La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Are the soil microbial biomass and basal respiration governed by the climatic regime?

Identifieur interne : 001244 ( Istex/Corpus ); précédent : 001243; suivant : 001245

Are the soil microbial biomass and basal respiration governed by the climatic regime?

Auteurs : H. Insam

Source :

RBID : ISTEX:D08853EB0AF3CB570482C7FB47EED43534F58283

Abstract

Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (Cmic) and basal respiration (CO2-evolution). Cmic was measured using the substrate-induced respiration technique. Cmic (μg Cmic g−1 soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg Cmic g−1 soil were found, respectively. When Cmic was calculated based on organic C (Cmic-to-Corg ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function y = 64.1− 109.5 x + 55.7 x2, where y = Cmic-to-Corg ratio (mg Cmic g−1 Corg) and x = precipitation/evaporation. Soils from arid climates exhibited a high Cmic-to-Corg ratio (up to 50 mg Cmic g−1 Corg). in soils from climates with balanced precipitation and evaporation (P/E = 1), the Cmic-to-Corg ratio was lowest (15mg Cmic g−1 Corg). As P/E exceeds this, the Cmic-to-Corg ratio increased. Any deviation of the Cmic-to-Corg ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on Cmic and the Cmic-to-Corg ratio were small.For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO2 g−1 soil h−1 compared to 0.1 mg for cooler climates. The metabolic quotient qCO2 (μg respiratory CO2-C g−1 Cmic h−1) increased with temperature.

Url:
DOI: 10.1016/0038-0717(90)90189-7

Links to Exploration step

ISTEX:D08853EB0AF3CB570482C7FB47EED43534F58283

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
<author>
<name sortKey="Insam, H" sort="Insam, H" uniqKey="Insam H" first="H." last="Insam">H. Insam</name>
<affiliation>
<mods:affiliation>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D08853EB0AF3CB570482C7FB47EED43534F58283</idno>
<date when="1990" year="1990">1990</date>
<idno type="doi">10.1016/0038-0717(90)90189-7</idno>
<idno type="url">https://api-v5.istex.fr/document/D08853EB0AF3CB570482C7FB47EED43534F58283/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001244</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001244</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
<author>
<name sortKey="Insam, H" sort="Insam, H" uniqKey="Insam H" first="H." last="Insam">H. Insam</name>
<affiliation>
<mods:affiliation>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Soil Biology and Biochemistry</title>
<title level="j" type="abbrev">SBB</title>
<idno type="ISSN">0038-0717</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1990">1990</date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="525">525</biblScope>
<biblScope unit="page" to="532">532</biblScope>
</imprint>
<idno type="ISSN">0038-0717</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0038-0717</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (Cmic) and basal respiration (CO2-evolution). Cmic was measured using the substrate-induced respiration technique. Cmic (μg Cmic g−1 soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg Cmic g−1 soil were found, respectively. When Cmic was calculated based on organic C (Cmic-to-Corg ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function y = 64.1− 109.5 x + 55.7 x2, where y = Cmic-to-Corg ratio (mg Cmic g−1 Corg) and x = precipitation/evaporation. Soils from arid climates exhibited a high Cmic-to-Corg ratio (up to 50 mg Cmic g−1 Corg). in soils from climates with balanced precipitation and evaporation (P/E = 1), the Cmic-to-Corg ratio was lowest (15mg Cmic g−1 Corg). As P/E exceeds this, the Cmic-to-Corg ratio increased. Any deviation of the Cmic-to-Corg ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on Cmic and the Cmic-to-Corg ratio were small.For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO2 g−1 soil h−1 compared to 0.1 mg for cooler climates. The metabolic quotient qCO2 (μg respiratory CO2-C g−1 Cmic h−1) increased with temperature.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>H. Insam</name>
<affiliations>
<json:string>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (Cmic) and basal respiration (CO2-evolution). Cmic was measured using the substrate-induced respiration technique. Cmic (μg Cmic g−1 soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg Cmic g−1 soil were found, respectively. When Cmic was calculated based on organic C (Cmic-to-Corg ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function y = 64.1− 109.5 x + 55.7 x2, where y = Cmic-to-Corg ratio (mg Cmic g−1 Corg) and x = precipitation/evaporation. Soils from arid climates exhibited a high Cmic-to-Corg ratio (up to 50 mg Cmic g−1 Corg). in soils from climates with balanced precipitation and evaporation (P/E = 1), the Cmic-to-Corg ratio was lowest (15mg Cmic g−1 Corg). As P/E exceeds this, the Cmic-to-Corg ratio increased. Any deviation of the Cmic-to-Corg ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on Cmic and the Cmic-to-Corg ratio were small.For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO2 g−1 soil h−1 compared to 0.1 mg for cooler climates. The metabolic quotient qCO2 (μg respiratory CO2-C g−1 Cmic h−1) increased with temperature.</abstract>
<qualityIndicators>
<score>6.405</score>
<pdfWordCount>3405</pdfWordCount>
<pdfCharCount>23120</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>504 x 756 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>266</abstractWordCount>
<abstractCharCount>1683</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
<pii>
<json:string>0038-0717(90)90189-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Immokallee SWREC Research Report IMM87-3</title>
<language>
<json:string>unknown</json:string>
</language>
</serie>
<host>
<title>Soil Biology and Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1990</publicationDate>
<issn>
<json:string>0038-0717</json:string>
</issn>
<pii>
<json:string>S0038-0717(00)X0262-3</json:string>
</pii>
<volume>22</volume>
<issue>4</issue>
<pages>
<first>525</first>
<last>532</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>soil science</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>agronomy & agriculture</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>agronomie. sciences du sol et productions vegetales</json:string>
</inist>
</categories>
<publicationDate>1990</publicationDate>
<copyrightDate>1990</copyrightDate>
<doi>
<json:string>10.1016/0038-0717(90)90189-7</json:string>
</doi>
<id>D08853EB0AF3CB570482C7FB47EED43534F58283</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/D08853EB0AF3CB570482C7FB47EED43534F58283/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/D08853EB0AF3CB570482C7FB47EED43534F58283/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/D08853EB0AF3CB570482C7FB47EED43534F58283/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1990</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
<author xml:id="author-0000">
<persName>
<forename type="first">H.</forename>
<surname>Insam</surname>
</persName>
<note type="biography">Present address: Institut für Bodenbiologie, Bundesforschungsanstalt für Landwirtschaft, Bundesallee 50, 3300 Braunschweig, B.R.D.</note>
<affiliation>Present address: Institut für Bodenbiologie, Bundesforschungsanstalt für Landwirtschaft, Bundesallee 50, 3300 Braunschweig, B.R.D.</affiliation>
<affiliation>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</affiliation>
</author>
<idno type="istex">D08853EB0AF3CB570482C7FB47EED43534F58283</idno>
<idno type="DOI">10.1016/0038-0717(90)90189-7</idno>
<idno type="PII">0038-0717(90)90189-7</idno>
</analytic>
<monogr>
<title level="j">Soil Biology and Biochemistry</title>
<title level="j" type="abbrev">SBB</title>
<idno type="pISSN">0038-0717</idno>
<idno type="PII">S0038-0717(00)X0262-3</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1990"></date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="525">525</biblScope>
<biblScope unit="page" to="532">532</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1990</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (Cmic) and basal respiration (CO2-evolution). Cmic was measured using the substrate-induced respiration technique. Cmic (μg Cmic g−1 soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg Cmic g−1 soil were found, respectively. When Cmic was calculated based on organic C (Cmic-to-Corg ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function y = 64.1− 109.5 x + 55.7 x2, where y = Cmic-to-Corg ratio (mg Cmic g−1 Corg) and x = precipitation/evaporation. Soils from arid climates exhibited a high Cmic-to-Corg ratio (up to 50 mg Cmic g−1 Corg). in soils from climates with balanced precipitation and evaporation (P/E = 1), the Cmic-to-Corg ratio was lowest (15mg Cmic g−1 Corg). As P/E exceeds this, the Cmic-to-Corg ratio increased. Any deviation of the Cmic-to-Corg ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on Cmic and the Cmic-to-Corg ratio were small.For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO2 g−1 soil h−1 compared to 0.1 mg for cooler climates. The metabolic quotient qCO2 (μg respiratory CO2-C g−1 Cmic h−1) increased with temperature.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1990">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/D08853EB0AF3CB570482C7FB47EED43534F58283/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>SBB</jid>
<aid>90901897</aid>
<ce:pii>0038-0717(90)90189-7</ce:pii>
<ce:doi>10.1016/0038-0717(90)90189-7</ce:doi>
<ce:copyright type="unknown" year="1990"></ce:copyright>
</item-info>
<head>
<ce:title>Are the soil microbial biomass and basal respiration governed by the climatic regime?</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>H.</ce:given-name>
<ce:surname>Insam</ce:surname>
<ce:cross-ref refid="FN1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label></ce:label>
<ce:note-para>Present address: Institut für Bodenbiologie, Bundesforschungsanstalt für Landwirtschaft, Bundesallee 50, 3300 Braunschweig, B.R.D.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-accepted day="15" month="10" year="1989"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (C
<ce:inf>mic</ce:inf>
) and basal respiration (CO
<ce:inf>2</ce:inf>
-evolution). C
<ce:inf>mic</ce:inf>
was measured using the substrate-induced respiration technique. C
<ce:inf>mic</ce:inf>
(μg C
<ce:inf>mic</ce:inf>
g
<ce:sup>−1</ce:sup>
soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg C
<ce:inf>mic</ce:inf>
g
<ce:sup>−1</ce:sup>
soil were found, respectively. When C
<ce:inf>mic</ce:inf>
was calculated based on organic C (C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function
<ce:italic>y</ce:italic>
= 64.1− 109.5
<ce:italic>x</ce:italic>
+ 55.7
<ce:italic>x</ce:italic>
<ce:sup>2</ce:sup>
, where
<ce:italic>y</ce:italic>
= C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio (mg C
<ce:inf>mic</ce:inf>
g
<ce:sup>−1</ce:sup>
C
<ce:inf>org</ce:inf>
) and
<ce:italic>x</ce:italic>
= precipitation/evaporation. Soils from arid climates exhibited a high C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio (up to 50 mg C
<ce:inf>mic</ce:inf>
g
<ce:sup>−1</ce:sup>
C
<ce:inf>org</ce:inf>
). in soils from climates with balanced precipitation and evaporation (P/E = 1), the C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio was lowest (15mg C
<ce:inf>mic</ce:inf>
g
<ce:sup>−1</ce:sup>
C
<ce:inf>org</ce:inf>
). As P/E exceeds this, the C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio increased. Any deviation of the C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on C
<ce:inf>mic</ce:inf>
and the C
<ce:inf>mic</ce:inf>
-to-C
<ce:inf>org</ce:inf>
ratio were small.</ce:simple-para>
<ce:simple-para>For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO
<ce:inf>2</ce:inf>
g
<ce:sup>−1</ce:sup>
soil h
<ce:sup>−1</ce:sup>
compared to 0.1 mg for cooler climates. The metabolic quotient qCO
<ce:inf>2</ce:inf>
(μg respiratory CO
<ce:inf>2</ce:inf>
-C g
<ce:sup>−1</ce:sup>
C
<ce:inf>mic</ce:inf>
h
<ce:sup>−1</ce:sup>
) increased with temperature.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Are the soil microbial biomass and basal respiration governed by the climatic regime?</title>
</titleInfo>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Insam</namePart>
<affiliation>Kananaskis Centre for Environmental Research, The University of Calgary, Calgary, Alberta, Canada T2N 1N4</affiliation>
<description>Present address: Institut für Bodenbiologie, Bundesforschungsanstalt für Landwirtschaft, Bundesallee 50, 3300 Braunschweig, B.R.D.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1990</dateIssued>
<copyrightDate encoding="w3cdtf">1990</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Soils in C equilibrium from various climatic regions were sampled to assess the influence of macroclimate on soil microbial biomass (Cmic) and basal respiration (CO2-evolution). Cmic was measured using the substrate-induced respiration technique. Cmic (μg Cmic g−1 soil d.m.) was significantly correlated with several climatic variables, among them mean annual temperature (TEMP). At 20° and 5°C TEMP. 50 and 500 μg Cmic g−1 soil were found, respectively. When Cmic was calculated based on organic C (Cmic-to-Corg ratio), a very high correlation with precipitation/evaporation as the climatic variable was found. Of the variance 73% could be explained with the quadratic function y = 64.1− 109.5 x + 55.7 x2, where y = Cmic-to-Corg ratio (mg Cmic g−1 Corg) and x = precipitation/evaporation. Soils from arid climates exhibited a high Cmic-to-Corg ratio (up to 50 mg Cmic g−1 Corg). in soils from climates with balanced precipitation and evaporation (P/E = 1), the Cmic-to-Corg ratio was lowest (15mg Cmic g−1 Corg). As P/E exceeds this, the Cmic-to-Corg ratio increased. Any deviation of the Cmic-to-Corg ratio from this regression line would indicate that a certain soil is not in C equilibrium but is losing or accumulating organic matter. In this study, for soils from a wide climatic range, the effects of pH, N or clay content on Cmic and the Cmic-to-Corg ratio were small.For basal respiration, too, a significant relationship with climatic variables was found. Soils from warmer climates exhibited a basal respiration of 0.3 mg CO2 g−1 soil h−1 compared to 0.1 mg for cooler climates. The metabolic quotient qCO2 (μg respiratory CO2-C g−1 Cmic h−1) increased with temperature.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Soil Biology and Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SBB</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">1990</dateIssued>
</originInfo>
<identifier type="ISSN">0038-0717</identifier>
<identifier type="PII">S0038-0717(00)X0262-3</identifier>
<part>
<date>1990</date>
<detail type="volume">
<number>22</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>433</start>
<end>577</end>
</extent>
<extent unit="pages">
<start>525</start>
<end>532</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D08853EB0AF3CB570482C7FB47EED43534F58283</identifier>
<identifier type="DOI">10.1016/0038-0717(90)90189-7</identifier>
<identifier type="PII">0038-0717(90)90189-7</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001244 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001244 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D08853EB0AF3CB570482C7FB47EED43534F58283
   |texte=   Are the soil microbial biomass and basal respiration governed by the climatic regime?
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022