Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.

Identifieur interne : 000120 ( PubMed/Corpus ); précédent : 000119; suivant : 000121

Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.

Auteurs : Ana Uclés ; Sonia Herrera L Pez ; Maria Dolores Hernando ; Roberto Rosal ; Carmen Ferrer ; Amadeo R. Fernández-Alba

Source :

RBID : pubmed:26452791

English descriptors

Abstract

The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg(-1) in a pear sample.

DOI: 10.1016/j.talanta.2015.05.055
PubMed: 26452791

Links to Exploration step

pubmed:26452791

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.</title>
<author>
<name sortKey="Ucles, Ana" sort="Ucles, Ana" uniqKey="Ucles A" first="Ana" last="Uclés">Ana Uclés</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herrera L Pez, Sonia" sort="Herrera L Pez, Sonia" uniqKey="Herrera L Pez S" first="Sonia" last="Herrera L Pez">Sonia Herrera L Pez</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolores Hernando, Maria" sort="Dolores Hernando, Maria" uniqKey="Dolores Hernando M" first="Maria" last="Dolores Hernando">Maria Dolores Hernando</name>
<affiliation>
<nlm:affiliation>National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosal, Roberto" sort="Rosal, Roberto" uniqKey="Rosal R" first="Roberto" last="Rosal">Roberto Rosal</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Alcalá, 28771 Alcalá de Henares, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrer, Carmen" sort="Ferrer, Carmen" uniqKey="Ferrer C" first="Carmen" last="Ferrer">Carmen Ferrer</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Alba, Amadeo R" sort="Fernandez Alba, Amadeo R" uniqKey="Fernandez Alba A" first="Amadeo R" last="Fernández-Alba">Amadeo R. Fernández-Alba</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain. Electronic address: amadeo@ual.es.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26452791</idno>
<idno type="pmid">26452791</idno>
<idno type="doi">10.1016/j.talanta.2015.05.055</idno>
<idno type="wicri:Area/PubMed/Corpus">000120</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.</title>
<author>
<name sortKey="Ucles, Ana" sort="Ucles, Ana" uniqKey="Ucles A" first="Ana" last="Uclés">Ana Uclés</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Herrera L Pez, Sonia" sort="Herrera L Pez, Sonia" uniqKey="Herrera L Pez S" first="Sonia" last="Herrera L Pez">Sonia Herrera L Pez</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dolores Hernando, Maria" sort="Dolores Hernando, Maria" uniqKey="Dolores Hernando M" first="Maria" last="Dolores Hernando">Maria Dolores Hernando</name>
<affiliation>
<nlm:affiliation>National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rosal, Roberto" sort="Rosal, Roberto" uniqKey="Rosal R" first="Roberto" last="Rosal">Roberto Rosal</name>
<affiliation>
<nlm:affiliation>Department of Chemical Engineering, University of Alcalá, 28771 Alcalá de Henares, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferrer, Carmen" sort="Ferrer, Carmen" uniqKey="Ferrer C" first="Carmen" last="Ferrer">Carmen Ferrer</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Alba, Amadeo R" sort="Fernandez Alba, Amadeo R" uniqKey="Fernandez Alba A" first="Amadeo R" last="Fernández-Alba">Amadeo R. Fernández-Alba</name>
<affiliation>
<nlm:affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain. Electronic address: amadeo@ual.es.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Talanta</title>
<idno type="eISSN">1873-3573</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Chromatography, Liquid</term>
<term>Citrus sinensis (chemistry)</term>
<term>Limit of Detection</term>
<term>Linear Models</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanotubes, Carbon (chemistry)</term>
<term>Pesticide Residues (analysis)</term>
<term>Pesticide Residues (chemistry)</term>
<term>Pesticide Residues (isolation & purification)</term>
<term>Pyrus (chemistry)</term>
<term>Safety</term>
<term>Solid Phase Extraction (economics)</term>
<term>Solid Phase Extraction (methods)</term>
<term>Soot (chemistry)</term>
<term>Tandem Mass Spectrometry</term>
<term>Time Factors</term>
<term>Yttrium (chemistry)</term>
<term>Zirconium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Pesticide Residues</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nanotubes, Carbon</term>
<term>Pesticide Residues</term>
<term>Soot</term>
<term>Yttrium</term>
<term>Zirconium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Citrus sinensis</term>
<term>Nanoparticles</term>
<term>Pyrus</term>
</keywords>
<keywords scheme="MESH" qualifier="economics" xml:lang="en">
<term>Solid Phase Extraction</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Pesticide Residues</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Solid Phase Extraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Chromatography, Liquid</term>
<term>Limit of Detection</term>
<term>Linear Models</term>
<term>Safety</term>
<term>Tandem Mass Spectrometry</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg(-1) in a pear sample.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26452791</PMID>
<DateCreated>
<Year>2015</Year>
<Month>10</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3573</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Talanta</Title>
<ISOAbbreviation>Talanta</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>51-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.talanta.2015.05.055</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0039-9140(15)30012-6</ELocationID>
<Abstract>
<AbstractText>The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg(-1) in a pear sample.</AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Uclés</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Herrera López</LastName>
<ForeName>Sonia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dolores Hernando</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosal</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, University of Alcalá, 28771 Alcalá de Henares, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferrer</LastName>
<ForeName>Carmen</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernández-Alba</LastName>
<ForeName>Amadeo R</ForeName>
<Initials>AR</Initials>
<AffiliationInfo>
<Affiliation>Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, Spain. Electronic address: amadeo@ual.es.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>May</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Talanta</MedlineTA>
<NlmUniqueID>2984816R</NlmUniqueID>
<ISSNLinking>0039-9140</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037742">Nanotubes, Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010573">Pesticide Residues</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053260">Soot</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1314-36-9</RegistryNumber>
<NameOfSubstance UI="C091417">yttria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>58784XQC3Y</RegistryNumber>
<NameOfSubstance UI="D015019">Yttrium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>C6V6S92N3C</RegistryNumber>
<NameOfSubstance UI="D015040">Zirconium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S38N85C5G0</RegistryNumber>
<NameOfSubstance UI="C028541">zirconium oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002853" MajorTopicYN="N">Chromatography, Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032084" MajorTopicYN="N">Citrus sinensis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037742" MajorTopicYN="N">Nanotubes, Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010573" MajorTopicYN="N">Pesticide Residues</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031989" MajorTopicYN="N">Pyrus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012449" MajorTopicYN="N">Safety</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052616" MajorTopicYN="N">Solid Phase Extraction</DescriptorName>
<QualifierName UI="Q000191" MajorTopicYN="N">economics</QualifierName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053260" MajorTopicYN="N">Soot</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053719" MajorTopicYN="N">Tandem Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015019" MajorTopicYN="N">Yttrium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015040" MajorTopicYN="N">Zirconium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Clean-up</Keyword>
<Keyword MajorTopicYN="N">LC–MS/MS</Keyword>
<Keyword MajorTopicYN="N">Pesticide residues</Keyword>
<Keyword MajorTopicYN="N">Post-harvest pesticides</Keyword>
<Keyword MajorTopicYN="N">Recoveries</Keyword>
<Keyword MajorTopicYN="N">Yttria-stabilized zirconium dioxide</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>3</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>5</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26452791</ArticleId>
<ArticleId IdType="pii">S0039-9140(15)30012-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.talanta.2015.05.055</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26452791
   |texte=   Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26452791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024