Serveur d'exploration sur les coopérations entre la France et le Brésil

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Parsing Facades with Shape Grammars and Reinforcement Learning

Identifieur interne : 000151 ( Main/Corpus ); précédent : 000150; suivant : 000152

Parsing Facades with Shape Grammars and Reinforcement Learning

Auteurs : RBID : Pascal:14-0167829

Descripteurs français

English descriptors

Abstract

In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0162-8828
A02 01      @0 ITPIDJ
A03   1    @0 IEEE trans. pattern anal. mach. intell.
A05       @2 35
A06       @2 7
A08 01  1  ENG  @1 Parsing Facades with Shape Grammars and Reinforcement Learning
A11 01  1    @1 TEBOUL (Olivier)
A11 02  1    @1 KOKKINOS (Iasonas)
A11 03  1    @1 SIMON (Loic)
A11 04  1    @1 KOUTSOURAKIS (Panagiotis)
A11 05  1    @1 PARAGIOS (Nikos)
A14 01      @1 MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes @2 92290, Chatenay-Malabry @3 FRA @Z 1 aut.
A14 02      @1 Google, Inc., av. Bias Fortes 382, Lourdes @2 Belo Horizonte, MG 30170-010 @3 BRA @Z 1 aut.
A14 03      @1 Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes @2 92295, Chatenay-Malabry @3 FRA @Z 2 aut.
A14 04      @1 Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin @2 Caen 14050 @3 FRA @Z 3 aut.
A14 05      @1 Ecole Centrale Paris-University of Crete, Grande Voie des Vignes @2 92295 Chatenay-Malabry @3 FRA @Z 4 aut.
A14 06      @1 Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes @2 92295 Chatenay-Malabry @3 FRA @Z 5 aut.
A20       @1 1744-1756
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 222T @5 354000501110050160
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 44 ref.
A47 01  1    @0 14-0167829
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on pattern analysis and machine intelligence
A66 01      @0 USA
C01 01    ENG  @0 In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.
C02 01  X    @0 001D02C03
C02 02  X    @0 001D02A05
C02 03  X    @0 001D02C02
C03 01  X  FRE  @0 Analyse syntaxique @5 06
C03 01  X  ENG  @0 Syntactic analysis @5 06
C03 01  X  SPA  @0 Análisis sintáxico @5 06
C03 02  X  FRE  @0 Forme géométrique @5 07
C03 02  X  ENG  @0 Geometrical shape @5 07
C03 02  X  SPA  @0 Forma geométrica @5 07
C03 03  X  FRE  @0 Infographie @5 08
C03 03  X  ENG  @0 Computer graphics @5 08
C03 03  X  SPA  @0 Gráfico computadora @5 08
C03 04  X  FRE  @0 Apprentissage renforcé @5 09
C03 04  X  ENG  @0 Reinforcement learning @5 09
C03 04  X  SPA  @0 Aprendizaje reforzado @5 09
C03 05  X  FRE  @0 Complexité calcul @5 10
C03 05  X  ENG  @0 Computational complexity @5 10
C03 05  X  SPA  @0 Complejidad computación @5 10
C03 06  X  FRE  @0 Formation image @5 11
C03 06  X  ENG  @0 Imaging @5 11
C03 06  X  SPA  @0 Formación imagen @5 11
C03 07  X  FRE  @0 Installation intérieure @5 18
C03 07  X  ENG  @0 Indoor installation @5 18
C03 07  X  SPA  @0 Instalación interior @5 18
C03 08  X  FRE  @0 Décision Markov @5 19
C03 08  X  ENG  @0 Markov decision @5 19
C03 08  X  SPA  @0 Decisión Markov @5 19
C03 09  X  FRE  @0 Guidage @5 20
C03 09  X  ENG  @0 Guidance @5 20
C03 09  X  SPA  @0 Guiado @5 20
C03 10  X  FRE  @0 Sémantique @5 21
C03 10  X  ENG  @0 Semantics @5 21
C03 10  X  SPA  @0 Semántica @5 21
C03 11  X  FRE  @0 Segmentation @5 23
C03 11  X  ENG  @0 Segmentation @5 23
C03 11  X  SPA  @0 Segmentación @5 23
C03 12  X  FRE  @0 Utilité attendue @5 24
C03 12  X  ENG  @0 Expected utility @5 24
C03 12  X  SPA  @0 Utilidad espera @5 24
C03 13  X  FRE  @0 Processus Markov @5 25
C03 13  X  ENG  @0 Markov process @5 25
C03 13  X  SPA  @0 Proceso Markov @5 25
C03 14  X  FRE  @0 Méthode ascendante @5 26
C03 14  X  ENG  @0 Bottom up method @5 26
C03 14  X  SPA  @0 Método ascendente @5 26
C03 15  X  FRE  @0 Optimisation @5 27
C03 15  X  ENG  @0 Optimization @5 27
C03 15  X  SPA  @0 Optimización @5 27
C03 16  X  FRE  @0 Modèle dirigé par les données @5 28
C03 16  X  ENG  @0 Data driven modelling @5 28
C03 16  X  SPA  @0 Modelo basado en datos @5 28
C03 17  X  FRE  @0 . @4 INC @5 82
N21       @1 209
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0167829 INIST
ET : Parsing Facades with Shape Grammars and Reinforcement Learning
AU : TEBOUL (Olivier); KOKKINOS (Iasonas); SIMON (Loic); KOUTSOURAKIS (Panagiotis); PARAGIOS (Nikos)
AF : MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes/92290, Chatenay-Malabry/France (1 aut.); Google, Inc., av. Bias Fortes 382, Lourdes/Belo Horizonte, MG 30170-010/Brésil (1 aut.); Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes/92295, Chatenay-Malabry/France (2 aut.); Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin/Caen 14050/France (3 aut.); Ecole Centrale Paris-University of Crete, Grande Voie des Vignes/92295 Chatenay-Malabry/France (4 aut.); Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes/92295 Chatenay-Malabry/France (5 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on pattern analysis and machine intelligence; ISSN 0162-8828; Coden ITPIDJ; Etats-Unis; Da. 2013; Vol. 35; No. 7; Pp. 1744-1756; Bibl. 44 ref.
LA : Anglais
EA : In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.
CC : 001D02C03; 001D02A05; 001D02C02
FD : Analyse syntaxique; Forme géométrique; Infographie; Apprentissage renforcé; Complexité calcul; Formation image; Installation intérieure; Décision Markov; Guidage; Sémantique; Segmentation; Utilité attendue; Processus Markov; Méthode ascendante; Optimisation; Modèle dirigé par les données; .
ED : Syntactic analysis; Geometrical shape; Computer graphics; Reinforcement learning; Computational complexity; Imaging; Indoor installation; Markov decision; Guidance; Semantics; Segmentation; Expected utility; Markov process; Bottom up method; Optimization; Data driven modelling
SD : Análisis sintáxico; Forma geométrica; Gráfico computadora; Aprendizaje reforzado; Complejidad computación; Formación imagen; Instalación interior; Decisión Markov; Guiado; Semántica; Segmentación; Utilidad espera; Proceso Markov; Método ascendente; Optimización; Modelo basado en datos
LO : INIST-222T.354000501110050160
ID : 14-0167829

Links to Exploration step

Pascal:14-0167829

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Parsing Facades with Shape Grammars and Reinforcement Learning</title>
<author>
<name sortKey="Teboul, Olivier" uniqKey="Teboul O">Olivier Teboul</name>
<affiliation>
<inist:fA14 i1="01">
<s1>MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes</s1>
<s2>92290, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Google, Inc., av. Bias Fortes 382, Lourdes</s1>
<s2>Belo Horizonte, MG 30170-010</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kokkinos, Iasonas" uniqKey="Kokkinos I">Iasonas Kokkinos</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Simon, Loic" uniqKey="Simon L">Loic Simon</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Koutsourakis, Panagiotis" uniqKey="Koutsourakis P">Panagiotis Koutsourakis</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Ecole Centrale Paris-University of Crete, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Paragios, Nikos" uniqKey="Paragios N">Nikos Paragios</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0167829</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0167829 INIST</idno>
<idno type="RBID">Pascal:14-0167829</idno>
<idno type="wicri:Area/Main/Corpus">000151</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0162-8828</idno>
<title level="j" type="abbreviated">IEEE trans. pattern anal. mach. intell.</title>
<title level="j" type="main">IEEE transactions on pattern analysis and machine intelligence</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bottom up method</term>
<term>Computational complexity</term>
<term>Computer graphics</term>
<term>Data driven modelling</term>
<term>Expected utility</term>
<term>Geometrical shape</term>
<term>Guidance</term>
<term>Imaging</term>
<term>Indoor installation</term>
<term>Markov decision</term>
<term>Markov process</term>
<term>Optimization</term>
<term>Reinforcement learning</term>
<term>Segmentation</term>
<term>Semantics</term>
<term>Syntactic analysis</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse syntaxique</term>
<term>Forme géométrique</term>
<term>Infographie</term>
<term>Apprentissage renforcé</term>
<term>Complexité calcul</term>
<term>Formation image</term>
<term>Installation intérieure</term>
<term>Décision Markov</term>
<term>Guidage</term>
<term>Sémantique</term>
<term>Segmentation</term>
<term>Utilité attendue</term>
<term>Processus Markov</term>
<term>Méthode ascendante</term>
<term>Optimisation</term>
<term>Modèle dirigé par les données</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0162-8828</s0>
</fA01>
<fA02 i1="01">
<s0>ITPIDJ</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. pattern anal. mach. intell.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Parsing Facades with Shape Grammars and Reinforcement Learning</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TEBOUL (Olivier)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOKKINOS (Iasonas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SIMON (Loic)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOUTSOURAKIS (Panagiotis)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PARAGIOS (Nikos)</s1>
</fA11>
<fA14 i1="01">
<s1>MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes</s1>
<s2>92290, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Google, Inc., av. Bias Fortes 382, Lourdes</s1>
<s2>Belo Horizonte, MG 30170-010</s2>
<s3>BRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295, Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Ecole Centrale Paris-University of Crete, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes</s1>
<s2>92295 Chatenay-Malabry</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>1744-1756</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222T</s2>
<s5>354000501110050160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0167829</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on pattern analysis and machine intelligence</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Analyse syntaxique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Syntactic analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Análisis sintáxico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Forme géométrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Geometrical shape</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Forma geométrica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Apprentissage renforcé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Reinforcement learning</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Aprendizaje reforzado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Complexité calcul</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Computational complexity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Complejidad computación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Formation image</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Imaging</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Formación imagen</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Installation intérieure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indoor installation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Instalación interior</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Décision Markov</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Markov decision</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Decisión Markov</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Guidage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Guidance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Guiado</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sémantique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Semantics</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Semántica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Segmentation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Segmentation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Segmentación</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Utilité attendue</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Expected utility</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Utilidad espera</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Processus Markov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Markov process</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Proceso Markov</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode ascendante</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Bottom up method</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método ascendente</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Modèle dirigé par les données</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Data driven modelling</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Modelo basado en datos</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>209</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0167829 INIST</NO>
<ET>Parsing Facades with Shape Grammars and Reinforcement Learning</ET>
<AU>TEBOUL (Olivier); KOKKINOS (Iasonas); SIMON (Loic); KOUTSOURAKIS (Panagiotis); PARAGIOS (Nikos)</AU>
<AF>MAS laboratory, Ecole Centrale Paris, Grande Voie des Vignes/92290, Chatenay-Malabry/France (1 aut.); Google, Inc., av. Bias Fortes 382, Lourdes/Belo Horizonte, MG 30170-010/Brésil (1 aut.); Ecole Centrale Paris-INRIA Saclay, Grande Voie des Vignes/92295, Chatenay-Malabry/France (2 aut.); Ecole Nationale Supérieure d'Ingenieurs de Caen, GREYC CNRS UMR 6072, 6 Bd Marechal Juin/Caen 14050/France (3 aut.); Ecole Centrale Paris-University of Crete, Grande Voie des Vignes/92295 Chatenay-Malabry/France (4 aut.); Ecole Centrale Paris-Ecole des Ponts-ParisTech-INRIA Saclay, Grande Voie des Vignes/92295 Chatenay-Malabry/France (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on pattern analysis and machine intelligence; ISSN 0162-8828; Coden ITPIDJ; Etats-Unis; Da. 2013; Vol. 35; No. 7; Pp. 1744-1756; Bibl. 44 ref.</SO>
<LA>Anglais</LA>
<EA>In this paper, we use shape grammars (SGs) for facade parsing, which amounts to segmenting 2D building facades into balconies, walls, windows, and doors in an architecturally meaningful manner. The main thrust of our work is the introduction of reinforcement learning (RL) techniques to deal with the computational complexity of the problem. RL provides us with techniques such as Q-learning and state aggregation which we exploit to efficiently solve facade parsing. We initially phrase the 1D parsing problem in terms of a Markov Decision Process, paving the way for the application of RL-based tools. We then develop novel techniques for the 2D shape parsing problem that take into account the specificities of the facade parsing problem. Specifically, we use state aggregation to enforce the symmetry of facade floors and demonstrate how to use RL to exploit bottom-up, image-based guidance during optimization. We provide systematic results on the Paris building dataset and obtain state-of-the-art results in a fraction of the time required by previous methods. We validate our method under diverse imaging conditions and make our software and results available online.</EA>
<CC>001D02C03; 001D02A05; 001D02C02</CC>
<FD>Analyse syntaxique; Forme géométrique; Infographie; Apprentissage renforcé; Complexité calcul; Formation image; Installation intérieure; Décision Markov; Guidage; Sémantique; Segmentation; Utilité attendue; Processus Markov; Méthode ascendante; Optimisation; Modèle dirigé par les données; .</FD>
<ED>Syntactic analysis; Geometrical shape; Computer graphics; Reinforcement learning; Computational complexity; Imaging; Indoor installation; Markov decision; Guidance; Semantics; Segmentation; Expected utility; Markov process; Bottom up method; Optimization; Data driven modelling</ED>
<SD>Análisis sintáxico; Forma geométrica; Gráfico computadora; Aprendizaje reforzado; Complejidad computación; Formación imagen; Instalación interior; Decisión Markov; Guiado; Semántica; Segmentación; Utilidad espera; Proceso Markov; Método ascendente; Optimización; Modelo basado en datos</SD>
<LO>INIST-222T.354000501110050160</LO>
<ID>14-0167829</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=FranceBresilV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    FranceBresilV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0167829
   |texte=   Parsing Facades with Shape Grammars and Reinforcement Learning
}}

Wicri

This area was generated with Dilib version V0.6.01.
Data generation: Wed Apr 1 17:49:02 2015. Site generation: Mon Mar 11 12:05:52 2024