La maladie de Parkinson au Canada (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago

Identifieur interne : 001030 ( Istex/Corpus ); précédent : 001029; suivant : 001031

Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago

Auteurs : L. Pogson ; B. Tremblay ; D. Lavoie ; C. Michel ; M. Vancoppenolle

Source :

RBID : ISTEX:89BA78ACAC898FAC50CC62F1B06752854A0A1F6D

Abstract

Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer σ coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.

Url:
DOI: 10.1029/2010JC006119

Links to Exploration step

ISTEX:89BA78ACAC898FAC50CC62F1B06752854A0A1F6D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
<author>
<name sortKey="Pogson, L" sort="Pogson, L" uniqKey="Pogson L" first="L." last="Pogson">L. Pogson</name>
<affiliation>
<mods:affiliation>Canadian Ice Service, Environment Canada, Ottawa, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: lynn.pogson@ec.gc.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tremblay, B" sort="Tremblay, B" uniqKey="Tremblay B" first="B." last="Tremblay">B. Tremblay</name>
<affiliation>
<mods:affiliation>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavoie, D" sort="Lavoie, D" uniqKey="Lavoie D" first="D." last="Lavoie">D. Lavoie</name>
<affiliation>
<mods:affiliation>Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont‐Joli, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, C" sort="Michel, C" uniqKey="Michel C" first="C." last="Michel">C. Michel</name>
<affiliation>
<mods:affiliation>Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vancoppenolle, M" sort="Vancoppenolle, M" uniqKey="Vancoppenolle M" first="M." last="Vancoppenolle">M. Vancoppenolle</name>
<affiliation>
<mods:affiliation>Institut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain‐la‐Neuve, Belgium</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:89BA78ACAC898FAC50CC62F1B06752854A0A1F6D</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1029/2010JC006119</idno>
<idno type="url">https://api-v5.istex.fr/document/89BA78ACAC898FAC50CC62F1B06752854A0A1F6D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001030</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001030</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
<author>
<name sortKey="Pogson, L" sort="Pogson, L" uniqKey="Pogson L" first="L." last="Pogson">L. Pogson</name>
<affiliation>
<mods:affiliation>Canadian Ice Service, Environment Canada, Ottawa, Ontario, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: lynn.pogson@ec.gc.ca</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tremblay, B" sort="Tremblay, B" uniqKey="Tremblay B" first="B." last="Tremblay">B. Tremblay</name>
<affiliation>
<mods:affiliation>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lavoie, D" sort="Lavoie, D" uniqKey="Lavoie D" first="D." last="Lavoie">D. Lavoie</name>
<affiliation>
<mods:affiliation>Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont‐Joli, Quebec, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Michel, C" sort="Michel, C" uniqKey="Michel C" first="C." last="Michel">C. Michel</name>
<affiliation>
<mods:affiliation>Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vancoppenolle, M" sort="Vancoppenolle, M" uniqKey="Vancoppenolle M" first="M." last="Vancoppenolle">M. Vancoppenolle</name>
<affiliation>
<mods:affiliation>Institut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain‐la‐Neuve, Belgium</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-04">2011-04</date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">C4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">89BA78ACAC898FAC50CC62F1B06752854A0A1F6D</idno>
<idno type="DOI">10.1029/2010JC006119</idno>
<idno type="ArticleID">2010JC006119</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer σ coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>L. Pogson</name>
<affiliations>
<json:string>Canadian Ice Service, Environment Canada, Ottawa, Ontario, Canada</json:string>
<json:string>E-mail: lynn.pogson@ec.gc.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>B. Tremblay</name>
<affiliations>
<json:string>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. Lavoie</name>
<affiliations>
<json:string>Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont‐Joli, Quebec, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Michel</name>
<affiliations>
<json:string>Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Vancoppenolle</name>
<affiliations>
<json:string>Institut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain‐la‐Neuve, Belgium</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ice</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>algae</value>
</json:item>
</subject>
<articleId>
<json:string>2010JC006119</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer σ coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1607</abstractCharCount>
<pdfWordCount>11473</pdfWordCount>
<pdfCharCount>64002</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>260</abstractWordCount>
</qualityIndicators>
<title>Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Oceans</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202c</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRC</json:string>
</publisherId>
<volume>116</volume>
<issue>C4</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>16</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Biogeochemical kinetics and reaction modeling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>Biogeochemistry</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>INFORMATICS</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>MINERALOGY AND PETROLOGY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Physical modeling</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>VOLCANOLOGY</value>
</json:item>
<json:item>
<value>Thermodynamics</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1029/2010JC006119</json:string>
</doi>
<id>89BA78ACAC898FAC50CC62F1B06752854A0A1F6D</id>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api-v5.istex.fr/document/89BA78ACAC898FAC50CC62F1B06752854A0A1F6D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api-v5.istex.fr/document/89BA78ACAC898FAC50CC62F1B06752854A0A1F6D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api-v5.istex.fr/document/89BA78ACAC898FAC50CC62F1B06752854A0A1F6D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2011 by the American Geophysical Union.</p>
</availability>
<date>2011</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3a.Tab‐delimited Table 3b.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
<author xml:id="author-1">
<persName>
<forename type="first">L.</forename>
<surname>Pogson</surname>
</persName>
<email>lynn.pogson@ec.gc.ca</email>
<affiliation>Canadian Ice Service, Environment Canada, Ottawa, Ontario, Canada</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">B.</forename>
<surname>Tremblay</surname>
</persName>
<affiliation>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">D.</forename>
<surname>Lavoie</surname>
</persName>
<affiliation>Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont‐Joli, Quebec, Canada</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">C.</forename>
<surname>Michel</surname>
</persName>
<affiliation>Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">M.</forename>
<surname>Vancoppenolle</surname>
</persName>
<affiliation>Institut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain‐la‐Neuve, Belgium</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202c</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2011-04"></date>
<biblScope unit="volume">116</biblScope>
<biblScope unit="issue">C4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">89BA78ACAC898FAC50CC62F1B06752854A0A1F6D</idno>
<idno type="DOI">10.1029/2010JC006119</idno>
<idno type="ArticleID">2010JC006119</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer σ coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>ice</term>
</item>
<item>
<term>algae</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Biogeochemical kinetics and reaction modeling</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>Thermodynamics</term>
</item>
<item>
<term>Biogeochemistry</term>
</item>
<item>
<term>Modeling</term>
</item>
<item>
<term>GEOCHEMISTRY</term>
</item>
<item>
<term>Thermodynamics</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>INFORMATICS</term>
</item>
<item>
<term>Modeling</term>
</item>
<item>
<term>MINERALOGY AND PETROLOGY</term>
</item>
<item>
<term>Thermodynamics</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Physical modeling</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>PALEOCEANOGRAPHY</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>VOLCANOLOGY</term>
</item>
<item>
<term>Thermodynamics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-01-28">Received</change>
<change when="2011-01-24">Registration</change>
<change when="2011-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api-v5.istex.fr/document/89BA78ACAC898FAC50CC62F1B06752854A0A1F6D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrc11679">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202c</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRC"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS">Journal of Geophysical Research: Oceans</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/jgrc.v116.C4</doi>
<idGroup>
<id type="focusSection" value="3"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Oceans</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="116">116</numbering>
<numbering type="journalIssue">C4</numbering>
</numberingGroup>
<coverDate startDate="2011-04">April 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="250" type="article" status="forIssue">
<doi>10.1029/2010JC006119</doi>
<idGroup>
<id type="editorialOffice" value="2010JC006119"></id>
<id type="society" value="C04010"></id>
<id type="unit" value="JGRC11679"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2011 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-01-28"></event>
<event type="manuscriptRevised" date="2010-12-30"></event>
<event type="manuscriptAccepted" date="2011-01-24"></event>
<event type="firstOnline" date="2011-04-15"></event>
<event type="publishedOnlineFinalForm" date="2011-04-15"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
<subject href="http://psi.agu.org/taxonomy5/0766">Thermodynamics</subject>
<subject href="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0798">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1011">Thermodynamics</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1900">INFORMATICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1952">Modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3611">Thermodynamics</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4316">Physical modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/8411">Thermodynamics</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrc11679-cit-0000" type="self">
<author>
<familyName>Pogson</familyName>
,
<givenNames>L.</givenNames>
</author>
,
<author>
<givenNames>B.</givenNames>
<familyName>Tremblay</familyName>
</author>
,
<author>
<givenNames>D.</givenNames>
<familyName>Lavoie</familyName>
</author>
,
<author>
<givenNames>C.</givenNames>
<familyName>Michel</familyName>
</author>
, and
<author>
<givenNames>M.</givenNames>
<familyName>Vancoppenolle</familyName>
</author>
(
<pubYear year="2011">2011</pubYear>
),
<articleTitle>Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>116</vol>
, C04010, doi:
<accessionId ref="info:doi/10.1029/2010JC006119">10.1029/2010JC006119</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRC.JGRC11679.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="wordTotal" number="13100"></count>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
<title type="short">DEVELOPING A SNOW‐ICE‐ALGAE MODEL</title>
<title type="shortAuthors">Pogson
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrc11679-cr-0001" affiliationRef="#jgrc11679-aff-0001">
<personName>
<givenNames>L.</givenNames>
<familyName>Pogson</familyName>
</personName>
<contactDetails>
<email normalForm="lynn.pogson@ec.gc.ca">lynn.pogson@ec.gc.ca</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrc11679-cr-0002" affiliationRef="#jgrc11679-aff-0002">
<personName>
<givenNames>B.</givenNames>
<familyName>Tremblay</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc11679-cr-0003" affiliationRef="#jgrc11679-aff-0003">
<personName>
<givenNames>D.</givenNames>
<familyName>Lavoie</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc11679-cr-0004" affiliationRef="#jgrc11679-aff-0004">
<personName>
<givenNames>C.</givenNames>
<familyName>Michel</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc11679-cr-0005" affiliationRef="#jgrc11679-aff-0005">
<personName>
<givenNames>M.</givenNames>
<familyName>Vancoppenolle</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="CA" type="organization" xml:id="jgrc11679-aff-0001">
<orgDiv>Canadian Ice Service</orgDiv>
<orgName>Environment Canada</orgName>
<address>
<city>Ottawa, Ontario</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="jgrc11679-aff-0002">
<orgDiv>Department of Atmospheric and Oceanic Sciences</orgDiv>
<orgName>McGill University</orgName>
<address>
<city>Montreal, Quebec</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="jgrc11679-aff-0003">
<orgDiv>Maurice Lamontagne Institute</orgDiv>
<orgName>Fisheries and Oceans Canada</orgName>
<address>
<city>Mont‐Joli, Quebec</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="CA" type="organization" xml:id="jgrc11679-aff-0004">
<orgDiv>Arctic Research Division</orgDiv>
<orgName>Freshwater Institute, Fisheries and Oceans Canada</orgName>
<address>
<city>Winnipeg, Manitoba</city>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="BE" type="organization" xml:id="jgrc11679-aff-0005">
<orgDiv>Institut d'Astronomie et de Géophysique Georges Lemaître</orgDiv>
<orgName>Université Catholique de Louvain</orgName>
<address>
<city>Louvain‐la‐Neuve</city>
<country>Belgium</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrc11679-kwd-0001">ice</keyword>
<keyword xml:id="jgrc11679-kwd-0002">algae</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11679:jgrc11679-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11679:jgrc11679-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11679:jgrc11679-sup-0003-t03a"></mediaResource>
<caption>Tab‐delimited Table 3a.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11679:jgrc11679-sup-0004-t03b"></mediaResource>
<caption>Tab‐delimited Table 3b.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrc11679-para-0001" label="1">Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer
<i>σ</i>
coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>DEVELOPING A SNOW‐ICE‐ALGAE MODEL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago</title>
</titleInfo>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Pogson</namePart>
<affiliation>Canadian Ice Service, Environment Canada, Ottawa, Ontario, Canada</affiliation>
<affiliation>E-mail: lynn.pogson@ec.gc.ca</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Tremblay</namePart>
<affiliation>Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D.</namePart>
<namePart type="family">Lavoie</namePart>
<affiliation>Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont‐Joli, Quebec, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Michel</namePart>
<affiliation>Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Vancoppenolle</namePart>
<affiliation>Institut d'Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain‐la‐Neuve, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2011-04</dateIssued>
<dateCaptured encoding="w3cdtf">2010-01-28</dateCaptured>
<dateValid encoding="w3cdtf">2011-01-24</dateValid>
<edition>Pogson, L., B. Tremblay, D. Lavoie, C. Michel, and M. Vancoppenolle (2011), Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago, J. Geophys. Res., 116, C04010, doi:10.1029/2010JC006119.</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">4</extent>
<extent unit="words">13100</extent>
</physicalDescription>
<abstract>Ice algae are an important component of the carbon cycle in the Arctic. We investigate the dynamics of an ice algae bloom by coupling an ice algae‐nutrient model with a multilayer σ coordinate thermodynamic sea ice model. The model is tested with the simulation of an algal bloom at the base of first‐year ice over the spring. Model output is compared with data from Barrow Strait in the Canadian Arctic Archipelago. Snow cover, through its influence on ice melt, is a dominant factor controlling the decline of the bloom in the model, a finding that supports past studies. The results show that under a higher snow cover (20 cm), biomass in the early stages of the algal bloom is less than expected from the observed data. This discrepancy is due to the severely light‐limited algal growth, despite the close match between simulated and observed under‐ice photosynthetically active radiation. This result raises issues of how photosynthetic parameters as well as radiative transfer is represented in one‐dimensional ice models. This study also shows that for higher algal concentrations, when biomass is split over multiple layers rather than concentrated in one layer at the ice base, there is a reduction in algae accumulation, a result of self shading. In addition, experiments show a sensitivity of total biomass to the oceanic heat flux and ice layer thickness, both of which affect biomass loss at the ice base. Being able to accurately model physical conditions is essential before the seasonal dynamics of ice algae can be accurately modeled, and some recommendations for improvement are discussed.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.Tab‐delimited Table 3a.Tab‐delimited Table 3b.</note>
<subject>
<genre>keywords</genre>
<topic>ice</topic>
<topic>algae</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Oceans</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0766">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0798">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1011">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1900">INFORMATICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1952">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3600">MINERALOGY AND PETROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3611">Thermodynamics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4316">Physical modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8400">VOLCANOLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8411">Thermodynamics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202c</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRC</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>C4</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">89BA78ACAC898FAC50CC62F1B06752854A0A1F6D</identifier>
<identifier type="DOI">10.1029/2010JC006119</identifier>
<identifier type="ArticleID">2010JC006119</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2011 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Canada/explor/ParkinsonCanadaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001030 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001030 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Canada
   |area=    ParkinsonCanadaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:89BA78ACAC898FAC50CC62F1B06752854A0A1F6D
   |texte=   Development and validation of a one‐dimensional snow‐ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago
}}

Wicri

This area was generated with Dilib version V0.6.29.
Data generation: Thu May 4 22:20:19 2017. Site generation: Fri Dec 23 23:17:26 2022