Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases

Identifieur interne : 001331 ( Pmc/Corpus ); précédent : 001330; suivant : 001332

Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases

Auteurs : Daniele Del Rio ; Ana Rodriguez-Mateos ; Jeremy P. E. Spencer ; Massimiliano Tognolini ; Gina Borges ; Alan Crozier

Source :

RBID : PMC:3619154

Abstract

Abstract

Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes. Antioxid. Redox Signal. 18, 1818–1892.


Url:
DOI: 10.1089/ars.2012.4581
PubMed: 22794138
PubMed Central: 3619154

Links to Exploration step

PMC:3619154

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases</title>
<author>
<name sortKey="Del Rio, Daniele" sort="Del Rio, Daniele" uniqKey="Del Rio D" first="Daniele" last="Del Rio">Daniele Del Rio</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Mateos, Ana" sort="Rodriguez Mateos, Ana" uniqKey="Rodriguez Mateos A" first="Ana" last="Rodriguez-Mateos">Ana Rodriguez-Mateos</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Spencer, Jeremy P E" sort="Spencer, Jeremy P E" uniqKey="Spencer J" first="Jeremy P. E." last="Spencer">Jeremy P. E. Spencer</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tognolini, Massimiliano" sort="Tognolini, Massimiliano" uniqKey="Tognolini M" first="Massimiliano" last="Tognolini">Massimiliano Tognolini</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Borges, Gina" sort="Borges, Gina" uniqKey="Borges G" first="Gina" last="Borges">Gina Borges</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Crozier, Alan" sort="Crozier, Alan" uniqKey="Crozier A" first="Alan" last="Crozier">Alan Crozier</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22794138</idno>
<idno type="pmc">3619154</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619154</idno>
<idno type="RBID">PMC:3619154</idno>
<idno type="doi">10.1089/ars.2012.4581</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001331</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases</title>
<author>
<name sortKey="Del Rio, Daniele" sort="Del Rio, Daniele" uniqKey="Del Rio D" first="Daniele" last="Del Rio">Daniele Del Rio</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Mateos, Ana" sort="Rodriguez Mateos, Ana" uniqKey="Rodriguez Mateos A" first="Ana" last="Rodriguez-Mateos">Ana Rodriguez-Mateos</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Spencer, Jeremy P E" sort="Spencer, Jeremy P E" uniqKey="Spencer J" first="Jeremy P. E." last="Spencer">Jeremy P. E. Spencer</name>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tognolini, Massimiliano" sort="Tognolini, Massimiliano" uniqKey="Tognolini M" first="Massimiliano" last="Tognolini">Massimiliano Tognolini</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Borges, Gina" sort="Borges, Gina" uniqKey="Borges G" first="Gina" last="Borges">Gina Borges</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Crozier, Alan" sort="Crozier, Alan" uniqKey="Crozier A" first="Alan" last="Crozier">Alan Crozier</name>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants & Redox Signaling</title>
<idno type="ISSN">1523-0864</idno>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist
<italic>in planta</italic>
, at concentrations in the low-μ
<italic>M</italic>
-to-m
<italic>M</italic>
range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds n
<italic>M</italic>
concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed
<italic>in vivo</italic>
intervention and
<italic>in vitro</italic>
mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
<italic>Antioxid. Redox Signal</italic>
. 18, 1818–1892.</p>
</div>
</front>
</TEI>
<pmc article-type="review-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Antioxid Redox Signal</journal-id>
<journal-id journal-id-type="iso-abbrev">Antioxid. Redox Signal</journal-id>
<journal-id journal-id-type="publisher-id">ars</journal-id>
<journal-title-group>
<journal-title>Antioxidants & Redox Signaling</journal-title>
</journal-title-group>
<issn pub-type="ppub">1523-0864</issn>
<issn pub-type="epub">1557-7716</issn>
<publisher>
<publisher-name>Mary Ann Liebert, Inc.</publisher-name>
<publisher-loc>140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">22794138</article-id>
<article-id pub-id-type="pmc">3619154</article-id>
<article-id pub-id-type="publisher-id">10.1089/ars.2012.4581</article-id>
<article-id pub-id-type="doi">10.1089/ars.2012.4581</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Comprehensive Invited Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Del Rio</surname>
<given-names>Daniele</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rodriguez-Mateos</surname>
<given-names>Ana</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Spencer</surname>
<given-names>Jeremy P.E.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tognolini</surname>
<given-names>Massimiliano</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Borges</surname>
<given-names>Gina</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Crozier</surname>
<given-names>Alan</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<aff id="aff1">
<label>
<sup>1</sup>
</label>
The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science,
<institution>University of Parma</institution>
, Parma,
<country>Italy</country>
.</aff>
<aff id="aff2">
<label>
<sup>2</sup>
</label>
Molecular Nutrition Group, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy,
<institution>University of Reading</institution>
, Reading,
<country>United Kingdom</country>
.</aff>
<aff id="aff3">
<label>
<sup>3</sup>
</label>
Department of Pharmacy,
<institution>University of Parma</institution>
, Parma,
<country>Italy</country>
.</aff>
<aff id="aff4">
<label>
<sup>4</sup>
</label>
Plant Products and Human Nutrition Group, School of Medicine,
<institution>University of Glasgow</institution>
, Glasgow,
<country>United Kingdom</country>
.</aff>
</contrib-group>
<author-notes>
<fn id="fn1" fn-type="other">
<p>Reviewing Editors:
<italic>Jeffrey Blumberg, Evan P. Cherniack, Jose M. Estrela, Isaac Ginsburg, Liudmila Korkina, Hasan Mukhtar, Etsuo Niki, Patricia Oteiza, Sampath Parthasarathy, Saveria Pastore, Marzia Perluigi, and Francesco Visioli</italic>
</p>
</fn>
<corresp>Address correspondence to:
<italic>Prof. Alan Crozier, Plant Products and Human Nutrition Group, School of Medicine, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, United Kingdom. E-mail:</italic>
<email xlink:href="mailto:alan.crozier@glasgow.ac.uk">alan.crozier@glasgow.ac.uk</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>10</day>
<month>5</month>
<year>2013</year>
<pmc-comment>string-date: May 10, 2013</pmc-comment>
</pub-date>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>5</month>
<year>2013</year>
<pmc-comment>string-date: May 10, 2013</pmc-comment>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>18</volume>
<issue>14</issue>
<fpage>1818</fpage>
<lpage>1892</lpage>
<history>
<date date-type="received">
<day>24</day>
<month>2</month>
<year>2012</year>
<pmc-comment>string-date: Date of first submission to ARS Central, February 24, 2012</pmc-comment>
</date>
<date date-type="rev-recd">
<day>06</day>
<month>7</month>
<year>2012</year>
<pmc-comment>string-date: date of final revised submission, July 6, 2012</pmc-comment>
</date>
<date date-type="accepted">
<day>15</day>
<month>7</month>
<year>2012</year>
<pmc-comment>string-date: date of acceptance, July 15, 2012</pmc-comment>
</date>
</history>
<permissions>
<copyright-statement>Copyright 2013, Mary Ann Liebert, Inc.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<self-uri xlink:type="simple" xlink:href="ars.2012.4581.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist
<italic>in planta</italic>
, at concentrations in the low-μ
<italic>M</italic>
-to-m
<italic>M</italic>
range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds n
<italic>M</italic>
concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed
<italic>in vivo</italic>
intervention and
<italic>in vitro</italic>
mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
<italic>Antioxid. Redox Signal</italic>
. 18, 1818–1892.</p>
</abstract>
<abstract abstract-type="article-toc">
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s001">I. Introduction</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s002">II. Classification of Phenolic Compounds</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s003">A. Flavonoids</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s004">1. Flavonols</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s005">2. Flavones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s006">3. Isoflavones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s007">4. Flavanones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s008">5. Anthocyanidins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s009">6. Flavan-3-ols</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s010">7. Dihydrochalcones</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s011">B. Nonflavonoids</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s012">III. Bioavailability of Flavonoids and Related Compounds</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s013">A. Flavonols and flavanones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s014">B. Anthocyanins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s015">C. Flavones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s016">D. Isoflavones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s017">E. Flavan-3-ols</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s018">1. Cocoa flavan-3-ol monomers</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s019">2. Green tea flavan-3-ol monomers</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s020">a. Dose effects</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s021">b. Colonic catabolism of green tea flavan-3-ols</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s022">c. Identification and quantification of flavan-3-ol metabolites</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s023">3. Black tea theaflavins and thearubigins</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s024">F. Proanthocyanidins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s025">G. Dihydrochalcones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s026">H. Ellagitannins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s027">I. Chlorogenic acids</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s028">J. Resveratrol</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s029">K. Plant lignans</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s030">IV. Evidence for the Accumulation of (Poly)phenol Metabolites in Body Tissues</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s031">V. 
<italic>In Vitro</italic>
Biological Activity and Mode of Action</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s032">A. Anthocyanins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s033">B. Chlorogenic acids</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s034">C. Ellagitannins</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s035">D. Flavan-3-ols</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s036">E. Flavonols</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s037">F. Lignans and isoflavones</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s038">G. Flavanones</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s039">VI. Feeding Studies and Evidence of Protective Effects</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s040">A. Cardiovascular effects of dietary polyphenols</xref>
</p>
<list list-type="simple">
<list-item>
<p>
<xref ref-type="sec" rid="s041">1. Cocoa</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s042">2. Red wine</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s043">3. Tea</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s044">4. Berries</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s045">5. Pomegranate</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s046">6. Citrus fruit</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s047">7. Coffee</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s048">8. Nuts</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s049">B. (Poly)phenols and neurodegenerative diseases</xref>
</p>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s050">C. (Poly)phenols and cancer</xref>
</p>
</list-item>
</list>
</list-item>
<list-item>
<p>
<xref ref-type="sec" rid="s051">VII. Conclusions</xref>
</p>
</list-item>
</list>
</abstract>
<counts>
<fig-count count="41"></fig-count>
<table-count count="14"></table-count>
<ref-count count="513"></ref-count>
<page-count count="75"></page-count>
</counts>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001331 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001331 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3619154
   |texte=   Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:22794138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024