Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.)

Identifieur interne : 001003 ( Pmc/Corpus ); précédent : 001002; suivant : 001004

An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.)

Auteurs : J. Anuradha ; Tasneem Abbasi ; S. A. Abbasi

Source :

RBID : PMC:4988642

Abstract

A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (Pistia stratiotes) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts – aerial and submerged – was explored with different proportions of gold (III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which occurred at ambient temperature and pressure and commenced soon after mixing the pistia extracts and gold (III) solutions, was tracked using UV–visible spectrophotometry. The electron micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentrations used in the synthesis, GNPs of either monodispersed spherical shape were formed or there was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated triangular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary and secondary amines associated with the polypeptide biomolecules could have been responsible for the reduction of the gold (III) ions to GNPs and their subsequent stabilization.


Url:
DOI: 10.1016/j.jare.2014.03.006
PubMed: 27563461
PubMed Central: 4988642

Links to Exploration step

PMC:4988642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (
<italic>Pistia stratiotes</italic>
L.)</title>
<author>
<name sortKey="Anuradha, J" sort="Anuradha, J" uniqKey="Anuradha J" first="J." last="Anuradha">J. Anuradha</name>
</author>
<author>
<name sortKey="Abbasi, Tasneem" sort="Abbasi, Tasneem" uniqKey="Abbasi T" first="Tasneem" last="Abbasi">Tasneem Abbasi</name>
</author>
<author>
<name sortKey="Abbasi, S A" sort="Abbasi, S A" uniqKey="Abbasi S" first="S. A." last="Abbasi">S. A. Abbasi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27563461</idno>
<idno type="pmc">4988642</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988642</idno>
<idno type="RBID">PMC:4988642</idno>
<idno type="doi">10.1016/j.jare.2014.03.006</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">001003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (
<italic>Pistia stratiotes</italic>
L.)</title>
<author>
<name sortKey="Anuradha, J" sort="Anuradha, J" uniqKey="Anuradha J" first="J." last="Anuradha">J. Anuradha</name>
</author>
<author>
<name sortKey="Abbasi, Tasneem" sort="Abbasi, Tasneem" uniqKey="Abbasi T" first="Tasneem" last="Abbasi">Tasneem Abbasi</name>
</author>
<author>
<name sortKey="Abbasi, S A" sort="Abbasi, S A" uniqKey="Abbasi S" first="S. A." last="Abbasi">S. A. Abbasi</name>
</author>
</analytic>
<series>
<title level="j">Journal of Advanced Research</title>
<idno type="ISSN">2090-1232</idno>
<idno type="eISSN">2090-1224</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (
<italic>Pistia stratiotes</italic>
) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts – aerial and submerged – was explored with different proportions of gold (III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which occurred at ambient temperature and pressure and commenced soon after mixing the pistia extracts and gold (III) solutions, was tracked using UV–visible spectrophotometry. The electron micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentrations used in the synthesis, GNPs of either monodispersed spherical shape were formed or there was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated triangular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary and secondary amines associated with the polypeptide biomolecules could have been responsible for the reduction of the gold (III) ions to GNPs and their subsequent stabilization.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Anuradha, J" uniqKey="Anuradha J">J. Anuradha</name>
</author>
<author>
<name sortKey="Abbasi, T" uniqKey="Abbasi T">T. Abbasi</name>
</author>
<author>
<name sortKey="Abbasi, S A" uniqKey="Abbasi S">S.A. Abbasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anuradha, J" uniqKey="Anuradha J">J. Anuradha</name>
</author>
<author>
<name sortKey="Abbasi, T" uniqKey="Abbasi T">T. Abbasi</name>
</author>
<author>
<name sortKey="Abbasi, S A" uniqKey="Abbasi S">S.A. Abbasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iravani, S" uniqKey="Iravani S">S. Iravani</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nellore, J" uniqKey="Nellore J">J. Nellore</name>
</author>
<author>
<name sortKey="Pauline, P C" uniqKey="Pauline P">P.C. Pauline</name>
</author>
<author>
<name sortKey="Amarnath, K" uniqKey="Amarnath K">K. Amarnath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sujitha, M V" uniqKey="Sujitha M">M.V. Sujitha</name>
</author>
<author>
<name sortKey="Kannan, S" uniqKey="Kannan S">S. Kannan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deshpande, R" uniqKey="Deshpande R">R. Deshpande</name>
</author>
<author>
<name sortKey="Bedre, D M" uniqKey="Bedre D">D.M. Bedre</name>
</author>
<author>
<name sortKey="Basavaraja, S" uniqKey="Basavaraja S">S. Basavaraja</name>
</author>
<author>
<name sortKey="Sawle, B" uniqKey="Sawle B">B. Sawle</name>
</author>
<author>
<name sortKey="Manjunath, S Y" uniqKey="Manjunath S">S.Y. Manjunath</name>
</author>
<author>
<name sortKey="Venkataraman, A" uniqKey="Venkataraman A">A. Venkataraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shankar, S S" uniqKey="Shankar S">S.S. Shankar</name>
</author>
<author>
<name sortKey="Rai, A" uniqKey="Rai A">A. Rai</name>
</author>
<author>
<name sortKey="Ahmad, A" uniqKey="Ahmad A">A. Ahmad</name>
</author>
<author>
<name sortKey="Sastry, M" uniqKey="Sastry M">M. Sastry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narayanan, K B" uniqKey="Narayanan K">K.B. Narayanan</name>
</author>
<author>
<name sortKey="Sakthivel, N" uniqKey="Sakthivel N">N. Sakthivel</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbasi, S A" uniqKey="Abbasi S">S.A. Abbasi</name>
</author>
<author>
<name sortKey="Nipaney, P C" uniqKey="Nipaney P">P.C. Nipaney</name>
</author>
<author>
<name sortKey="Panholzer, B" uniqKey="Panholzer B">B. Panholzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbasi, S A" uniqKey="Abbasi S">S.A. Abbasi</name>
</author>
<author>
<name sortKey="Nipany, P C" uniqKey="Nipany P">P.C. Nipany</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anuradha, J" uniqKey="Anuradha J">J. Anuradha</name>
</author>
<author>
<name sortKey="Abbasi, T" uniqKey="Abbasi T">T. Abbasi</name>
</author>
<author>
<name sortKey="Abbasi, S A" uniqKey="Abbasi S">S.A. Abbasi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Link, S" uniqKey="Link S">S. Link</name>
</author>
<author>
<name sortKey="El Sayed, M A" uniqKey="El Sayed M">M.A. El-Sayed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shankar, S S" uniqKey="Shankar S">S.S. Shankar</name>
</author>
<author>
<name sortKey="Rai, A" uniqKey="Rai A">A. Rai</name>
</author>
<author>
<name sortKey="Ahmad, A" uniqKey="Ahmad A">A. Ahmad</name>
</author>
<author>
<name sortKey="Sastry, M" uniqKey="Sastry M">M. Sastry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liz Marzan, L M" uniqKey="Liz Marzan L">L.M. Liz-Marzan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Philip, D" uniqKey="Philip D">D. Philip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shankar, S S" uniqKey="Shankar S">S.S. Shankar</name>
</author>
<author>
<name sortKey="Ahmad, A" uniqKey="Ahmad A">A. Ahmad</name>
</author>
<author>
<name sortKey="Parsricha, R" uniqKey="Parsricha R">R. Parsricha</name>
</author>
<author>
<name sortKey="Sastry, M" uniqKey="Sastry M">M. Sastry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borchert, H" uniqKey="Borchert H">H. Borchert</name>
</author>
<author>
<name sortKey="Shevchenko, E V" uniqKey="Shevchenko E">E.V. Shevchenko</name>
</author>
<author>
<name sortKey="Robert, A" uniqKey="Robert A">A. Robert</name>
</author>
<author>
<name sortKey="Mekis, I" uniqKey="Mekis I">I. Mekis</name>
</author>
<author>
<name sortKey="Kornowski, A" uniqKey="Kornowski A">A. Kornowski</name>
</author>
<author>
<name sortKey="Grubel, G" uniqKey="Grubel G">G. Grubel</name>
</author>
<author>
<name sortKey="Weller, H" uniqKey="Weller H">H. Weller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Navaladian, S" uniqKey="Navaladian S">S. Navaladian</name>
</author>
<author>
<name sortKey="Viswanathan, B" uniqKey="Viswanathan B">B. Viswanathan</name>
</author>
<author>
<name sortKey="Varadarajan, T K" uniqKey="Varadarajan T">T.K. Varadarajan</name>
</author>
<author>
<name sortKey="Viswanath, R P" uniqKey="Viswanath R">R.P. Viswanath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khare, V" uniqKey="Khare V">V. Khare</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Mantion, A" uniqKey="Mantion A">A. Mantion</name>
</author>
<author>
<name sortKey="Ayi, A A" uniqKey="Ayi A">A.A. Ayi</name>
</author>
<author>
<name sortKey="Sonkaria, S" uniqKey="Sonkaria S">S. Sonkaria</name>
</author>
<author>
<name sortKey="Voelkl, A" uniqKey="Voelkl A">A. Voelkl</name>
</author>
<author>
<name sortKey="Thunemann, A F" uniqKey="Thunemann A">A.F. Thunemann</name>
</author>
<author>
<name sortKey="Taubert, A" uniqKey="Taubert A">A. Taubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gole, A" uniqKey="Gole A">A. Gole</name>
</author>
<author>
<name sortKey="Dash, C" uniqKey="Dash C">C. Dash</name>
</author>
<author>
<name sortKey="Ramachandaran, V" uniqKey="Ramachandaran V">V. Ramachandaran</name>
</author>
<author>
<name sortKey="Mandale, A B" uniqKey="Mandale A">A.B. Mandale</name>
</author>
<author>
<name sortKey="Sainkar, S R" uniqKey="Sainkar S">S.R. Sainkar</name>
</author>
<author>
<name sortKey="Rao, M" uniqKey="Rao M">M. Rao</name>
</author>
<author>
<name sortKey="Sastry, M" uniqKey="Sastry M">M. Sastry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogi, T" uniqKey="Ogi T">T. Ogi</name>
</author>
<author>
<name sortKey="Saitoh, N" uniqKey="Saitoh N">N. Saitoh</name>
</author>
<author>
<name sortKey="Nomura, T" uniqKey="Nomura T">T. Nomura</name>
</author>
<author>
<name sortKey="Konishi, Y" uniqKey="Konishi Y">Y. Konishi</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Adv Res</journal-id>
<journal-id journal-id-type="iso-abbrev">J Adv Res</journal-id>
<journal-title-group>
<journal-title>Journal of Advanced Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">2090-1232</issn>
<issn pub-type="epub">2090-1224</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27563461</article-id>
<article-id pub-id-type="pmc">4988642</article-id>
<article-id pub-id-type="publisher-id">S2090-1232(14)00038-1</article-id>
<article-id pub-id-type="doi">10.1016/j.jare.2014.03.006</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (
<italic>Pistia stratiotes</italic>
L.)</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Anuradha</surname>
<given-names>J.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abbasi</surname>
<given-names>Tasneem</given-names>
</name>
<xref rid="fn1" ref-type="fn">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
<email>prof.s.a.abbasi@gmail.com</email>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="af005">Centre for Pollution Control and Environmental Engineering, Pondicherry University, Puducherry 605 014, India</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author. Tel.: +91 413 2654398.
<email>prof.s.a.abbasi@gmail.com</email>
</corresp>
<fn id="fn1">
<label>1</label>
<p id="np015">Concurrently Visiting Associate Professor, Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>13</day>
<month>4</month>
<year>2014</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>4</month>
<year>2014</year>
</pub-date>
<volume>6</volume>
<issue>5</issue>
<fpage>711</fpage>
<lpage>720</lpage>
<history>
<date date-type="received">
<day>4</day>
<month>12</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>7</day>
<month>3</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>3</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder></copyright-holder>
<license license-type="CC BY-NC-ND" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<license-p>This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).</license-p>
</license>
</permissions>
<abstract id="ab005">
<p>A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (
<italic>Pistia stratiotes</italic>
) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts – aerial and submerged – was explored with different proportions of gold (III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which occurred at ambient temperature and pressure and commenced soon after mixing the pistia extracts and gold (III) solutions, was tracked using UV–visible spectrophotometry. The electron micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentrations used in the synthesis, GNPs of either monodispersed spherical shape were formed or there was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated triangular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary and secondary amines associated with the polypeptide biomolecules could have been responsible for the reduction of the gold (III) ions to GNPs and their subsequent stabilization.</p>
</abstract>
<kwd-group id="kg010">
<title>Keywords</title>
<kwd>Biomimetics</kwd>
<kwd>
<italic>Pistia stratiotes</italic>
</kwd>
<kwd>Gold nanoparticles</kwd>
<kwd>Anisotropy</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<title>Introduction</title>
<p>Metal nanoparticles have been the focus of a large body of scientific research due to the fact that their catalytic activity and their antimicrobial, electronic, optical, magnetic and medical properties are often significantly different from that of the bulk materials. Given that nanoparticles of different metals have several unique properties, and that these properties further depend on the morphology and size of the nanoparticles, it has become essential to develop methods with which nanoparticles of desired shape and sizes can be generated. The traditional methods of doing it revolve round chemical or physical techniques. Of these, the former often involve hazardous reagents and/or process conditions and lead to emission of pollutants. The latter are highly energy-intensive and expensive. In contrast, biological methods which employ biomolecules contained in microorganisms, algae, or vascular plants to generate nanoparticles in a way similar to that which occurs in nature – i.e. by biomimetics – are much cleaner and ‘greener’. This aspect has bestowed great relevance to the field of biomimetic nanoparticles synthesis
<xref rid="b0005" ref-type="bibr">[1]</xref>
,
<xref rid="b0010" ref-type="bibr">[2]</xref>
,
<xref rid="b0015" ref-type="bibr">[3]</xref>
,
<xref rid="b0020" ref-type="bibr">[4]</xref>
,
<xref rid="b0025" ref-type="bibr">[5]</xref>
,
<xref rid="b0030" ref-type="bibr">[6]</xref>
.</p>
<p>The use of botanical species (henceforth referred to as ‘plants’) in the synthesis of nanoparticles has several advantages compared to methods relying on microorganisms as the agent brining about the synthesis. The latter require elaborate effort for maintaining microbial cultures and carry the hazard of leaks, which can endanger the environment and the human health. Microbial nanoparticle synthesis methods do not, also, lend themselves easily to large-scale processing. Moreover, the time required for microorganism-mediated nanoparticle synthesis can be very long, going up to 120 h
<xref rid="b0035" ref-type="bibr">[7]</xref>
,
<xref rid="b0040" ref-type="bibr">[8]</xref>
. The difficulties associated with maintaining the microbial cultures
<xref rid="b0045" ref-type="bibr">[9]</xref>
,
<xref rid="b0050" ref-type="bibr">[10]</xref>
further depreciates the value of this synthesis route in favor of plant-based procedures.</p>
<p>So far different authors have used about 130 species of plants to generate gold nanoparticles (GNPs). These species encompass fruits, flowers, vegetables, grains, cereals, spices, other foodstuff, medicinal plants, and beauty aids. For example, geranium, neem, gooseberry, aloe vera, coriander, guava, clove buds, mint, cinnamon, curry leave, aloe, horse gram, myrobalan, white gourd and citrus fruit that already have well-established uses, and entail substantial costs of production, have been explored
<xref rid="b0010" ref-type="bibr">[2]</xref>
,
<xref rid="b0020" ref-type="bibr">[4]</xref>
,
<xref rid="b0030" ref-type="bibr">[6]</xref>
,
<xref rid="b0055" ref-type="bibr">[11]</xref>
,
<xref rid="b0060" ref-type="bibr">[12]</xref>
. Also, in the past, most authors have used only one or the other part of the plants (leaf/bark/seed/flower/fruit) for GNP synthesis. In contrast, the present study is based on the use of whole plant of a highly pernicious weed, pistia (
<italic>Pistia stratiotes</italic>
). It is a free-floating pleustonic macrophyte belonging to the Araceae family. It is one among the world’s worst weeds and is now widespread in the lakes and ponds of the warmer parts of the world, seriously harming water quality and endangering biodiversity
<xref rid="b0065" ref-type="bibr">[13]</xref>
,
<xref rid="b0070" ref-type="bibr">[14]</xref>
. Given this context, the method presented here opens an avenue for the gainful utilization of pistia. The ability of the method to utilize the whole plant is significant because on one hand it enhances the utility value of each plant and on the other hand it makes the utilization of the invasive so potentially gainful that it may become remunerative to control the invasive through its harvesting and use. Hence, the present study can have far-reaching beneficial portent for the protection of large tracts of aquatic ecosystems currently plagued with pistia.</p>
</sec>
<sec id="s0010">
<title>Experimental</title>
<p>All chemicals were of analytical grades unless specified otherwise. Deionized, double-distilled water was used throughout.</p>
<sec id="s0015">
<title>Preparation of aqueous extracts of the aerial and submerged parts of pistia</title>
<p>Pistia was collected from the ponds situated near the campus of Pondicherry University, Puducherry. The fresh, mature, and disease-free plant portions were washed thoroughly with water and then dipped in saline water to sterilize their surface, followed by washing liberally before blotting them dry. A known quantity of plant samples was dried at 105 °C to a constant weight
<xref rid="b0075" ref-type="bibr">[15]</xref>
. On the basis of dry weight thus obtained, extracts for nanoparticle synthesis were made by boiling 1.0 g dry weight equivalent plant material with 100 ml of water for 5 min. The contents were filtered through a Whatmann number. A Whatman No. 42 filter paper and the filtrate were stored under refrigeration at 4 °C
<xref rid="b0020" ref-type="bibr">[4]</xref>
,
<xref rid="b0080" ref-type="bibr">[16]</xref>
. Reconnoitery experiments indicated that the extracts retained their integrity for up to 3 days, as evidenced by the extent of intensity of nanoparticles generated by them. Hence, in all the experiments, the extracts were used within 3 days of preparation.</p>
</sec>
<sec id="s0020">
<title>Au (III) solution</title>
<p>A 10
<sup>−3</sup>
 M solution of Au (III) was prepared with HAuCl
<sub>4</sub>
. It was stored in amber bottles covered with black sheets.</p>
</sec>
<sec id="s0025">
<title>Nanoparticle synthesis</title>
<p>The plant extracts were mixed with Au (III) solution at ambient temperature. The GNPs began forming almost immediately as indicated by the appearance of pinkish red or purple color which grew in intensity with time. The spectra of the reaction mixtures were continuously recorded using UV–visible spectrophotometer and indicated that the hue of the color and its intensity depended on the stoichiometric ratio in which the plant extract and the metal ion had been mixed. Metal: extract combinations varying in concentration from 1:1 to 1:40 were explored. Typical results, of six of the combinations, are given in
<xref rid="t0005" ref-type="table">Table 1</xref>
.</p>
</sec>
<sec id="s0030">
<title>Characterization of the GNPs</title>
<sec id="s0035">
<title>UV–visible spectroscopy</title>
<p>The nanoparticle formation was monitored by recording the UV–vis spectra in the wavelength range 190–1100 nm employing Labindia (model UV 3000
<sup>+</sup>
) and ELICO (model SL 164) double beam UV–visible spectrophotometers operated at 1 nm resolution (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
,
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
). Typical results of the
<italic>λ</italic>
<sub>max</sub>
and absorbance are presented in
<xref rid="t0005" ref-type="table">Table 1</xref>
.</p>
</sec>
<sec id="s0040">
<title>SEM/TEM studies</title>
<p>SEM (scanning electron microscopy) and TEM (transmission electron microscopy) studies were carried out to determine the size and morphology of the synthesized GNPs. The reactant–GNP mixtures were centrifuged at 12,000 rpm for 20 min using Remi C 24 centrifuge. The resulting pellets were washed thrice with water to remove the unreacted constituents and were re-dispersed in water. SAED (selected area electron diffraction) studies were done in conjunction with TEM to assess the crystalline nature of the GNPs.</p>
<p>The samples for SEM studies were prepared by placing a drop of suspension on a carbon-coated SEM grid. For high resolution SEM studies, the samples were prepared by placing dried pellets on a carbon coated aluminum stub. For TEM studies, the GNPs were pelletized by centrifuging and through sonication. The micrographs were recorded by depositing a drop of the well-dispersed samples on carbon coated 300 mesh placed on copper TEM grids.</p>
</sec>
<sec id="s0045">
<title>Energy dispersive X-ray (EDAX) studies</title>
<p>The elemental composition of the GNPs was assayed using the EDAX equipment attached with the SEM/HRSEM microscopes. The EDAX spectrum was recorded after documenting the electron micrographs in the spot-profile mode by focusing on the densely occupied gold nanoparticle region.</p>
</sec>
<sec id="s0050">
<title>X-ray diffraction (XRD) studies</title>
<p>The powder XRD (X-ray diffraction) spectrum of the NPs was recorded to investigate the crystallinity of the material being analyzed. An aliquot of the pelletized GNPs was drop-casted to thin film on a glass slide and its XRD spectrum was obtained by scanning in the 2
<italic>θ</italic>
region, from 0° to 80°, at 0.02° per minute. Cu Kα1 radiation with a wavelength of 1.5406 Å, tube voltage 40 kV, and tube current 30 mA, was used.</p>
</sec>
<sec id="s0055">
<title>Fourier transform infrared spectroscopic (FTIR) studies</title>
<p>FT-IR spectroscopy was done to identify the functional groups involved in the reduction, stabilization and capping of the GNPs. For this, the samples were dried and grounded with potassium bromide. The spectrum was recorded between 4000 and 400 cm
<sup>−1</sup>
in diffuse reflectance mode, at 4 cm
<sup>−1</sup>
resolution.</p>
</sec>
</sec>
</sec>
<sec id="s0060">
<title>Results and discussion</title>
<p>Purple-red colors of different hues appeared in the otherwise colorless reaction mixture when GNP formation commenced. These colors, caused by surface plasmon resonance (SPR) in the GNPs, led to either a sharp peak in the 530–570 nm region (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
c–e) or a broader peak in the 650–800 nm region (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
a–c). In a few cases, two peaks were observed (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
d and f) – a sharp one in the 530–570 nm region and a very broad one in the near infra-red (NIR) region. Hence, in summary, basically two types of spectra were obtained, one contained a single peak and the other two peaks. In case of aerial parts, the second type of spectra occurred at metal-extract proportions of 1:6 while in case of the extracts of the submerged parts this happened at metal-extract proportions of 1:7–1:10. In all other cases, the first type of spectra was obtained. As was subsequently confirmed by electron microscopic and other studies, these two types of spectra were indicative of the formation of two types of GNPs-monodispersed spherical shaped GNPs (first type) and polydispersed mixed shaped (anisotropic) (second type).</p>
<p>In most cases, close to 90% of nanoparticle formation was complete by the 6th hour as thereafter the absorbance at different
<italic>λ</italic>
<sub>max</sub>
either increased only marginally or remained unchanged for several hours before beginning to decline. The decline may be due to the suspended destabilization of the nanoparticles leading to their agglomeration past the colloidal state.</p>
<p>In all the spectra, the presence of a single peak in the visible region is attributable to the transverse plasmon resonance (TPR) band, which arises due to the formation of spherical shaped GNPs. This was confirmed by the SEM and TEM micrographs, described below, which revealed the formation of spherical GNPs when these metal: extract combinations were used. In contrast, the presence of two peaks arose when there was anisotropic nanoparticles formation
<xref rid="b0085" ref-type="bibr">[17]</xref>
,
<xref rid="b0090" ref-type="bibr">[18]</xref>
,
<xref rid="b0095" ref-type="bibr">[19]</xref>
. In this case also, SEM and TEM confirmed what the visible spectra had indicated.</p>
<sec id="s0065">
<title>Electron microscopic (SEM, Hr-SEM, TEM) and EDX studies</title>
<p>The SEM and Hr-SEM images of GNPs obtained from reactant mixtures, which gave single-peak (Type 1) visible spectra, exemplified by
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
showed that the particles were spherical in shape. The TEM images reveal that their sizes were in the range 2–40 nm (
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
).</p>
<p>For the reactant combinations that led to GNP spectra of two peaks (Type II spectra), the SEM, Hr-SEM and TEM micrographs showed the presence of anisotropy-nanoparticles of triangular, hexagonal, pentagonal, and truncated triangular shapes (
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
,
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
). The sizes of these nanoparticles ranged 20–155 nm.</p>
<p>A strong clear peak for gold atoms was seen in the spot-directed EDX spectrum of all the GNPs (insets of
<xref rid="f0015" ref-type="fig">Fig. 3</xref>
). The presence of carbon, nitrogen and oxygen atoms was indicated by the weaker signals. This is likely to be due to X-ray emission from proteins/enzymes present in the biomolecules that had capped the GNPs. Given that the GNPs had remained stable (retaining clear shapes) even after the pistia extract had been centrifuged out, these signals can only be from biomolecules that have remained adhered to the GNPs. An optical absorption peak at approximately 2 keV is seen, which is characteristic of gold nanoparticles
<xref rid="b0005" ref-type="bibr">[1]</xref>
,
<xref rid="b0010" ref-type="bibr">[2]</xref>
.</p>
<p>The bright circular spots recorded in the SAED patterns (
<xref rid="f0020" ref-type="fig">Fig. 4</xref>
(i–iv) f) corresponding to the Bragg’s planes confirm the crystalline nature of all types of GNPs
<xref rid="b0100" ref-type="bibr">[20]</xref>
.</p>
</sec>
<sec id="s0070">
<title>X-ray diffraction (XRD) studies</title>
<p>The powder X-ray diffractograms reveal that all the GNPs had crystalline structure. The X-ray diffraction spectra (
<xref rid="f0025" ref-type="fig">Fig. 5</xref>
) showed intense peaks at 2
<italic>θ</italic>
position, corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg’s planes and denoted the fcc (face centered cubic) structure of the GNPs
<xref rid="b0105" ref-type="bibr">[21]</xref>
(
<xref rid="t0010" ref-type="table">Table 2</xref>
). The XRD patterns which match with the database of JCPDS file no. 04-0784, indicate that all types of synthesized GNPs were of pure crystalline nature. The Debye–Scherrer’s equation was used to calculate the size of the GNPs on the basis of the FWHM of the (1 1 1) Bragg’s reflection arising from the diffractograms
<xref rid="b0110" ref-type="bibr">[22]</xref>
.</p>
<p>The crystal sizes of the GNPs were found to be between 19.8 and 22.1 nm. In case of reactant mixtures which gave Type 1 visible spectra, the particle sizes as seen from the XRD (
<xref rid="f0025" ref-type="fig">Fig. 5</xref>
a and c) were close to the average size
<italic>ca</italic>
. 18.75 nm obtained from the electron micrographs. This were due the formation of monodispersed spherical particles. In case of reactant mixtures which gave Type II spectra, the particle size calculated from the XRD pattern (
<xref rid="f0025" ref-type="fig">Fig. 5</xref>
b and d) was less than that of the size determined from electron micrographs. This was probably due to the polycrystalline nature of the synthesized GNPs
<xref rid="b0115" ref-type="bibr">[23]</xref>
. The ratio of optical density between the (2 0 0) and (1 1 1) Bragg’s diffraction peaks was calculated to be in the range 0.04–0.16. This is lesser than the intensity ratio (i.e. 0.52) of conventional bulk gold, indicating the presence of nanoparticles with (1 1 1) facets
<xref rid="b0120" ref-type="bibr">[24]</xref>
.</p>
</sec>
<sec id="s0075">
<title>Fourier transform infra-red spectroscopic studies</title>
<p>The biomolecules that could have played a role in the reduction of GNPs and the subsequent stabilization-capping of the GNPs were identified using FT-IR (
<xref rid="f0030" ref-type="fig">Fig. 6</xref>
,
<xref rid="f0035" ref-type="fig">Fig. 7</xref>
). There is presence of strong absorption bands at 1650–1550 cm
<sup>−1</sup>
and 1090–1020 cm
<sup>−1</sup>
region and weaker signals in the 1550–1350 cm
<sup>−1</sup>
region. In general, the bands found in the 1650–1550 cm
<sup>−1</sup>
region correspond to secondary amine NH bend (
<mml:math id="d32e1020">
<mml:mover>
<mml:mo>/</mml:mo>
<mml:mo>\</mml:mo>
</mml:mover>
</mml:math>
N—H) and the band in the 1090–1020 cm
<sup>−1</sup>
regions is characteristic of —C—N stretching vibration due to the presence of primary amines
<xref rid="b0125" ref-type="bibr">[25]</xref>
,
<xref rid="b0130" ref-type="bibr">[26]</xref>
. The weaker signals found in 1550–1350 cm
<sup>−1</sup>
region can be assigned to the aromatic nitro compounds. Hence, it can be inferred that primary and secondary amines found in the polypeptides of proteins could have played a role in the bioreduction and capping/stabilization of gold ions into GNPs.</p>
</sec>
<sec id="s0080">
<title>Mechanism of GNP formation</title>
<p>From the initial studies on extracellular GNP synthesis
<xref rid="b0045" ref-type="bibr">[9]</xref>
,
<xref rid="b0090" ref-type="bibr">[18]</xref>
,
<xref rid="b0105" ref-type="bibr">[21]</xref>
onwards, a 2-step mechanism has been proposed for GNP formation: (a) reduction of gold (iii) ions to zerovalent gold by the biomolecules present in the plant extract and, (b) the stabilization of the agglomerating gold atoms at nano-size by the enveloping of the biomolecules around them (
<xref rid="f0040" ref-type="fig">Fig. 8</xref>
). In absence of any evidence to the contrary, we believe the same mechanism was operative in case of the GNPs described in this paper.</p>
</sec>
</sec>
<sec id="s0085">
<title>Conclusions</title>
<p>Aquatic weed pistia (
<italic>P. stratiotes</italic>
) was successfully utilized for the synthesis of gold nanoparticles (GNPs). Extracts from all the parts of the plant – the aerial as well as the submerged – were able to successfully induce GNP formation. SEM, TEM, FT-IR, EDX, XRD, and SAED studies reveal that based on the concentration of the extract relative to Au (III), different sizes and shapes of nanoparticles were generated. It was possible to obtain isotropic spherical or anisotropic triangular, hexagonal, pentagonal and truncated triangular shaped GNPs of different sizes. Given the fact that pistia is freely available in large quantities, with no other recognized use, the present method opens up a possibility for large-scale utilization of pistia in synthesizing GNPs in a rapid, non-polluting, energy frugal, and inexpensive manner.</p>
</sec>
<sec id="s0090">
<title>Conflict of interest</title>
<p>
<italic>The authors have declared no conflict of interest.</italic>
</p>
</sec>
<sec id="s0095">
<title>Compliance with Ethics Requirements</title>
<p>
<italic>This article does not contain any studies with human or animal subjects.</italic>
</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="b0005">
<label>1</label>
<element-citation publication-type="journal" id="h0005">
<person-group person-group-type="author">
<name>
<surname>Anuradha</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>‘Green’ synthesis of gold nanoparticles with aqueous extracts of neem (
<italic>Azadirachta indica</italic>
)</article-title>
<source>Res J Biotechnol</source>
<volume>5</volume>
<issue>1</issue>
<year>2010</year>
<fpage>75</fpage>
<lpage>79</lpage>
</element-citation>
</ref>
<ref id="b0010">
<label>2</label>
<element-citation publication-type="journal" id="h0010">
<person-group person-group-type="author">
<name>
<surname>Anuradha</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Biomimetic synthesis of gold nanoparticles using
<italic>Aloe vera</italic>
</article-title>
<source>J Environ Sci Eng Res</source>
<volume>2</volume>
<year>2011</year>
<fpage>1</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="b0015">
<label>3</label>
<element-citation publication-type="journal" id="h0015">
<person-group person-group-type="author">
<name>
<surname>Iravani</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Green synthesis of metal nanoparticles using plants</article-title>
<source>Green Chem</source>
<volume>13</volume>
<year>2011</year>
<fpage>2638</fpage>
<lpage>2650</lpage>
</element-citation>
</ref>
<ref id="b0020">
<label>4</label>
<mixed-citation publication-type="other" id="h0020">Abbasi SA, Abbasi T, Anuradha J. A process for synthesis of metal nanoparticles from aquatic weeds. Offl J Patent Off 2012; dt: 20.04.2012: 6184.</mixed-citation>
</ref>
<ref id="b0025">
<label>5</label>
<element-citation publication-type="journal" id="h0025">
<person-group person-group-type="author">
<name>
<surname>Nellore</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pauline</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Amarnath</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Biogenic synthesis by
<italic>Sphearanthus amaranthoids</italic>
: towards the efficient production of the biocompatible gold nanoparticles</article-title>
<source>Digest J Nanomater Biostruct</source>
<volume>7</volume>
<year>2012</year>
<fpage>123</fpage>
<lpage>133</lpage>
</element-citation>
</ref>
<ref id="b0030">
<label>6</label>
<element-citation publication-type="journal" id="h0030">
<person-group person-group-type="author">
<name>
<surname>Sujitha</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Kannan</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Green synthesis of gold nanoparticles using Citrus fruits (
<italic>Citrus limon</italic>
,
<italic>Citrus reticulata</italic>
and
<italic>Citrus sinensis</italic>
) aqueous extract and its characterization</article-title>
<source>Spectrochim Acta Part A: Mol Biomol Spectrosc</source>
<volume>102</volume>
<year>2013</year>
<fpage>15</fpage>
<lpage>23</lpage>
</element-citation>
</ref>
<ref id="b0035">
<label>7</label>
<mixed-citation publication-type="other" id="h0035">Mansoori GA. Synthesis of nanoparticles by fungi. United States patent application publication. Pub. No. US 2010/0055199 A1; 2010.</mixed-citation>
</ref>
<ref id="b0040">
<label>8</label>
<element-citation publication-type="journal" id="h0040">
<person-group person-group-type="author">
<name>
<surname>Deshpande</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bedre</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Basavaraja</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sawle</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Manjunath</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Venkataraman</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (
<italic>Syzygium aromaticum</italic>
) solution</article-title>
<source>Colloids Surf B: Biointerfaces</source>
<volume>79</volume>
<year>2010</year>
<fpage>235</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="pmid">20451362</pub-id>
</element-citation>
</ref>
<ref id="b0045">
<label>9</label>
<element-citation publication-type="journal" id="h0045">
<person-group person-group-type="author">
<name>
<surname>Shankar</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Rai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sastry</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (
<italic>Azadirachta indica</italic>
) leaf broth</article-title>
<source>J Colloid Interf Sci</source>
<volume>275</volume>
<year>2004</year>
<fpage>496</fpage>
<lpage>502</lpage>
</element-citation>
</ref>
<ref id="b0050">
<label>10</label>
<element-citation publication-type="journal" id="h0050">
<person-group person-group-type="author">
<name>
<surname>Narayanan</surname>
<given-names>K.B.</given-names>
</name>
<name>
<surname>Sakthivel</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents</article-title>
<source>Adv Colloid Interface Sci</source>
<volume>169</volume>
<year>2011</year>
<fpage>59</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="pmid">21981929</pub-id>
</element-citation>
</ref>
<ref id="b0055">
<label>11</label>
<mixed-citation publication-type="other" id="h0055">Anuradha J, Abbasi T, Abbasi SA. Facile ‘phyto’ fabrication of silver nanoparticles of diverse geometries with concomitant utilization of a pernicious terrestrial weed. In: Proceedings of the international conference on green technology and environmental conservation (GTEC-2011), Sathyabama University, Chennai, IEEE; 2011. p. 216–23.</mixed-citation>
</ref>
<ref id="b0060">
<label>12</label>
<mixed-citation publication-type="other" id="h0060">Abbasi SA, Abbasi T, Anuradha J, Neghi N, Pirathiba S, Ganaie SU. Gainful utilization of four otherwise worthless and problematic weeds for silver nanoparticle synthesis. Offl J Patent Off 2011; dt: 15.07.2011: 11869.</mixed-citation>
</ref>
<ref id="b0065">
<label>13</label>
<element-citation publication-type="journal" id="h0065">
<person-group person-group-type="author">
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Nipaney</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Panholzer</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Biogas production from the aquatic weed pistia (
<italic>Pistia stratiotes</italic>
)</article-title>
<source>Bioresour Technol</source>
<volume>37</volume>
<year>1991</year>
<fpage>211</fpage>
<lpage>214</lpage>
</element-citation>
</ref>
<ref id="b0070">
<label>14</label>
<element-citation publication-type="journal" id="h0070">
<person-group person-group-type="author">
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Nipany</surname>
<given-names>P.C.</given-names>
</name>
</person-group>
<article-title>Wastewater treatment using aquatic plants</article-title>
<source>Resour Conserv</source>
<volume>12</volume>
<year>1985</year>
<fpage>47</fpage>
<lpage>55</lpage>
</element-citation>
</ref>
<ref id="b0075">
<label>15</label>
<mixed-citation publication-type="other" id="h0075">APHA (American Public Health Association). Standard methods of water and wastewater. 22nd ed. Washington (DC), USA: American Public Health Association, American Water Works Association and Water Environment Federation Publication; 2012.</mixed-citation>
</ref>
<ref id="b0080">
<label>16</label>
<element-citation publication-type="journal" id="h0080">
<person-group person-group-type="author">
<name>
<surname>Anuradha</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Abbasi</surname>
<given-names>S.A.</given-names>
</name>
</person-group>
<article-title>Rapid and reproducible ‘Green’ synthesis of silver nanoparticles of consistent shape and size using
<italic>Azadirachta indica</italic>
</article-title>
<source>Res J Biotechnol</source>
<volume>6</volume>
<year>2011</year>
<fpage>69</fpage>
<lpage>70</lpage>
</element-citation>
</ref>
<ref id="b0085">
<label>17</label>
<element-citation publication-type="journal" id="h0085">
<person-group person-group-type="author">
<name>
<surname>Link</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>El-Sayed</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Optical properties and ultrafast dynamics of metallic nanocrystals</article-title>
<source>Annu Rev Phys Chem</source>
<volume>54</volume>
<year>2003</year>
<fpage>331</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="pmid">12626731</pub-id>
</element-citation>
</ref>
<ref id="b0090">
<label>18</label>
<element-citation publication-type="journal" id="h0090">
<person-group person-group-type="author">
<name>
<surname>Shankar</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Rai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sastry</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings</article-title>
<source>Chem Mater</source>
<volume>17</volume>
<year>2005</year>
<fpage>566</fpage>
<lpage>572</lpage>
</element-citation>
</ref>
<ref id="b0095">
<label>19</label>
<element-citation publication-type="journal" id="h0095">
<person-group person-group-type="author">
<name>
<surname>Liz-Marzan</surname>
<given-names>L.M.</given-names>
</name>
</person-group>
<article-title>Tailoring surface plasmons through the morphology and assembly of metal nanoparticles</article-title>
<source>Langmuir</source>
<volume>22</volume>
<issue>1</issue>
<year>2006</year>
<fpage>32</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">16378396</pub-id>
</element-citation>
</ref>
<ref id="b0100">
<label>20</label>
<element-citation publication-type="journal" id="h0100">
<person-group person-group-type="author">
<name>
<surname>Philip</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract</article-title>
<source>Spectrochim Acta Part A</source>
<volume>73</volume>
<year>2009</year>
<fpage>374</fpage>
<lpage>381</lpage>
</element-citation>
</ref>
<ref id="b0105">
<label>21</label>
<element-citation publication-type="journal" id="h0105">
<person-group person-group-type="author">
<name>
<surname>Shankar</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Ahmad</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Parsricha</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sastry</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes</article-title>
<source>J Mater Chem</source>
<volume>13</volume>
<year>2003</year>
<fpage>1822</fpage>
<lpage>1826</lpage>
</element-citation>
</ref>
<ref id="b0110">
<label>22</label>
<element-citation publication-type="journal" id="h0110">
<person-group person-group-type="author">
<name>
<surname>Borchert</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shevchenko</surname>
<given-names>E.V.</given-names>
</name>
<name>
<surname>Robert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mekis</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kornowski</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Grubel</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Weller</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt
<sub>3</sub>
particles</article-title>
<source>Langmuir</source>
<volume>21</volume>
<year>2005</year>
<fpage>1931</fpage>
<lpage>1936</lpage>
<pub-id pub-id-type="pmid">15723491</pub-id>
</element-citation>
</ref>
<ref id="b0115">
<label>23</label>
<element-citation publication-type="journal" id="h0115">
<person-group person-group-type="author">
<name>
<surname>Navaladian</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Viswanathan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Varadarajan</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Viswanath</surname>
<given-names>R.P.</given-names>
</name>
</person-group>
<article-title>A rapid synthesis of oriented palladium nanoparticles by UV irradiation</article-title>
<source>Nanoscale Res Lett</source>
<volume>4</volume>
<year>2008</year>
<fpage>181</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="pmid">20596282</pub-id>
</element-citation>
</ref>
<ref id="b0120">
<label>24</label>
<element-citation publication-type="journal" id="h0120">
<person-group person-group-type="author">
<name>
<surname>Khare</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Mantion</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ayi</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Sonkaria</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Voelkl</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Thunemann</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Taubert</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Strong anion effects on gold nanoparticle formation in ionic liquids</article-title>
<source>J Mater Chem</source>
<volume>20</volume>
<year>2010</year>
<fpage>1332</fpage>
<lpage>1339</lpage>
</element-citation>
</ref>
<ref id="b0125">
<label>25</label>
<element-citation publication-type="journal" id="h0125">
<person-group person-group-type="author">
<name>
<surname>Gole</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dash</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ramachandaran</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Mandale</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Sainkar</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sastry</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity</article-title>
<source>Langmuir</source>
<volume>17</volume>
<year>2001</year>
<fpage>1674</fpage>
<lpage>1679</lpage>
</element-citation>
</ref>
<ref id="b0130">
<label>26</label>
<element-citation publication-type="journal" id="h0130">
<person-group person-group-type="author">
<name>
<surname>Ogi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Nomura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Konishi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Room-temperature synthesis of gold nanoparticles and nanoplates using
<italic>Shewanella algae</italic>
cell extract</article-title>
<source>J Nanoparticle Res</source>
<volume>12</volume>
<year>2009</year>
<fpage>2531</fpage>
<lpage>2539</lpage>
</element-citation>
</ref>
</ref-list>
<ack id="ak005">
<title>Acknowledgements</title>
<p>The authors thank the Central Instrumentation Facility, and similar units of Pondicherry University, IIT Madras, and North-Eastern Hill University, for giving us access to various sophisticated instruments used in this study.</p>
</ack>
<fn-group>
<fn id="d32e586">
<p id="np005">Peer review under responsibility of Cairo University.</p>
<p id="np010">
<fig id="f0045">
<graphic xlink:href="fx1"></graphic>
</fig>
</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>Typical UV–visible spectra of gold nanoparticles formed using the aqueous extract of the aerial parts of pistia: (a) of monodispersed spherical GNPs; (b) of polydispersed anisotropic GNPs.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<fig id="f0010">
<label>Fig. 2</label>
<caption>
<p>Typical UV–visible spectra of gold nanoparticles formed using the aqueous extract of the submerged parts of pistia: (a) of monodispersed spherical GNPs; (b) of polydispersed anisotropic GNPs.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<fig id="f0015">
<label>Fig. 3</label>
<caption>
<p>A composite visual of (a) scanning electron micrograph; (b and c) high resolution scanning electron micrographs (inset is the EDX spectrum) of gold nanoparticles formed with the extracts of the aerial parts (i and ii), and submerged parts (iii and iv) of pistia.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
<fig id="f0020">
<label>Fig. 4</label>
<caption>
<p>A composite visual of transmission electron micrographs (a–e) showing hexagonal, pentagonal and triangular particles of gold nanoparticles formed with the extracts of the aerial parts (i and ii), and submerged parts (iii and iv) of pistia.</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
<fig id="f0025">
<label>Fig. 5</label>
<caption>
<p>X-ray diffraction spectrum of gold nanoparticles formed with the extracts of the aerial parts (i and ii), and submerged parts (iii and iv) of pistia.</p>
</caption>
<graphic xlink:href="gr5"></graphic>
</fig>
<fig id="f0030">
<label>Fig. 6</label>
<caption>
<p>FT-IR spectrum of the aerial parts (leaves) of pistia (A) and of monodispersed (B) and polydispersed (C) gold nanoparticles.</p>
</caption>
<graphic xlink:href="gr6"></graphic>
</fig>
<fig id="f0035">
<label>Fig. 7</label>
<caption>
<p>FT-IR spectrum of the submerged parts (roots) of pistia (A) and of monodispersed (B) and polydispersed (C) gold nanoparticles.</p>
</caption>
<graphic xlink:href="gr7"></graphic>
</fig>
<fig id="f0040">
<label>Fig. 8</label>
<caption>
<p>Mechanism of GNP formation.</p>
</caption>
<graphic xlink:href="gr8"></graphic>
</fig>
<table-wrap id="t0005" position="float">
<label>Table 1</label>
<caption>
<p>Wavelengths of absorption peaks (
<italic>λ</italic>
<sub>max</sub>
, nm) and corresponding absorbance of gold nanoparticle suspensions synthesized using extracts of pistia.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Plant part used for preparing the extract</th>
<th>Metal: extract concentration ratio</th>
<th colspan="10">Reaction duration (h)
<hr></hr>
</th>
</tr>
<tr>
<th colspan="2" align="center">2
<hr></hr>
</th>
<th colspan="2" align="center">4
<hr></hr>
</th>
<th colspan="2" align="center">6
<hr></hr>
</th>
<th colspan="2" align="center">24
<hr></hr>
</th>
<th colspan="2" align="center">48
<hr></hr>
</th>
</tr>
<tr>
<th>
<italic>λ</italic>
<sub>max</sub>
</th>
<th>Absorbance</th>
<th>
<italic>λ</italic>
<sub>max</sub>
</th>
<th>Absorbance</th>
<th>
<italic>λ</italic>
<sub>max</sub>
</th>
<th>Absorbance</th>
<th>
<italic>λ</italic>
<sub>max</sub>
</th>
<th>Absorbance</th>
<th>
<italic>λ</italic>
<sub>max</sub>
</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial</td>
<td>1:5</td>
<td>670</td>
<td>0.171</td>
<td>707</td>
<td>0.279</td>
<td align="char">705</td>
<td>0.353</td>
<td align="char">558</td>
<td>0.411</td>
<td align="char">558</td>
<td>0.424</td>
</tr>
<tr>
<td>1:6</td>
<td>644</td>
<td>0.247</td>
<td>792</td>
<td>0.344</td>
<td align="char">600</td>
<td>0.455</td>
<td align="char">552</td>
<td>0.522</td>
<td align="char">543</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td align="char">1018</td>
<td>0.508</td>
<td align="char">1070</td>
<td>0.608</td>
<td align="char">1023</td>
<td>0.503</td>
</tr>
<tr>
<td>1:7</td>
<td></td>
<td></td>
<td>549</td>
<td>0.782</td>
<td align="char">542</td>
<td>1.035</td>
<td align="char">554</td>
<td>0.821</td>
<td align="char">550</td>
<td>0.784</td>
</tr>
<tr>
<td>1:10</td>
<td></td>
<td></td>
<td>539</td>
<td>0.739</td>
<td align="char">543</td>
<td>0.789</td>
<td align="char">549</td>
<td>0.754</td>
<td align="char">550</td>
<td>0.727</td>
</tr>
<tr>
<td>1:15</td>
<td></td>
<td></td>
<td>549</td>
<td>0.362</td>
<td align="char">541</td>
<td>0.539</td>
<td align="char">548</td>
<td>0.487</td>
<td align="char">549</td>
<td>0.453</td>
</tr>
<tr>
<td>1:30</td>
<td>531</td>
<td>0.189</td>
<td>535</td>
<td>0.216</td>
<td align="char">535</td>
<td>0.225</td>
<td align="char">539</td>
<td>0.238</td>
<td align="char">540</td>
<td>0.208</td>
</tr>
<tr>
<td colspan="12">

</td>
</tr>
<tr>
<td>Submerged</td>
<td>1:5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td align="char"></td>
<td></td>
<td align="char">567</td>
<td>0.630</td>
<td align="char">562</td>
<td>0.541</td>
</tr>
<tr>
<td>1:6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td align="char"></td>
<td></td>
<td align="char">568</td>
<td>0.609</td>
<td align="char">562</td>
<td>0.514</td>
</tr>
<tr>
<td>1:7</td>
<td>561</td>
<td>1.068</td>
<td>546</td>
<td>1.288</td>
<td align="char">545</td>
<td>1.292</td>
<td align="char">544</td>
<td>1.434</td>
<td align="char">543</td>
<td>1.365</td>
</tr>
<tr>
<td>912</td>
<td>1.189</td>
<td>985</td>
<td>1.752</td>
<td align="char">960</td>
<td>1.795</td>
<td align="char">909</td>
<td>2.021</td>
<td align="char">877</td>
<td>1.893</td>
</tr>
<tr>
<td>1:10</td>
<td>551</td>
<td>1.535</td>
<td>550</td>
<td>1.683</td>
<td align="char">548</td>
<td>1.684</td>
<td align="char">543</td>
<td>1.754</td>
<td align="char">543</td>
<td>1.702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>686</td>
<td>1.438</td>
<td align="char">675</td>
<td>1.451</td>
<td align="char">655</td>
<td>1.518</td>
<td align="char">645</td>
<td>1.478</td>
</tr>
<tr>
<td>1:15</td>
<td>531</td>
<td>1.720</td>
<td>531</td>
<td>1.799</td>
<td align="char">531</td>
<td>1.791</td>
<td align="char">531</td>
<td>1.805</td>
<td align="char">531</td>
<td>1.807</td>
</tr>
<tr>
<td>1:30</td>
<td>531</td>
<td>1.135</td>
<td>530</td>
<td>1.159</td>
<td align="char">529</td>
<td>1.153</td>
<td align="char">528</td>
<td>1.202</td>
<td align="char">530</td>
<td>1.224</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t0010" position="float">
<label>Table 2</label>
<caption>
<p>2
<italic>θ</italic>
Position of the Bragg’s plane observed from the X-ray diffractograms.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Bragg’s plane</th>
<th>Type of GNP</th>
<th>(1 1 1)</th>
<th>(2 0 0)</th>
<th>(2 2 0)</th>
<th>(3 1 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2
<italic>θ</italic>
position</td>
<td>Monodispersed, spherical</td>
<td>38.83</td>
<td>45.19</td>
<td>65.15</td>
<td>77.79</td>
</tr>
<tr>
<td>38.79</td>
<td>44.59</td>
<td>65.05</td>
<td>78.09</td>
</tr>
<tr>
<td>Polydispersed, anisotropic</td>
<td>38.81</td>
<td>45.09</td>
<td>65.05</td>
<td>77.97</td>
</tr>
<tr>
<td>38.73</td>
<td>44.31</td>
<td>64.35</td>
<td>76.99</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 001003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4988642
   |texte=   An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.)
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27563461" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024