La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers

Identifieur interne : 001E45 ( Istex/Corpus ); précédent : 001E44; suivant : 001E46

Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers

Auteurs : Ming Miao ; Eva Sitarz ; Catherine M. Bellingham ; Emily Won ; Lisa D. Muiznieks ; Fred W. Keeley

Source :

RBID : ISTEX:74C4D5834655D805B0512C21609B57D69C2C9C7F

Abstract

Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.

Url:
DOI: 10.1002/bip.22192

Links to Exploration step

ISTEX:74C4D5834655D805B0512C21609B57D69C2C9C7F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
<author>
<name sortKey="Miao, Ming" sort="Miao, Ming" uniqKey="Miao M" first="Ming" last="Miao">Ming Miao</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitarz, Eva" sort="Sitarz, Eva" uniqKey="Sitarz E" first="Eva" last="Sitarz">Eva Sitarz</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bellingham, Catherine M" sort="Bellingham, Catherine M" uniqKey="Bellingham C" first="Catherine M." last="Bellingham">Catherine M. Bellingham</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Won, Emily" sort="Won, Emily" uniqKey="Won E" first="Emily" last="Won">Emily Won</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muiznieks, Lisa D" sort="Muiznieks, Lisa D" uniqKey="Muiznieks L" first="Lisa D." last="Muiznieks">Lisa D. Muiznieks</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keeley, Fred W" sort="Keeley, Fred W" uniqKey="Keeley F" first="Fred W." last="Keeley">Fred W. Keeley</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, M5G1X8, Toronto, ON, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biochemistry, University of Toronto, ON M5G1X8, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fwk@sickkids.ca</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:74C4D5834655D805B0512C21609B57D69C2C9C7F</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/bip.22192</idno>
<idno type="url">https://api-v5.istex.fr/document/74C4D5834655D805B0512C21609B57D69C2C9C7F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001E45</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001E45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
<author>
<name sortKey="Miao, Ming" sort="Miao, Ming" uniqKey="Miao M" first="Ming" last="Miao">Ming Miao</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sitarz, Eva" sort="Sitarz, Eva" uniqKey="Sitarz E" first="Eva" last="Sitarz">Eva Sitarz</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bellingham, Catherine M" sort="Bellingham, Catherine M" uniqKey="Bellingham C" first="Catherine M." last="Bellingham">Catherine M. Bellingham</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Won, Emily" sort="Won, Emily" uniqKey="Won E" first="Emily" last="Won">Emily Won</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muiznieks, Lisa D" sort="Muiznieks, Lisa D" uniqKey="Muiznieks L" first="Lisa D." last="Muiznieks">Lisa D. Muiznieks</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keeley, Fred W" sort="Keeley, Fred W" uniqKey="Keeley F" first="Fred W." last="Keeley">Fred W. Keeley</name>
<affiliation>
<mods:affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, M5G1X8, Toronto, ON, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biochemistry, University of Toronto, ON M5G1X8, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fwk@sickkids.ca</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biopolymers</title>
<title level="j" type="sub">Original Research on Biomolecules</title>
<title level="j" type="abbrev">Biopolymers</title>
<idno type="ISSN">0006-3525</idno>
<idno type="eISSN">1097-0282</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-06">2013-06</date>
<biblScope unit="volume">99</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="392">392</biblScope>
<biblScope unit="page" to="407">407</biblScope>
</imprint>
<idno type="ISSN">0006-3525</idno>
</series>
<idno type="istex">74C4D5834655D805B0512C21609B57D69C2C9C7F</idno>
<idno type="DOI">10.1002/bip.22192</idno>
<idno type="ArticleID">BIP22192</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3525</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Ming Miao</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eva Sitarz</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Catherine M. Bellingham</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Emily Won</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lisa D. Muiznieks</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fred W. Keeley</name>
<affiliations>
<json:string>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, M5G1X8, Toronto, ON, Canada</json:string>
<json:string>Department of Biochemistry, University of Toronto, ON M5G1X8, Canada</json:string>
<json:string>E-mail: fwk@sickkids.ca</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>elastin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biomaterials</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>elastin‐like polypeptides</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sequence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mechanical properties</value>
</json:item>
</subject>
<articleId>
<json:string>BIP22192</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.</abstract>
<qualityIndicators>
<score>7.472</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>630 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1499</abstractCharCount>
<pdfWordCount>8612</pdfWordCount>
<pdfCharCount>57259</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>206</abstractWordCount>
</qualityIndicators>
<title>Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Biopolymers</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-0282</json:string>
</doi>
<issn>
<json:string>0006-3525</json:string>
</issn>
<eissn>
<json:string>1097-0282</json:string>
</eissn>
<publisherId>
<json:string>BIP</json:string>
</publisherId>
<volume>99</volume>
<issue>6</issue>
<pages>
<first>392</first>
<last>407</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>biophysics</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>biophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/bip.22192</json:string>
</doi>
<id>74C4D5834655D805B0512C21609B57D69C2C9C7F</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/74C4D5834655D805B0512C21609B57D69C2C9C7F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/74C4D5834655D805B0512C21609B57D69C2C9C7F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/74C4D5834655D805B0512C21609B57D69C2C9C7F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright © 2012 Wiley Periodicals, Inc.Copyright © 2012 Wiley Periodicals, Inc.</p>
</availability>
<date>2013-03-21</date>
</publicationStmt>
<notesStmt>
<note>Heart and Stroke Foundation of Ontario</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ming</forename>
<surname>Miao</surname>
</persName>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Eva</forename>
<surname>Sitarz</surname>
</persName>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Catherine M.</forename>
<surname>Bellingham</surname>
</persName>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Emily</forename>
<surname>Won</surname>
</persName>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Lisa D.</forename>
<surname>Muiznieks</surname>
</persName>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Fred W.</forename>
<surname>Keeley</surname>
</persName>
<email>fwk@sickkids.ca</email>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, M5G1X8, Toronto, ON, Canada</affiliation>
<affiliation>Department of Biochemistry, University of Toronto, ON M5G1X8, Canada</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Biopolymers</title>
<title level="j" type="sub">Original Research on Biomolecules</title>
<title level="j" type="abbrev">Biopolymers</title>
<idno type="pISSN">0006-3525</idno>
<idno type="eISSN">1097-0282</idno>
<idno type="DOI">10.1002/(ISSN)1097-0282</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-06"></date>
<biblScope unit="volume">99</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="392">392</biblScope>
<biblScope unit="page" to="407">407</biblScope>
</imprint>
</monogr>
<idno type="istex">74C4D5834655D805B0512C21609B57D69C2C9C7F</idno>
<idno type="DOI">10.1002/bip.22192</idno>
<idno type="ArticleID">BIP22192</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013-03-21</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>elastin</term>
</item>
<item>
<term>biomaterials</term>
</item>
<item>
<term>elastin‐like polypeptides</term>
</item>
<item>
<term>sequence</term>
</item>
<item>
<term>mechanical properties</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-08-20">Received</change>
<change when="2012-11-18">Registration</change>
<change when="2013-03-21">Created</change>
<change when="2013-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/74C4D5834655D805B0512C21609B57D69C2C9C7F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en" xml:id="bip22192">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1002/(ISSN)1097-0282</doi>
<issn type="print">0006-3525</issn>
<issn type="electronic">1097-0282</issn>
<idGroup>
<id type="product" value="BIP"></id>
</idGroup>
<titleGroup>
<title type="main" sort="BIOPOLYMERS: ORIGINAL RESEARCH ON BIOMOLECULES">Biopolymers</title>
<title type="subtitle">Original Research on Biomolecules</title>
<title type="short">Biopolymers</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi>10.1002/bip.v99.6</doi>
<idGroup>
<id type="focusSection" value="0"></id>
</idGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="99">99</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="2013-06">June 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="70" type="article" status="forIssue">
<doi>10.1002/bip.22192</doi>
<idGroup>
<id type="unit" value="BIP22192"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-08-20"></event>
<event type="manuscriptRevised" date="2012-11-15"></event>
<event type="manuscriptAccepted" date="2012-11-18"></event>
<event type="xmlCreated" agent="Cenveo Publisher Services" date="2013-03-21"></event>
<event type="publishedOnlineAccepted" date="2012-12-04"></event>
<event type="publishedOnlineFinalForm" date="2013-03-25"></event>
<event type="firstOnline" date="2013-03-25"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-07"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">392</numbering>
<numbering type="pageLast">407</numbering>
</numberingGroup>
<correspondenceTo>
<i>Correspondence to</i>
: Fred W. Keeley; e-mail:
<email>fwk@sickkids.ca</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:BIP.BIP22192.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
<title type="short">Mechanical Properties of Materials from Elastin‐like Polypeptides</title>
<title type="shortAuthors">Miao et al.</title>
</titleGroup>
<creators>
<creator affiliationRef="#bip22192-aff-0001" creatorRole="author" xml:id="bip22192-cr-0001">
<personName>
<givenNames>Ming</givenNames>
<familyName>Miao</familyName>
</personName>
</creator>
<creator affiliationRef="#bip22192-aff-0001" creatorRole="author" xml:id="bip22192-cr-0002">
<personName>
<givenNames>Eva</givenNames>
<familyName>Sitarz</familyName>
</personName>
</creator>
<creator affiliationRef="#bip22192-aff-0001" creatorRole="author" xml:id="bip22192-cr-0003">
<personName>
<givenNames>Catherine M.</givenNames>
<familyName>Bellingham</familyName>
</personName>
</creator>
<creator affiliationRef="#bip22192-aff-0001" creatorRole="author" xml:id="bip22192-cr-0004">
<personName>
<givenNames>Emily</givenNames>
<familyName>Won</familyName>
</personName>
</creator>
<creator affiliationRef="#bip22192-aff-0001" creatorRole="author" xml:id="bip22192-cr-0005">
<personName>
<givenNames>Lisa D.</givenNames>
<familyName>Muiznieks</familyName>
</personName>
</creator>
<creator affiliationRef="#bip22192-aff-0001 #bip22192-aff-0002" corresponding="yes" creatorRole="author" xml:id="bip22192-cr-0006">
<personName>
<givenNames>Fred W.</givenNames>
<familyName>Keeley</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation type="organization" xml:id="bip22192-aff-0001" countryCode="CA">
<orgDiv>Molecular Structure and Function Program</orgDiv>
<orgDiv>Research Institute</orgDiv>
<orgName>The Hospital for Sick Children</orgName>
<address>
<street>555 University Avenue</street>
<city>Toronto</city>
<countryPart>ON</countryPart>
<postCode>M5G1X8</postCode>
<country>Canada</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="bip22192-aff-0002" countryCode="CA">
<orgDiv>Department of Biochemistry</orgDiv>
<orgName>University of Toronto</orgName>
<address>
<postCode>ON M5G1X8</postCode>
<country>Canada</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="bip22192-kwd-0001">elastin</keyword>
<keyword xml:id="bip22192-kwd-0002">biomaterials</keyword>
<keyword xml:id="bip22192-kwd-0003">elastin‐like polypeptides</keyword>
<keyword xml:id="bip22192-kwd-0004">sequence</keyword>
<keyword xml:id="bip22192-kwd-0005">mechanical properties</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Heart and Stroke Foundation of Ontario</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main">
<p>Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="bip22183-note-0001" numbered="no">
<p>This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at
<email>biopolymers@wiley.com</email>
</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Mechanical Properties of Materials from Elastin‐like Polypeptides</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Miao</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Sitarz</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catherine M.</namePart>
<namePart type="family">Bellingham</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Won</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa D.</namePart>
<namePart type="family">Muiznieks</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, ON, M5G1X8, Toronto, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred W.</namePart>
<namePart type="family">Keeley</namePart>
<affiliation>Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, M5G1X8, Toronto, ON, Canada</affiliation>
<affiliation>Department of Biochemistry, University of Toronto, ON M5G1X8, Canada</affiliation>
<affiliation>E-mail: fwk@sickkids.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-06</dateIssued>
<dateCreated encoding="w3cdtf">2013-03-21</dateCreated>
<dateCaptured encoding="w3cdtf">2012-08-20</dateCaptured>
<dateValid encoding="w3cdtf">2012-11-18</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.</abstract>
<note type="funding">Heart and Stroke Foundation of Ontario</note>
<subject>
<genre>keywords</genre>
<topic>elastin</topic>
<topic>biomaterials</topic>
<topic>elastin‐like polypeptides</topic>
<topic>sequence</topic>
<topic>mechanical properties</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biopolymers</title>
<subTitle>Original Research on Biomolecules</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biopolymers</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0006-3525</identifier>
<identifier type="eISSN">1097-0282</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0282</identifier>
<identifier type="PublisherID">BIP</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>99</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>392</start>
<end>407</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">74C4D5834655D805B0512C21609B57D69C2C9C7F</identifier>
<identifier type="DOI">10.1002/bip.22192</identifier>
<identifier type="ArticleID">BIP22192</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001E45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:74C4D5834655D805B0512C21609B57D69C2C9C7F
   |texte=   Sequence and domain arrangements influence mechanical properties of elastin‐like polymeric elastomers
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022