic methods</term>
</item>
<item>
<term>GEOCHEMISTRY</term>
</item>
<item>
<term>Subduction zone processes</term>
</item>
<item>
<term>GEODESY AND GRAVITY</term>
</item>
<item>
<term>Rheology of the lithosphere and mantle</term>
</item>
<item>
<term>MARINE GEOLOGY AND GEOPHYSICS</term>
</item>
<item>
<term>Marine seismics</term>
</item>
<item>
<term>Subduction zone processes</term>
</item>
<item>
<term>MINERALOGY AND PETROLOGY</term>
</item>
<item>
<term>Subduction zone processes</term>
</item>
<item>
<term>SEISMOLOGY</term>
</item>
<item>
<term>Lithosphere</term>
</item>
<item>
<term>Seismic instruments and networks</term>
</item>
<item>
<term>STRUCTURAL GEOLOGY</term>
</item>
<item>
<term>Local crustal structure</term>
</item>
<item>
<term>TECTONOPHYSICS</term>
</item>
<item>
<term>Subduction zone processes</term>
</item>
<item>
<term>VOLCANOLOGY</term>
</item>
<item>
<term>Subduction zone processes</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Geodesy and Gravity/Tectonophysics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-05-25">Received</change>
<change when="2010-01-27">Registration</change>
<change when="2010-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/0FD897630F2D10D75AF58448D57331C96D23ACB6/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb16263">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi>10.1002/jgrb.v115.B6</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="115">115</numbering>
<numbering type="journalIssue">B6</numbering>
</numberingGroup>
<coverDate startDate="2010-06">June 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="100" type="article" status="forIssue">
<doi>10.1029/2009JB006645</doi>
<idGroup>
<id type="editorialOffice" value="2009JB006645"></id>
<id type="society" value="B06408"></id>
<id type="unit" value="JGRB16263"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="23"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Geodesy and Gravity/Tectonophysics</title>
<title type="tocHeading1">Geodesy and Gravity/Tectonophysics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2010 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-05-25"></event>
<event type="manuscriptRevised" date="2009-12-09"></event>
<event type="manuscriptAccepted" date="2010-01-27"></event>
<event type="firstOnline" date="2010-06-25"></event>
<event type="publishedOnlineFinalForm" date="2010-06-25"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.1; WileyML 3G Packaging Tool v1.0" date="2012-11-28"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0935">Seismic methods</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1031">Subduction zone processes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1236">Rheology of the lithosphere and mantle</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3025">Marine seismics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3060">Subduction zone processes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3613">Subduction zone processes</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/7218">Lithosphere</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/7294">Seismic instruments and networks</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8015">Local crustal structure</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8170">Subduction zone processes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8413">Subduction zone processes</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb16263-cit-0000" type="self">
<author>
<familyName>Scherwath</familyName>
,
<givenNames>M.</givenNames>
</author>
, et al. (
<pubYear year="2010">2010</pubYear>
),
<articleTitle>Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>115</vol>
, B06408, doi:
<accessionId ref="info:doi/10.1029/2009JB006645">10.1029/2009JB006645</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB16263.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="12800"></count>
<count type="figureTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="main">Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
<title type="short">FORE‐ARC DEFORMATION AND UNDERPLATING</title>
<title type="shortAuthors">Scherwath
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrb16263-cr-0001" affiliationRef="#jgrb16263-aff-0001 #jgrb16263-aff-0004">
<personName>
<givenNames>M.</givenNames>
<familyName>Scherwath</familyName>
</personName>
<contactDetails>
<email normalForm="mscherwath@ifm-geomar.de">mscherwath@ifm-geomar.de</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0002" affiliationRef="#jgrb16263-aff-0001">
<personName>
<givenNames>H.</givenNames>
<familyName>Kopp</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0003" affiliationRef="#jgrb16263-aff-0001">
<personName>
<givenNames>E. R.</givenNames>
<familyName>Flueh</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0004" affiliationRef="#jgrb16263-aff-0002">
<personName>
<givenNames>S. A.</givenNames>
<familyName>Henrys</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0005" affiliationRef="#jgrb16263-aff-0002">
<personName>
<givenNames>R.</givenNames>
<familyName>Sutherland</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0006" affiliationRef="#jgrb16263-aff-0002">
<personName>
<givenNames>V. M.</givenNames>
<familyName>Stagpoole</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0007" affiliationRef="#jgrb16263-aff-0002">
<personName>
<givenNames>D. H. N.</givenNames>
<familyName>Barker</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0008" affiliationRef="#jgrb16263-aff-0002">
<personName>
<givenNames>M. E.</givenNames>
<familyName>Reyners</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0009" affiliationRef="#jgrb16263-aff-0003">
<personName>
<givenNames>D. G.</givenNames>
<familyName>Bassett</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0010" affiliationRef="#jgrb16263-aff-0001">
<personName>
<givenNames>L.</givenNames>
<familyName>Planert</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrb16263-cr-0011" affiliationRef="#jgrb16263-aff-0001">
<personName>
<givenNames>A.</givenNames>
<familyName>Dannowski</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="DE" type="organization" xml:id="jgrb16263-aff-0001">
<orgDiv>Leibniz Institute of Marine Sciences</orgDiv>
<orgName>IFM‐GEOMAR</orgName>
<address>
<city>Kiel</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="NZ" type="organization" xml:id="jgrb16263-aff-0002">
<orgName>GNS Science</orgName>
<address>
<city>Lower Hutt</city>
<country>New Zealand</country>
</address>
</affiliation>
<affiliation countryCode="NZ" type="organization" xml:id="jgrb16263-aff-0003">
<orgDiv>School of Geography, Environment and Earth Sciences</orgDiv>
<orgName>Victoria University of Wellington</orgName>
<address>
<city>Wellington</city>
<country>New Zealand</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="jgrb16263-aff-0004">
<unparsedAffiliation>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrb16263-kwd-0001">subduction accretion and erosion</keyword>
<keyword xml:id="jgrb16263-kwd-0002">underplating</keyword>
<keyword xml:id="jgrb16263-kwd-0003">subduction mass balance</keyword>
<keyword xml:id="jgrb16263-kwd-0004">fore‐arc basin</keyword>
<keyword xml:id="jgrb16263-kwd-0005">Hikurangi margin</keyword>
</keywordGroup>
<supportingInformation xml:id="jgrb16263-sup-0000">
<p xml:id="jgrb16263-para-0001">Auxiliary material for this article contains information concerning the multichannel seismic data RAU07.</p>
<p xml:id="jgrb16263-para-0002">Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac).</p>
<p xml:id="jgrb16263-para-0003">See
<url href="/pubs/plugins.html">Plugins</url>
for a list of applications and supported file formats.</p>
<p xml:id="jgrb16263-para-0004">Additional file information is provided in the readme.txt.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrb16263:jgrb16263-sup-0001-readme"></mediaResource>
<caption>readme.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrb16263:jgrb16263-sup-0002-fs01"></mediaResource>
<caption>Figure S1. Variability between two‐way travel time (TWT) and depth from seabed for all RAU07 multichannel seismic velocity data (gray dots).</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/msword" href="urn-x:wiley:01480227:media:jgrb16263:jgrb16263-sup-0003-ts01"></mediaResource>
<caption>Table S1. Multichannel seismic reprocessing sequence of line RAU07‐05 (
<link href="#jgrb16263-fig-0010">Figure 5</link>
).</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb16263-para-0005" label="1">Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FORE‐ARC DEFORMATION AND UNDERPLATING</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Scherwath</namePart>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<affiliation>Now at School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.</affiliation>
<affiliation>E-mail: mscherwath@ifm-geomar.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Kopp</namePart>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E. R.</namePart>
<namePart type="family">Flueh</namePart>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S. A.</namePart>
<namePart type="family">Henrys</namePart>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Sutherland</namePart>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V. M.</namePart>
<namePart type="family">Stagpoole</namePart>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. H. N.</namePart>
<namePart type="family">Barker</namePart>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. E.</namePart>
<namePart type="family">Reyners</namePart>
<affiliation>GNS Science, Lower Hutt, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. G.</namePart>
<namePart type="family">Bassett</namePart>
<affiliation>School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Planert</namePart>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Dannowski</namePart>
<affiliation>Leibniz Institute of Marine Sciences, IFM‐GEOMAR, Kiel, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2010-06</dateIssued>
<dateCaptured encoding="w3cdtf">2009-05-25</dateCaptured>
<dateValid encoding="w3cdtf">2010-01-27</dateValid>
<edition>Scherwath, M., et al. (2010), Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand, J. Geophys. Res., 115, B06408, doi:10.1029/2009JB006645.</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="words">12800</extent>
</physicalDescription>
<abstract>Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp > 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is >10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp > 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.</abstract>
<subject>
<genre>keywords</genre>
<topic>subduction accretion and erosion</topic>
<topic>underplating</topic>
<topic>subduction mass balance</topic>
<topic>fore‐arc basin</topic>
<topic>Hikurangi margin</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Auxiliary material for this article contains information concerning the multichannel seismic data RAU07. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains information concerning the multichannel seismic data RAU07. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains information concerning the multichannel seismic data RAU07. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt. Auxiliary material for this article contains information concerning the multichannel seismic data RAU07. Auxiliary material files may require downloading to a local drive depending on platform, browser, configuration, and size. To open auxiliary materials in a browser, click on the label. To download, Right‐click and select “Save Target As…” (PC) or CTRL‐click and select “Download Link to Disk” (Mac). See Plugins for a list of applications and supported file formats. Additional file information is provided in the readme.txt.Supporting Info Item: readme.txt - Figure S1. Variability between two‐way travel time (TWT) and depth from seabed for all RAU07 multichannel seismic velocity data (gray dots). - Table S1. Multichannel seismic reprocessing sequence of line RAU07‐05 (). - </note>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ETG">Geodesy and Gravity/Tectonophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0900">EXPLORATION GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0935">Seismic methods</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1031">Subduction zone processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1200">GEODESY AND GRAVITY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1236">Rheology of the lithosphere and mantle</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3000">MARINE GEOLOGY AND GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3025">Marine seismics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3060">Subduction zone processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3613">Subduction zone processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7200">SEISMOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7218">Lithosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/7294">Seismic instruments and networks</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8000">STRUCTURAL GEOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8015">Local crustal structure</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">TECTONOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8170">Subduction zone processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8413">Subduction zone processes</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Geodesy and Gravity/Tectonophysics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>115</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B6</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>23</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0FD897630F2D10D75AF58448D57331C96D23ACB6</identifier>
<identifier type="DOI">10.1029/2009JB006645</identifier>
<identifier type="ArticleID">2009JB006645</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2010 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002625 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002625 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0FD897630F2D10D75AF58448D57331C96D23ACB6
   |texte=   Fore‐arc deformation and underplating at the northern Hikurangi margin, New Zealand
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022