La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Air‐sea interactions during an Arctic storm

Identifieur interne : 001927 ( Istex/Corpus ); précédent : 001926; suivant : 001928

Air‐sea interactions during an Arctic storm

Auteurs : Zhenxia Long ; Will Perrie

Source :

RBID : ISTEX:0F5BB83CC7124D9A7667F7959FA694215EDBB11E

Abstract

The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.

Url:
DOI: 10.1029/2011JD016985

Links to Exploration step

ISTEX:0F5BB83CC7124D9A7667F7959FA694215EDBB11E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Air‐sea interactions during an Arctic storm</title>
<author>
<name sortKey="Long, Zhenxia" sort="Long, Zhenxia" uniqKey="Long Z" first="Zhenxia" last="Long">Zhenxia Long</name>
<affiliation>
<mods:affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perrie, Will" sort="Perrie, Will" uniqKey="Perrie W" first="Will" last="Perrie">Will Perrie</name>
<affiliation>
<mods:affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: (perriew@dfo‐mpo.gc.ca</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0F5BB83CC7124D9A7667F7959FA694215EDBB11E</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2011JD016985</idno>
<idno type="url">https://api-v5.istex.fr/document/0F5BB83CC7124D9A7667F7959FA694215EDBB11E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001927</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001927</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Air‐sea interactions during an Arctic storm</title>
<author>
<name sortKey="Long, Zhenxia" sort="Long, Zhenxia" uniqKey="Long Z" first="Zhenxia" last="Long">Zhenxia Long</name>
<affiliation>
<mods:affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perrie, Will" sort="Perrie, Will" uniqKey="Perrie W" first="Will" last="Perrie">Will Perrie</name>
<affiliation>
<mods:affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: (perriew@dfo‐mpo.gc.ca</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-08-16">2012-08-16</date>
<biblScope unit="volume">117</biblScope>
<biblScope unit="issue">D15</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">0F5BB83CC7124D9A7667F7959FA694215EDBB11E</idno>
<idno type="DOI">10.1029/2011JD016985</idno>
<idno type="ArticleID">2011JD016985</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Zhenxia Long</name>
<affiliations>
<json:string>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Will Perrie</name>
<affiliations>
<json:string>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</json:string>
<json:string>E-mail: (perriew@dfo‐mpo.gc.ca</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Air‐sea interactions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Arctic summer storm</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Beaufort Sea</value>
</json:item>
</subject>
<articleId>
<json:string>2011JD016985</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<qualityIndicators>
<score>9.5</score>
<pdfVersion>1.6</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1861</abstractCharCount>
<pdfWordCount>8375</pdfWordCount>
<pdfCharCount>49245</pdfCharCount>
<pdfPageCount>20</pdfPageCount>
<abstractWordCount>307</abstractWordCount>
</qualityIndicators>
<title>Air‐sea interactions during an Arctic storm</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Atmospheres</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRD</json:string>
</publisherId>
<volume>117</volume>
<issue>D15</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>20</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Climate and Dynamics</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Air/sea constituent fluxes</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Ocean/atmosphere interactions</value>
</json:item>
<json:item>
<value>Polar meteorology</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Atmospheric</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
<json:item>
<value>Air/sea interactions</value>
</json:item>
<json:item>
<value>Climate and Dynamics</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1029/2011JD016985</json:string>
</doi>
<id>0F5BB83CC7124D9A7667F7959FA694215EDBB11E</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/0F5BB83CC7124D9A7667F7959FA694215EDBB11E/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/0F5BB83CC7124D9A7667F7959FA694215EDBB11E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/0F5BB83CC7124D9A7667F7959FA694215EDBB11E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Air‐sea interactions during an Arctic storm</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Published in 2012 by the American Geophysical Union</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Air‐sea interactions during an Arctic storm</title>
<author xml:id="author-1">
<persName>
<forename type="first">Zhenxia</forename>
<surname>Long</surname>
</persName>
<affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Will</forename>
<surname>Perrie</surname>
</persName>
<email>(perriew@dfo‐mpo.gc.ca</email>
<affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2012-08-16"></date>
<biblScope unit="volume">117</biblScope>
<biblScope unit="issue">D15</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">0F5BB83CC7124D9A7667F7959FA694215EDBB11E</idno>
<idno type="DOI">10.1029/2011JD016985</idno>
<idno type="ArticleID">2011JD016985</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.</p>
</abstract>
<abstract style="short">
<p>Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Air‐sea interactions</term>
</item>
<item>
<term>Arctic summer storm</term>
</item>
<item>
<term>Beaufort Sea</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Climate and Dynamics</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Air/sea constituent fluxes</term>
</item>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Ocean/atmosphere interactions</term>
</item>
<item>
<term>Polar meteorology</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Atmospheric</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
<item>
<term>Air/sea interactions</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Climate and Dynamics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-10-07">Received</change>
<change when="2012-06-25">Registration</change>
<change when="2012-08-16">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/0F5BB83CC7124D9A7667F7959FA694215EDBB11E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd17743">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="150">
<doi>10.1002/jgrd.v117.D15</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="117">117</numbering>
<numbering type="journalIssue">D15</numbering>
</numberingGroup>
<coverDate startDate="2012-08-16">16 August 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="210" status="forIssue">
<doi>10.1029/2011JD016985</doi>
<idGroup>
<id type="editorialOffice" value="2011JD016985"></id>
<id type="society" value="D15103"></id>
<id type="unit" value="JGRD17743"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Climate and Dynamics</title>
<title type="tocHeading1">Climate and Dynamics</title>
</titleGroup>
<copyright ownership="thirdParty">Published in 2012 by the American Geophysical Union</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-10-07"></event>
<event type="manuscriptRevised" date="2012-06-22"></event>
<event type="manuscriptAccepted" date="2012-06-25"></event>
<event type="firstOnline" date="2012-08-04"></event>
<event type="publishedOnlineFinalForm" date="2012-08-04"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv5.2_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0" date="2013-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<correspondenceTo>Corresponding author: W. Perrie, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS B2Y 4A2, Canada.
<email normalForm="(perriew@dfo-mpo.gc.ca)">(perriew@dfo‐mpo.gc.ca</email>
)</correspondenceTo>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ACL">Climate and Dynamics</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0312">Air/sea constituent fluxes</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3339">Ocean/atmosphere interactions</subject>
<subject href="http://psi.agu.org/taxonomy5/3349">Polar meteorology</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4301">Atmospheric</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4504">Air/sea interactions</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd17743-cit-0000" type="self">
<author>
<familyName>Long</familyName>
,
<givenNames>Z.</givenNames>
</author>
, and
<author>
<givenNames>W.</givenNames>
<familyName>Perrie</familyName>
</author>
(
<pubYear year="2012">2012</pubYear>
),
<articleTitle>Air‐sea interactions during an Arctic storm</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>117</vol>
, D15103, doi:
<accessionId ref="info:doi/10.1029/2011JD016985">10.1029/2011JD016985</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD17743.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="9000"></count>
<count type="figureTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="main">Air‐sea interactions during an Arctic storm</title>
<title type="shortAuthors">LONG AND PERRIE</title>
<title type="short">AIR‐SEA INTERACTIONS IN AN ARCTIC STORM</title>
</titleGroup>
<creators>
<creator xml:id="jgrd17743-cr-0001" creatorRole="author" affiliationRef="#jgrd17743-aff-0001">
<personName>
<givenNames>Zhenxia</givenNames>
<familyName>Long</familyName>
</personName>
</creator>
<creator xml:id="jgrd17743-cr-0002" creatorRole="author" affiliationRef="#jgrd17743-aff-0001" corresponding="yes">
<personName>
<givenNames>Will</givenNames>
<familyName>Perrie</familyName>
</personName>
<contactDetails>
<email normalForm="perriew@dfo-mpo.gc.ca">perriew@dfo‐mpo.gc.ca</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="jgrd17743-aff-0001" countryCode="CA" type="organization">
<unparsedAffiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd17743-kwd-0001">Air‐sea interactions</keyword>
<keyword xml:id="jgrd17743-kwd-0002">Arctic summer storm</keyword>
<keyword xml:id="jgrd17743-kwd-0003">Beaufort Sea</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd17743-para-0001" label="1">The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.</p>
</abstract>
<abstract type="short">
<title type="main">Key Points</title>
<p xml:id="jgrd17743-para-0002">
<list style="bulleted">
<listItem>Decrease of Beaufort ice cover increases the sea surface temperature by ~6C</listItem>
<listItem>Atmospheric responses to warmer SSTs are mainly limited to boundary layer</listItem>
<listItem>Enhanced storm‐generated surface winds, by as much as ~4 m/s</listItem>
</list>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Air‐sea interactions during an Arctic storm</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>AIR‐SEA INTERACTIONS IN AN ARCTIC STORM</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Air‐sea interactions during an Arctic storm</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenxia</namePart>
<namePart type="family">Long</namePart>
<affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Perrie</namePart>
<affiliation>Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada</affiliation>
<affiliation>E-mail: (perriew@dfo‐mpo.gc.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2012-08-16</dateIssued>
<dateCaptured encoding="w3cdtf">2011-10-07</dateCaptured>
<dateValid encoding="w3cdtf">2012-06-25</dateValid>
<edition>Long, Z., and W. Perrie (2012), Air‐sea interactions during an Arctic storm, J. Geophys. Res., 117, D15103, doi:10.1029/2011JD016985.</edition>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">20</extent>
<extent unit="words">9000</extent>
</physicalDescription>
<abstract>The impacts of increased open water in the Beaufort Sea were investigated for a summer Arctic storm in 2008 using a coupled atmosphere‐ice‐ocean model. The storm originated in northern Siberia and slowly moved into the Beaufort Sea along the ice edge in late July. The maximum wind associated with the storm occurred when it was located over the open water near the Beaufort Sea coast, after it had moved over the Chukchi and Beaufort Seas. The coupled model system is shown to simulate the storm track, intensity, maximum wind speed and the ice cover well. The model simulations suggest that the lack of ice cover in the Beaufort Sea during the 2008 storm results in increased local surface wind and surface air temperature, compared to enhanced ice cover extents such as occurred in past decades. In addition, due to this increase of open water, the surface latent and sensible heat fluxes into the atmosphere are significantly increased. However, there were no significant impacts on the storm track. The expanded open water and the loss of the sea ice results in increases in the surface air temperature by as much as 8°C. Although the atmospheric warming mostly occurs in the boundary layer, there is increased atmospheric boundary turbulence and downward kinetic energy transport that reach to mid‐levels of the troposphere and beyond. These changes result in enhanced surface winds, by as much as ∼4 m/s during the 2008 storm, compared to higher ice concentration conditions (typical of past decades). The dominant sea surface temperature response to the storm occurs over open water; storm‐generated mixing in the upper ocean results in sea surface cooling of up to 2°C along the southern Beaufort Sea coastal waters. The Ekman divergence associated with the storm caused a decrease in the fresh water content in the central Beaufort Sea by about 11 cm.</abstract>
<abstract type="short">Decrease of Beaufort ice cover increases the sea surface temperature by ~6C Atmospheric responses to warmer SSTs are mainly limited to boundary layer Enhanced storm‐generated surface winds, by as much as ~4 m/s</abstract>
<subject>
<genre>keywords</genre>
<topic>Air‐sea interactions</topic>
<topic>Arctic summer storm</topic>
<topic>Beaufort Sea</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ACL">Climate and Dynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0312">Air/sea constituent fluxes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3339">Ocean/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3349">Polar meteorology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4301">Atmospheric</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4504">Air/sea interactions</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Climate and Dynamics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D15</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>20</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0F5BB83CC7124D9A7667F7959FA694215EDBB11E</identifier>
<identifier type="DOI">10.1029/2011JD016985</identifier>
<identifier type="ArticleID">2011JD016985</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Published in 2012 by the American Geophysical Union</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001927 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001927 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0F5BB83CC7124D9A7667F7959FA694215EDBB11E
   |texte=   Air‐sea interactions during an Arctic storm
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022