Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa

Identifieur interne : 000F59 ( Pmc/Corpus ); précédent : 000F58; suivant : 000F60

Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa

Auteurs : Weike Duan ; Xiaoming Song ; Tongkun Liu ; Zhinan Huang ; Jun Ren ; Xilin Hou ; Jianchang Du ; Ying Li

Source :

RBID : PMC:4316640

Abstract

Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase–ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12–18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa.


Url:
DOI: 10.1093/gbe/evu293
PubMed: 25552535
PubMed Central: 4316640

Links to Exploration step

PMC:4316640

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in
<italic>Brassica rapa</italic>
</title>
<author>
<name sortKey="Duan, Weike" sort="Duan, Weike" uniqKey="Duan W" first="Weike" last="Duan">Weike Duan</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Xiaoming" sort="Song, Xiaoming" uniqKey="Song X" first="Xiaoming" last="Song">Xiaoming Song</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tongkun" sort="Liu, Tongkun" uniqKey="Liu T" first="Tongkun" last="Liu">Tongkun Liu</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Zhinan" sort="Huang, Zhinan" uniqKey="Huang Z" first="Zhinan" last="Huang">Zhinan Huang</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Jun" sort="Ren, Jun" uniqKey="Ren J" first="Jun" last="Ren">Jun Ren</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xilin" sort="Hou, Xilin" uniqKey="Hou X" first="Xilin" last="Hou">Xilin Hou</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Jianchang" sort="Du, Jianchang" uniqKey="Du J" first="Jianchang" last="Du">Jianchang Du</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evu293-AFF2">Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25552535</idno>
<idno type="pmc">4316640</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316640</idno>
<idno type="RBID">PMC:4316640</idno>
<idno type="doi">10.1093/gbe/evu293</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000F59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in
<italic>Brassica rapa</italic>
</title>
<author>
<name sortKey="Duan, Weike" sort="Duan, Weike" uniqKey="Duan W" first="Weike" last="Duan">Weike Duan</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Song, Xiaoming" sort="Song, Xiaoming" uniqKey="Song X" first="Xiaoming" last="Song">Xiaoming Song</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Tongkun" sort="Liu, Tongkun" uniqKey="Liu T" first="Tongkun" last="Liu">Tongkun Liu</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Huang, Zhinan" sort="Huang, Zhinan" uniqKey="Huang Z" first="Zhinan" last="Huang">Zhinan Huang</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ren, Jun" sort="Ren, Jun" uniqKey="Ren J" first="Jun" last="Ren">Jun Ren</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xilin" sort="Hou, Xilin" uniqKey="Hou X" first="Xilin" last="Hou">Xilin Hou</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Du, Jianchang" sort="Du, Jianchang" uniqKey="Du J" first="Jianchang" last="Du">Jianchang Du</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="evu293-AFF2">Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Ying" sort="Li, Ying" uniqKey="Li Y" first="Ying" last="Li">Ying Li</name>
<affiliation>
<nlm:aff id="evu293-AFF1">State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genome Biology and Evolution</title>
<idno type="eISSN">1759-6653</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from
<italic>Arabidopsis thaliana</italic>
to
<italic>Brassica rapa</italic>
could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in
<italic>B. rapa</italic>
. The nucleobase–ascorbate transporter (NAT) gene family and AsA
<sc>l</sc>
-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in
<italic>B. rapa</italic>
and they mainly diverged 12–18 Ma accompanied by the
<italic>Brassica</italic>
-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in
<italic>B. rapa</italic>
than in
<italic>A. thaliana</italic>
, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in
<italic>B. rapa</italic>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Albert, Va" uniqKey="Albert V">VA Albert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Argyrou, E" uniqKey="Argyrou E">E Argyrou</name>
</author>
<author>
<name sortKey="Sophianopoulou, V" uniqKey="Sophianopoulou V">V Sophianopoulou</name>
</author>
<author>
<name sortKey="Schultes, N" uniqKey="Schultes N">N Schultes</name>
</author>
<author>
<name sortKey="Diallinas, G" uniqKey="Diallinas G">G Diallinas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arrigoni, O" uniqKey="Arrigoni O">O Arrigoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bailey, Tl" uniqKey="Bailey T">TL Bailey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barth, C" uniqKey="Barth C">C Barth</name>
</author>
<author>
<name sortKey="De Tullio, M" uniqKey="De Tullio M">M De Tullio</name>
</author>
<author>
<name sortKey="Conklin, Pl" uniqKey="Conklin P">PL Conklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bekaert, M" uniqKey="Bekaert M">M Bekaert</name>
</author>
<author>
<name sortKey="Edger, Pp" uniqKey="Edger P">PP Edger</name>
</author>
<author>
<name sortKey="Pires, Jc" uniqKey="Pires J">JC Pires</name>
</author>
<author>
<name sortKey="Conant, Gc" uniqKey="Conant G">GC Conant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birchler, Ja" uniqKey="Birchler J">JA Birchler</name>
</author>
<author>
<name sortKey="Veitia, Ra" uniqKey="Veitia R">RA Veitia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowers, Je" uniqKey="Bowers J">JE Bowers</name>
</author>
<author>
<name sortKey="Chapman, Ba" uniqKey="Chapman B">BA Chapman</name>
</author>
<author>
<name sortKey="Rong, J" uniqKey="Rong J">J Rong</name>
</author>
<author>
<name sortKey="Paterson, Ah" uniqKey="Paterson A">AH Paterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Young, Te" uniqKey="Young T">TE Young</name>
</author>
<author>
<name sortKey="Ling, J" uniqKey="Ling J">J Ling</name>
</author>
<author>
<name sortKey="Chang, Sc" uniqKey="Chang S">SC Chang</name>
</author>
<author>
<name sortKey="Gallie, Dr" uniqKey="Gallie D">DR Gallie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, F" uniqKey="Cheng F">F Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, F" uniqKey="Cheng F">F Cheng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Fang, L" uniqKey="Fang L">L Fang</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, F" uniqKey="Cheng F">F Cheng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Fang, L" uniqKey="Fang L">L Fang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conklin, P" uniqKey="Conklin P">P Conklin</name>
</author>
<author>
<name sortKey="Barth, C" uniqKey="Barth C">C Barth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conklin, Pl" uniqKey="Conklin P">PL Conklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cruz Rus, E" uniqKey="Cruz Rus E">E Cruz-Rus</name>
</author>
<author>
<name sortKey="Amaya, I" uniqKey="Amaya I">I Amaya</name>
</author>
<author>
<name sortKey="Valpuesta, V" uniqKey="Valpuesta V">V Valpuesta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Koning, H" uniqKey="De Koning H">H de Koning</name>
</author>
<author>
<name sortKey="Diallinas, G" uniqKey="Diallinas G">G Diallinas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dowdle, J" uniqKey="Dowdle J">J Dowdle</name>
</author>
<author>
<name sortKey="Ishikawa, T" uniqKey="Ishikawa T">T Ishikawa</name>
</author>
<author>
<name sortKey="Gatzek, S" uniqKey="Gatzek S">S Gatzek</name>
</author>
<author>
<name sortKey="Rolinski, S" uniqKey="Rolinski S">S Rolinski</name>
</author>
<author>
<name sortKey="Smirnoff, N" uniqKey="Smirnoff N">N Smirnoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edger, Pp" uniqKey="Edger P">PP Edger</name>
</author>
<author>
<name sortKey="Pires, Jc" uniqKey="Pires J">JC Pires</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franceschi, Vr" uniqKey="Franceschi V">VR Franceschi</name>
</author>
<author>
<name sortKey="Tarlyn, Nm" uniqKey="Tarlyn N">NM Tarlyn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M Freeling</name>
</author>
<author>
<name sortKey="Thomas, Bc" uniqKey="Thomas B">BC Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gbelska, Y" uniqKey="Gbelska Y">Y Gbelska</name>
</author>
<author>
<name sortKey="Krijger, Jj" uniqKey="Krijger J">JJ Krijger</name>
</author>
<author>
<name sortKey="Breunig, Kd" uniqKey="Breunig K">KD Breunig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodstein, Dm" uniqKey="Goodstein D">DM Goodstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hittinger, Ct" uniqKey="Hittinger C">CT Hittinger</name>
</author>
<author>
<name sortKey="Carroll, Sb" uniqKey="Carroll S">SB Carroll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horemans, N" uniqKey="Horemans N">N Horemans</name>
</author>
<author>
<name sortKey="Foyer, Ch" uniqKey="Foyer C">CH Foyer</name>
</author>
<author>
<name sortKey="Asard, H" uniqKey="Asard H">H Asard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iqbal, Y" uniqKey="Iqbal Y">Y Iqbal</name>
</author>
<author>
<name sortKey="Ihsanullah, I" uniqKey="Ihsanullah I">I Ihsanullah</name>
</author>
<author>
<name sortKey="Shaheen, N" uniqKey="Shaheen N">N Shaheen</name>
</author>
<author>
<name sortKey="Hussain, I" uniqKey="Hussain I">I Hussain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaillon, O" uniqKey="Jaillon O">O Jaillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kampfenkel, K" uniqKey="Kampfenkel K">K Kampfenkel</name>
</author>
<author>
<name sortKey="Vanmontag, M" uniqKey="Vanmontag M">M Vanmontag</name>
</author>
<author>
<name sortKey="Inze, D" uniqKey="Inze D">D Inze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanehisa, M" uniqKey="Kanehisa M">M Kanehisa</name>
</author>
<author>
<name sortKey="Goto, S" uniqKey="Goto S">S Goto</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Furumichi, M" uniqKey="Furumichi M">M Furumichi</name>
</author>
<author>
<name sortKey="Tanabe, M" uniqKey="Tanabe M">M Tanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krogh, A" uniqKey="Krogh A">A Krogh</name>
</author>
<author>
<name sortKey="Larsson, B" uniqKey="Larsson B">B Larsson</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G Von Heijne</name>
</author>
<author>
<name sortKey="Sonnhammer, El" uniqKey="Sonnhammer E">EL Sonnhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Th" uniqKey="Lee T">TH Lee</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Paterson, Ah" uniqKey="Paterson A">AH Paterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Letunic, I" uniqKey="Letunic I">I Letunic</name>
</author>
<author>
<name sortKey="Doerks, T" uniqKey="Doerks T">T Doerks</name>
</author>
<author>
<name sortKey="Bork, P" uniqKey="Bork P">P Bork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levine, M" uniqKey="Levine M">M Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lou, P" uniqKey="Lou P">P Lou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Conery, Js" uniqKey="Conery J">JS Conery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maurino, Vg" uniqKey="Maurino V">VG Maurino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ming, R" uniqKey="Ming R">R Ming</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olmos, E" uniqKey="Olmos E">E Olmos</name>
</author>
<author>
<name sortKey="Kiddle, G" uniqKey="Kiddle G">G Kiddle</name>
</author>
<author>
<name sortKey="Pellny, T" uniqKey="Pellny T">T Pellny</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Foyer, C" uniqKey="Foyer C">C Foyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parra, G" uniqKey="Parra G">G Parra</name>
</author>
<author>
<name sortKey="Bradnam, K" uniqKey="Bradnam K">K Bradnam</name>
</author>
<author>
<name sortKey="Korf, I" uniqKey="Korf I">I Korf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Punta, M" uniqKey="Punta M">M Punta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qian, W" uniqKey="Qian W">W Qian</name>
</author>
<author>
<name sortKey="Liao, By" uniqKey="Liao B">BY Liao</name>
</author>
<author>
<name sortKey="Chang, Ayf" uniqKey="Chang A">AYF Chang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quevillon, E" uniqKey="Quevillon E">E Quevillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmid, M" uniqKey="Schmid M">M Schmid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwacke, R" uniqKey="Schwacke R">R Schwacke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smirnoff, N" uniqKey="Smirnoff N">N Smirnoff</name>
</author>
<author>
<name sortKey="Conklin, Pl" uniqKey="Conklin P">PL Conklin</name>
</author>
<author>
<name sortKey="Loewus, Fa" uniqKey="Loewus F">FA Loewus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stebbins, Cl" uniqKey="Stebbins C">CL Stebbins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swarbreck, D" uniqKey="Swarbreck D">D Swarbreck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tabata, K" uniqKey="Tabata K">K Tabata</name>
</author>
<author>
<name sortKey="Oba, K" uniqKey="Oba K">K Ôba</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K Suzuki</name>
</author>
<author>
<name sortKey="Esaka, M" uniqKey="Esaka M">M Esaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, Bc" uniqKey="Thomas B">BC Thomas</name>
</author>
<author>
<name sortKey="Pedersen, B" uniqKey="Pedersen B">B Pedersen</name>
</author>
<author>
<name sortKey="Freeling, M" uniqKey="Freeling M">M Freeling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Jd" uniqKey="Thompson J">JD Thompson</name>
</author>
<author>
<name sortKey="Gibson, T" uniqKey="Gibson T">T Gibson</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, C" uniqKey="Tong C">C Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuskan, Ga" uniqKey="Tuskan G">GA Tuskan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valpuesta, V" uniqKey="Valpuesta V">V Valpuesta</name>
</author>
<author>
<name sortKey="Botella, Ma" uniqKey="Botella M">MA Botella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wheeler, Gl" uniqKey="Wheeler G">GL Wheeler</name>
</author>
<author>
<name sortKey="Jones, Ma" uniqKey="Jones M">MA Jones</name>
</author>
<author>
<name sortKey="Smirnoff, N" uniqKey="Smirnoff N">N Smirnoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Genome Biol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Genome Biol Evol</journal-id>
<journal-id journal-id-type="publisher-id">gbe</journal-id>
<journal-id journal-id-type="hwp">gbe</journal-id>
<journal-title-group>
<journal-title>Genome Biology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="epub">1759-6653</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25552535</article-id>
<article-id pub-id-type="pmc">4316640</article-id>
<article-id pub-id-type="doi">10.1093/gbe/evu293</article-id>
<article-id pub-id-type="publisher-id">evu293</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in
<italic>Brassica rapa</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Duan</surname>
<given-names>Weike</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="evu293-FN1">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Song</surname>
<given-names>Xiaoming</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="evu293-FN1">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Tongkun</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Huang</surname>
<given-names>Zhinan</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ren</surname>
<given-names>Jun</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hou</surname>
<given-names>Xilin</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Du</surname>
<given-names>Jianchang</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="evu293-AFF2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Ying</given-names>
</name>
<xref ref-type="aff" rid="evu293-AFF1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="evu293-COR1">*</xref>
</contrib>
<aff id="evu293-AFF1">
<sup>1</sup>
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, People’s Republic of China</aff>
<aff id="evu293-AFF2">
<sup>2</sup>
Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China</aff>
</contrib-group>
<author-notes>
<corresp id="evu293-COR1">*Corresponding author: E-mail:
<email>yingli@njau.edu.cn</email>
.</corresp>
<fn id="evu293-FN1">
<p>
<bold>Associate editor:</bold>
Laura Rose</p>
</fn>
<fn id="evu293-FN2">
<p>
<sup></sup>
These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>1</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>12</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>31</day>
<month>12</month>
<year>2014</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>7</volume>
<issue>1</issue>
<fpage>299</fpage>
<lpage>313</lpage>
<history>
<date date-type="accepted">
<day>27</day>
<month>12</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</copyright-statement>
<copyright-year>2014</copyright-year>
<license xlink:href="http://creativecommons.org/licenses/by-nc/4.0/" license-type="creative-commons">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/4.0/">http://creativecommons.org/licenses/by-nc/4.0/</ext-link>
), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</license-p>
</license>
</permissions>
<abstract>
<p>Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from
<italic>Arabidopsis thaliana</italic>
to
<italic>Brassica rapa</italic>
could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in
<italic>B. rapa</italic>
. The nucleobase–ascorbate transporter (NAT) gene family and AsA
<sc>l</sc>
-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in
<italic>B. rapa</italic>
and they mainly diverged 12–18 Ma accompanied by the
<italic>Brassica</italic>
-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in
<italic>B. rapa</italic>
than in
<italic>A. thaliana</italic>
, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in
<italic>B. rapa</italic>
.</p>
</abstract>
<kwd-group>
<kwd>AsA-related genes</kwd>
<kwd>
<italic>Brassica rapa</italic>
</kwd>
<kwd>evolutionary conservation</kwd>
<kwd>synteny analysis</kwd>
<kwd>gene dosage hypothesis</kwd>
<kwd>expression pattern</kwd>
</kwd-group>
<counts>
<page-count count="15"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Ascorbate or ascorbic acid (AsA), also known as vitamin C, is an important metabolite in many organisms. Since it was first isolated in the 1930s by Albert Szent-Györgyi, there have been numerous reports on the physiological and metabolic processes in which it is involved (
<xref rid="evu293-B36" ref-type="bibr">Levine 1986</xref>
). In plants, AsA is a multifunctional molecule with roles as antioxidant, redox signaling modulator, and enzyme cofactor, and it participates in processes such as pathogen defense, cell wall synthesis, growth regulation, and the modulation of plant morphology, flowering time, and the onset of senescence (
<xref rid="evu293-B14" ref-type="bibr">Conklin and Barth 2004</xref>
;
<xref rid="evu293-B6" ref-type="bibr">Barth et al
<italic>.</italic>
2006</xref>
;
<xref rid="evu293-B41" ref-type="bibr">Olmos et al. 2006</xref>
;
<xref rid="evu293-B17" ref-type="bibr">Cruz-Rus et al. 2012</xref>
). Thus, AsA is indispensable in plants.</p>
<p>AsA-related genes involved in ascorbate biosynthesis, recycling, and transport weave into a complex network in plants. Several biosynthesis routes for AsA in plants have been proposed since 1998, involving
<sc>l</sc>
-galactose (D-Man/L-Gal) (
<xref rid="evu293-B62" ref-type="bibr">Wheeler et al. 1998</xref>
),
<sc>l</sc>
-gulose, galacturonate, and
<italic>myo</italic>
-inositol as initial precursors (
<xref ref-type="fig" rid="evu293-F1">fig. 1</xref>
;
<xref rid="evu293-B59" ref-type="bibr">Valpuesta and Botella 2004</xref>
). The
<sc>l</sc>
-galactose pathway, commonly called the Smirnoff–Wheeler pathway, is considered the main route of AsA biosynthesis (
<xref rid="evu293-B49" ref-type="bibr">Smirnoff et al. 2001</xref>
). After ascorbate is metabolically oxidized in plants, some of the metabolic products can be recycled to the reduced state of ascorbate in what is called the recycling pathway (
<xref ref-type="fig" rid="evu293-F1">fig. 1</xref>
;
<xref rid="evu293-B4" ref-type="bibr">Arrigoni 1994</xref>
;
<xref rid="evu293-B10" ref-type="bibr">Chen et al. 2003</xref>
). In addition, evidence for the transport of ascorbate has been also presented (
<xref rid="evu293-B26" ref-type="bibr">Horemans et al. 2000</xref>
;
<xref rid="evu293-B21" ref-type="bibr">Franceschi and Tarlyn 2002</xref>
;
<xref rid="evu293-B39" ref-type="bibr">Maurino et al. 2006</xref>
). All of the known AsA-related genes are fully characterized in
<italic>Arabidopsis thaliana</italic>
(see references in
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online), a model plant that has provided valuable insights into angiosperm genome structure, function, and evolution. However, the evolution and duplication of AsA-related genes have not been discussed much.
<fig id="evu293-F1" position="float">
<label>F
<sc>ig</sc>
. 1.—</label>
<caption>
<p>Proposed model for AsA biosynthesis and recycling pathways in plants. Four possible pathways produce AsA: the
<sc>l</sc>
-galactose (Smirnoff–Wheeler) (I), galacturonate (II),
<sc>l</sc>
-gulose (III), and myo-inositol (IV) pathways. Gray lines connect metabolites of substrates to products with the corresponding enzymes (named in boxes), and red lines indicate hypothetical reactions. Arrowheads denote directionality. Known enzymes are highlighted in blue boxes, and the color intensity reflects the corresponding enzyme gene numbers.</p>
</caption>
<graphic xlink:href="evu293f1p"></graphic>
</fig>
</p>
<p>Angiosperm genome evolution is characterized by polyploidization through whole-genome duplication (WGD) followed by diploidization, which is typically accompanied by considerable homoeologous gene loss (
<xref rid="evu293-B50" ref-type="bibr">Stebbins 1950</xref>
). For example, the genome
<italic>A. thaliana</italic>
has experienced a paleohexaploidy (γ) duplication shared with most dicots and two subsequent genome duplications (α and β) since its divergence from
<italic>Carica papaya</italic>
, along with rapid DNA sequence divergence and extensive gene loss (fractionation;
<xref rid="evu293-B9" ref-type="bibr">Bowers et al. 2003</xref>
).
<italic>Brassica rapa</italic>
(A genome), a diploid species, shared this complex history and experienced an additional whole-genome triplication (WGT) event 13–17 Ma (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
;
<xref rid="evu293-B11" ref-type="bibr">Cheng et al. 2013</xref>
). Thus,
<italic>Brassica</italic>
species afford an opportunity to study genome evolution.</p>
<p>
<xref rid="evu293-B60" ref-type="bibr">Wang et al. (2011)</xref>
used
<italic>A. thaliana</italic>
as an outgroup to investigate the structural and functional consequences of WGT. Specifically,
<italic>B. rapa</italic>
has undergone considerable fractionation since its divergence from
<italic>A. thaliana</italic>
; the approximately 42,000 genes in the
<italic>B. rapa</italic>
genome are considerably fewer than would be expected from a simple WGT of the approximately 27,000 genes in the
<italic>A. thaliana</italic>
genome (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
). The extent of gene loss varies among the three genome segments. The least fractionated (LF) genome retains approximately 70% of the genes, whereas the medium fractionated (MF1) and most fractionated (MF2) genomes retain ∼46% and ∼36%, respectively (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
;
<xref rid="evu293-B54" ref-type="bibr">Tang et al. 2012</xref>
). The expression of genes in these three subgenomes is also divergent.
<xref rid="evu293-B12" ref-type="bibr">Cheng, Wu, Fang, Sun, et al. (2012)</xref>
indicated that the dominantly expressed genes tended to be resistant to fractionation; genes in the LF were dominantly expressed over those in the MFs, whereas the genes in MF1 were slightly dominantly expressed over those in MF2. These traits make
<italic>B. rapa</italic>
a good species to use to study the evolutionary patterns of AsA-related genes during genome duplication events.</p>
<p>Genome duplication not only provided abundant genetic material for evolution, but also produced bulk genetic variation that allowed plants to adapt to diversified environments (
<xref rid="evu293-B25" ref-type="bibr">Hittinger and Carroll 2007</xref>
). AsA is an important antioxidant in plants and helps prevent oxidative stress in both plants and humans. Because humans have lost the ability to synthesize AsA, its content is an important breeding index for crop plants. Are AsA-related genes preferentially retained during fractionation after WGD? The gene dosage hypothesis predicts that genes in networks or that function in a dose-sensitive manner should be retained, because their products are required for stoichiometric balance (
<xref rid="evu293-B22" ref-type="bibr">Freeling and Thomas 2006</xref>
;
<xref rid="evu293-B8" ref-type="bibr">Birchler and Veitia 2007</xref>
;
<xref rid="evu293-B37" ref-type="bibr">Lou et al. 2012</xref>
). In this study, we tested this hypothesis using AsA-related genes from
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
. The 102 AsA-related genes identified in
<italic>B. rapa</italic>
diverged mainly from 12 to 18 Ma, concurrent with the
<italic>Brassica</italic>
-specific WGT event. Importantly, fewer AsA-related genes have been completely lost in
<italic>B. rapa</italic>
than in three comparison gene sets (a set of neighboring genes, randomly chosen genes, and core eukaryotic genes). The gene structures of these AsA-related sequences are highly conserved in
<italic>B. rapa</italic>
,
<italic>A. thaliana</italic>
, and other species. However, plant AsA content and the numbers of expressed genes did not increase with the number of AsA-related genes during the WGT event.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Identification of AsA-Related Genes and Comparison Gene Sets</title>
<p>The coding sequences of 73
<italic>A. thaliana</italic>
AsA-related genes were retrieved from previous reports for use as the set of reference genes in this study (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The gene and protein sequences were obtained from The
<italic>Arabidopsis</italic>
Information Resource (
<ext-link ext-link-type="uri" xlink:href="http://arabidopsis.org/index.jsp">http://arabidopsis.org/index.jsp</ext-link>
, last accessed January 8, 2015;
<xref rid="evu293-B51" ref-type="bibr">Swarbreck et al. 2008</xref>
). Sequences of
<italic>B. rapa</italic>
homologs to these AsA-related genes in
<italic>A. thaliana</italic>
were retrieved from the BRAD database (
<ext-link ext-link-type="uri" xlink:href="http://brassicadb.org/brad/">http://brassicadb.org/brad/</ext-link>
, last accessed January 8, 2015) based on a BLASTp search (
<italic>E</italic>
-value ≤ 1e−20, identity ≥40%;
<xref rid="evu293-B2" ref-type="bibr">Altschul et al. 1990</xref>
;
<xref rid="evu293-B63" ref-type="bibr">Xu et al. 2013</xref>
). To rectify incorrect start codon predictions, splicing errors, and missed or extra exons, manual reannotation was performed using FGENESH (
<ext-link ext-link-type="uri" xlink:href="http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind">http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind</ext-link>
, last accessed January 8, 2015) with parameters optimized for
<italic>Arabidopsis</italic>
. Sequences were then verified in the NCBI database (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</ext-link>
, last accessed January 8, 2015). Core eukaryotic genes and random genes were downloaded from CEGMA (
<xref rid="evu293-B42" ref-type="bibr">Parra et al. 2007</xref>
) (
<ext-link ext-link-type="uri" xlink:href="http://korflab.ucdavis.edu/Datasets/cegma">http://korflab.ucdavis.edu/Datasets/cegma</ext-link>
, last accessed January 8, 2015), and selected genes from microsyntenic regions corresponding to the AsA-related genes were used to BLAST search the
<italic>Brassica</italic>
database and for synteny analysis. These results were parsed with a Perl program.</p>
<p>Homologs of AsA-related genes of
<italic>A. thaliana</italic>
in
<italic>Vitis vinifera</italic>
,
<italic>C. papaya</italic>
, and
<italic>Populus trichocarpa</italic>
were retrieved from Phytozome v9.1 (
<ext-link ext-link-type="uri" xlink:href="http://www.phytozome.net/">http://www.phytozome.net/</ext-link>
, last accessed January 8, 2015;
<xref rid="evu293-B24" ref-type="bibr">Goodstein et al. 2012</xref>
), and
<italic>Amborella trichopoda</italic>
genes were retrieved from the Amborella Genome Database (
<ext-link ext-link-type="uri" xlink:href="http://www.amborella.org/">http://www.amborella.org/</ext-link>
, last accessed January 8, 2015;
<xref rid="evu293-B1" ref-type="bibr">Albert et al. 2013</xref>
).</p>
</sec>
<sec>
<title>Synteny Analysis of AsA-Related Genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
</title>
<p>Synteny within and between
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
was constructed by McScanX (
<ext-link ext-link-type="uri" xlink:href="http://chibba.pgml.uga.edu/mcscan2/">http://chibba.pgml.uga.edu/mcscan2/</ext-link>
, last accessed January 8, 2015) (MATCH_SCORE: 50, MATCH_SIZE: 5, GAP_SCORE: −3, E_VALUE: 1E−05) (
<xref rid="evu293-B61" ref-type="bibr">Wang et al. 2012</xref>
). An all-against-all BLASTP comparison provided the pairwise gene information and the
<italic>P</italic>
-value for a primary clustering. Then, paired segments were extended by identifying clustered genes using dynamic programming.</p>
<p>The position of each
<italic>B. rapa</italic>
AsA-related gene on the blocks was verified by searching for homologs between
<italic>A. thaliana</italic>
and the LF, MF1, and MF2 subgenomes of
<italic>B. rapa</italic>
at BRAD (
<ext-link ext-link-type="uri" xlink:href="http://brassicadb.org/brad/searchSynteny.php">http://brassicadb.org/brad/searchSynteny.php</ext-link>
, last accessed January 8, 2015; Cheng, Wu, Fang,
<xref rid="evu293-B61" ref-type="bibr">Wang, et al. 2012</xref>
).</p>
</sec>
<sec>
<title>K
<sub>s</sub>
Analysis</title>
<p>Coding sequences of
<italic>A. thaliana</italic>
AsA-related genes were aligned with those of
<italic>B. rapa</italic>
using ClustalW (
<xref rid="evu293-B56" ref-type="bibr">Thompson et al. 2002</xref>
). The coding-sequence alignments were regulated using an in-house Perl script.
<italic>K
<sub>s</sub>
</italic>
values were calculated based on these alignments using the method of Nei and Gojobori as implemented in KaKs_calculator (
<xref rid="evu293-B65" ref-type="bibr">Zhang et al. 2006</xref>
). The
<italic>K
<sub>s</sub>
</italic>
values of
<italic>A. thaliana</italic>
and
<italic>C. papaya</italic>
AsA-related genes were also analyzed.</p>
</sec>
<sec>
<title>Phylogenetic Analysis of AsA-Related Genes</title>
<p>For phylogenetic analysis, the protein sequences for AsA-related genes, including the nucleobase–ascorbate transporter (
<italic>NAT</italic>
) family and biosynthesis and recycling pathways were aligned using ClustalW2 with default parameters (
<xref rid="evu293-B56" ref-type="bibr">Thompson et al. 2002</xref>
). A phylogenetic tree was then constructed by the maximum likelihood method, and bootstrap values were calculated with 1,000 replications using MEGA5.2 (
<xref rid="evu293-B53" ref-type="bibr">Tamura et al. 2011</xref>
).</p>
</sec>
<sec>
<title>Identification of Conserved Motifs and Gene Ontology</title>
<p>To identify conserved motifs in the AsA-related genes of
<italic>B. rapa</italic>
, multiple expectation-maximization for motif elicitation (MEME) v. 4.9.0 (
<xref rid="evu293-B5" ref-type="bibr">Bailey et al. 2009</xref>
) was used with default parameters, except that optimum motif width was set to ≥10 and ≤100. The MEME motifs were annotated using SMART (Simple Motif Architecture Research Tool) v. 7.0 (
<ext-link ext-link-type="uri" xlink:href="http://smart.embl-heidelberg.de">http://smart.embl-heidelberg.de</ext-link>
, last accessed January 8, 2015) and the Pfam database (
<xref rid="evu293-B35" ref-type="bibr">Letunic et al. 2012</xref>
;
<xref rid="evu293-B43" ref-type="bibr">Punta et al. 2012</xref>
). The gene ontology (GO) annotation information of all AsA-related genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
was analyzed by InterProScan program (
<xref rid="evu293-B46" ref-type="bibr">Quevillon et al. 2005</xref>
).</p>
</sec>
<sec>
<title>Expression Pattern Analysis</title>
<p>For expression profiling of the AsA-related genes in
<italic>B. rapa</italic>
, we used the Illumina RNA-seq data that were previously generated and analyzed by
<xref rid="evu293-B57" ref-type="bibr">Tong et al. (2013)</xref>
. Six tissues of
<italic>B. rapa</italic>
accession Chiifu-401-42 (callus, root, stem, leaf, flower, and silique) were analyzed. Transcript abundance was expressed as fragments per kilobase of exon model per million mapped reads (FPKM). The
<italic>A. thaliana</italic>
development expression profiling was analyzed by AtGenExpress Visualization Tool with mean-normalized values (
<xref rid="evu293-B47" ref-type="bibr">Schmid et al. 2005</xref>
). The AsA-related gene-expression cluster from each tissue in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
was analyzed using Cluster 3.0 software (
<ext-link ext-link-type="uri" xlink:href="http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm">http://bonsai.hgc.jp/∼mdehoon/software/cluster/software.htm</ext-link>
, last accessed January 8, 2015), and heat maps of the hierarchical clustering were visualized with TreeView (
<ext-link ext-link-type="uri" xlink:href="http://jtreeview.sourceforge.net/">http://jtreeview.sourceforge.net/</ext-link>
, last accessed January 8, 2015).</p>
</sec>
<sec sec-type="materials">
<title>Plant Material and AsA Content</title>
<p>The Chinese cabbage and
<italic>A. thaliana</italic>
were used for the experiments. Plants were grown in pots containing a soil: vermiculite mixture (3:1) in the greenhouse of Nanjing Agricultural University, and the controlled-environment growth chamber was programmed for light 16 h/24 °C, dark 8 h/20 °C. AsA content was measured as described previously (
<xref rid="evu293-B31" ref-type="bibr">Kampfenkel et al. 1995</xref>
).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>AsA-Related Genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
</title>
<p>We obtained all 73 AsA-related genes in
<italic>A. thaliana</italic>
known from previous reports and the Kyoto Encyclopedia of Genes and Genomes (KEGG;
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online) (
<xref rid="evu293-B32" ref-type="bibr">Kanehisa et al. 2012</xref>
). These sequences served as seeds to identify homoeologs in the
<italic>B. rapa</italic>
genome using a combination of BLAST searches and syntenic analysis with MCScanX (
<xref rid="evu293-B2" ref-type="bibr">Altschul et al. 1990</xref>
;
<xref rid="evu293-B61" ref-type="bibr">Wang et al. 2012</xref>
). The
<italic>B. rapa</italic>
genome has undergone WGT since it shared an ancestor with
<italic>A. thaliana</italic>
. The
<italic>B. rapa</italic>
genome had notably fewer than three times the number of genes in the
<italic>A. thaliana</italic>
genome, because some genes were lost after polyploidization (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
). Here, we identified a total of 219
<italic>B. rapa</italic>
regions syntenic to the
<italic>A. thaliana</italic>
AsA-related genes. Sixty-three (87%)
<italic>A. thaliana</italic>
AsA-related genes were in regions of three syntenic blocks in
<italic>B. rapa</italic>
, five were in two syntenic block regions, and the other five were in four syntenic block regions (
<xref ref-type="fig" rid="evu293-F2">fig. 2</xref>
).
<fig id="evu293-F2" position="float">
<label>F
<sc>ig</sc>
. 2.—</label>
<caption>
<p>AsA-related homologous genes in segmental syntenic regions of the genomes of
<italic>Brassica rapa</italic>
and
<italic>Arabidopsis thaliana</italic>
. Conserved collinear blocks of genes (blue irregular lines) are shown between the ten
<italic>B. rapa</italic>
chromosomes (horizontal axis) and the five
<italic>A. thaliana</italic>
chromosomes (vertical axis). Red dots indicate AsA
<bold>-</bold>
related homologs in the two species. The colored horizontal lines denote copy number in
<italic>B. rapa.</italic>
The
<italic>A. thaliana</italic>
AsA genes are shown on their respective chromosomes.</p>
</caption>
<graphic xlink:href="evu293f2p"></graphic>
</fig>
</p>
<p>Based on BLAST results and NCBI analysis, a total of 102 AsA-related gene homoeologs were identified in
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Among them, 95 were located in the syntenic regions and seven homologs were identified at nonsyntenic sites (
<xref ref-type="fig" rid="evu293-F2">fig. 2</xref>
). We identified four regions of homoeologs that had undergone tandem duplication and another that had undergone segmental duplication in
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S1
<italic>A</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Comparison of the AsA related gene homoeologs revealed that the position of each homolog on the conserved collinear block has been perfectly maintained throughout the divergent evolution of
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
(
<xref ref-type="fig" rid="evu293-F1">fig. 1</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Known enzymes involved in four possible biosynthesis pathways and the recycling pathway are indicated in
<xref ref-type="fig" rid="evu293-F1">figure 1</xref>
.</p>
<p>Whole-genome analysis of the
<italic>B. rapa</italic>
genome has established that the three subgenomes can be distinguished by the degree of fractionation (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
). To explore this variation, we assigned the AsA-related genes to the LF, MF1, and MF2 subgenomes (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
<sec>
<title>Differential Retention of AsA-Related Genes</title>
<p>The gene dosage hypothesis predicts that genes will be preferentially retained if their products are dose sensitive, interacting either with other proteins or in networks (
<xref rid="evu293-B55" ref-type="bibr">Thomas et al. 2006</xref>
;
<xref rid="evu293-B8" ref-type="bibr">Birchler and Veitia 2007</xref>
). Given the well-conserved synteny between
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
(
<xref rid="evu293-B12" ref-type="bibr">Cheng, Wu, Fang, Wang, et al. 2012</xref>
), we compared the retention of the AsA-related genes relative to the set of 1,460 neighboring genes (ten on either side) flanking the 73 AsA-related genes (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Retention was also analyzed in two other gene sets, a set of 458 core eukaryotic genes and another set of 458 randomly selected genes from the microsyntenic regions corresponding to the AsA-related genes (
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>A</italic>
). Similar numbers (45%) of AsA-related and core eukaryotic genes retained two or three copies, more than in the neighboring and randomly chosen gene sets (
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>B</italic>
). Significantly, only 7 (9.6%) AsA-related genes in
<italic>B. rapa</italic>
were completely lost, which was less than that other three comparisons (
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>B</italic>
). Among AsA-related genes, the AsA biosynthesis genes were loss less frequently than the ascorbate transporter and recycling pathway genes and retained mainly two or three copies (
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>C</italic>
), indicating that they were preferentially retained. Among the biosynthetic pathway genes, those in the
<sc>l</sc>
-gulose pathway were more frequently lost than those in the
<sc>l</sc>
-galactose, galacturonate, and myo-inositol pathways (
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>D</italic>
). However,
<sc>l</sc>
-gulose pathway genes were also more frequently retained in three copies. This might be due to the different types of duplication events, such as tandem duplication (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Interestingly, no gene of galacturonate pathway has been lost since the divergence from the last common ancestor with
<italic>A. thaliana</italic>
(
<xref ref-type="fig" rid="evu293-F3">fig. 3</xref>
<italic>D</italic>
).
<fig id="evu293-F3" position="float">
<label>F
<sc>ig</sc>
. 3.—</label>
<caption>
<p>Retention of homologous copies in the syntenic region. (
<italic>A</italic>
) Collinear correlations of genes surrounding AsA genes in the
<italic>Arabidopsis thaliana</italic>
and
<italic>Brassica rapa</italic>
genomes. The
<italic>B. rapa</italic>
and
<italic>A. thaliana</italic>
chromosomes are colored according to the inferred ancestral chromosomes following an established convention. The lines representing AsA-related genes are red, those for 458 randomly selected genes are yellow, those for 458 core eukaryotic genes in the syntenic region are blue, and those for AsA-neighboring genes are gray. The figure was created using Circos software. (
<italic>B</italic>
) Retention of AsA-related genes and of neighboring, randomly selected, and core eukaryotic genes in the syntenic region after genome triplication and fractionation in
<italic>Brassica rapa</italic>
. (
<italic>C</italic>
) Retention rates of ascorbate transporter genes, AsA biosynthesis genes, AsA recycling pathway genes, and all AsA-related genes together. (
<italic>D</italic>
) Retention rates of genes in four possible AsA biosynthesis pathways, the
<sc>l</sc>
-galactose, galacturonate,
<sc>l</sc>
-gulose, and myo-inositol pathways.</p>
</caption>
<graphic xlink:href="evu293f3p"></graphic>
</fig>
</p>
<p>The proportion of homoeologs retained varied among the LF, MF1, and MF2 subgenomes (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The LF subgenome retained more AsA-related genes (58.9%) found in
<italic>A. thaliana</italic>
than the MF1 (39.7%) and MF2 (31.5%) subgenomes (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S2
<italic>A</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). In these three subgenomes, AsA-related genes in LF subgenome showed higher retention rates (58.9% vs. 52.9%) than genes in the neighboring gene sets (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S2
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
<sec>
<title>Analysis of Synonymous Substitution Rates</title>
<p>Using the syntenic orthologs identified for
<italic>B. rapa</italic>
and
<italic>A. thaliana</italic>
AsA-related genes, we calculated
<italic>K
<sub>s</sub>
</italic>
(synonymous substitution rates) and
<italic>K
<sub>a</sub>
</italic>
(nonsynonymous substitution rates) values for these homologous genes. In total, 91 syntenic gene pairs were analyzed. The results indicated the
<italic>K
<sub>a</sub>
</italic>
/
<italic>K
<sub>s</sub>
</italic>
ratios of all AsA-related syntenic orthologs were less than 1, representing purifying selection on the AsA-related genes (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The
<italic>K
<sub>s</sub>
</italic>
values of the
<italic>B. rapa</italic>
AsA-related genes ranged from 0.3 to 0.6 and averaged 0.45 (∼15 Myr) (
<xref ref-type="fig" rid="evu293-F4">fig. 4</xref>
<italic>A</italic>
). Based on these calculations and a previous report of
<italic>K
<sub>s</sub>
</italic>
values for
<italic>B. rapa</italic>
relative to
<italic>A. thaliana</italic>
(∼0.42–0.45, ∼14.5 Myr;
<xref rid="evu293-B11" ref-type="bibr">Cheng et al. 2013</xref>
), we can conclude that these AsA-related genes diverged following the WGT (13–17 Ma;
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
) in
<italic>B. rapa</italic>
and that the pairwise divergences among the three subgenomes are indistinguishable from one other (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online and
<xref ref-type="fig" rid="evu293-F4">fig. 4</xref>
<italic>B</italic>
). The different homologous members for one gene showed different evolutionary rates, but the divergence of the homologous members for one gene were mainly concurrent with the
<italic>Brassica</italic>
-specific WGT event (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Simultaneously, we also investigated the divergences of AsA-related genes; we found that the ascorbate transporter genes were less divergent than the biosynthetic and recycling pathway genes (
<xref ref-type="fig" rid="evu293-F4">fig. 4</xref>
<italic>C</italic>
).
<fig id="evu293-F4" position="float">
<label>F
<sc>ig</sc>
. 4.—</label>
<caption>
<p>Pairwise comparison of
<italic>K
<sub>s</sub>
</italic>
values for AsA-related genes. (
<italic>A</italic>
) The distribution of
<italic>K
<sub>s</sub>
</italic>
values for AsA-related genes between
<italic>Arabidopsis thaliana</italic>
and
<italic>Brassica rapa</italic>
. The blue line indicates the divergence time (15 Ma). (
<italic>B</italic>
) The distribution of
<italic>K
<sub>s</sub>
</italic>
values for AsA-related genes between each of the three
<italic>B. rapa</italic>
subgenomes and
<italic>A. thaliana</italic>
. (
<italic>C</italic>
) The distribution of
<italic>K
<sub>s</sub>
</italic>
values for AsA transporter, biosynthetic pathway, and recycling pathway. The blue line indicates the main concentrated area of the
<italic>K
<sub>s</sub>
</italic>
value (0.4–0.5).</p>
</caption>
<graphic xlink:href="evu293f4p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Footprint of the NAT Gene Family in Eudicots</title>
<p>The
<italic>NAT</italic>
gene family includes permeases for diverse substrates, such as xanthine, uracil, and vitamin C (
<xref rid="evu293-B18" ref-type="bibr">de Koning and Diallinas 2000</xref>
;
<xref rid="evu293-B3" ref-type="bibr">Argyrou et al. 2001</xref>
). In
<italic>A. thaliana</italic>
, 12 genes encode NAT proteins. They belong to clades I, II, III, and V, whereas the clade IV
<italic>NAT</italic>
genes are unique to monocots (
<xref rid="evu293-B39" ref-type="bibr">Maurino et al. 2006</xref>
). We characterized this gene family and identified 14
<italic>NAT</italic>
homoeologs in
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Similarly, by genome-wide analysis, we identified nine
<italic>NAT</italic>
s each in
<italic>V. vinifera</italic>
and
<italic>C. papaya</italic>
(
<xref rid="evu293-B29" ref-type="bibr">Jaillon et al. 2007</xref>
;
<xref rid="evu293-B40" ref-type="bibr">Ming et al. 2008</xref>
), 15 in
<italic>P. trichocarpa</italic>
, and 7 in
<italic>A</italic>
<italic>m</italic>
<italic>. trichopoda</italic>
(
<xref rid="evu293-B58" ref-type="bibr">Tuskan et al. 2006</xref>
;
<xref rid="evu293-B1" ref-type="bibr">Albert et al. 2013</xref>
;
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).
<italic>Vitis vinifera</italic>
,
<italic>P. trichocarpa</italic>
, and
<italic>C. papaya</italic>
were included in our analysis because they did not undergo α and β duplications (
<xref rid="evu293-B34" ref-type="bibr">Lee et al. 2013</xref>
). In addition,
<italic>A</italic>
<italic>m</italic>
<italic>. trichopoda</italic>
, a basal angiosperm that did not undergo the γ duplication event (
<xref rid="evu293-B30" ref-type="bibr">Jiao et al. 2011</xref>
;
<xref rid="evu293-B1" ref-type="bibr">Albert et al. 2013</xref>
), was analyzed. To classify these
<italic>NAT</italic>
genes, phylogenetic trees were constructed for each species (
<italic>B. rapa</italic>
,
<italic>C. papaya</italic>
,
<italic>P. trichocarpa</italic>
,
<italic>V. vinifera</italic>
, and
<italic>A</italic>
<italic>m</italic>
<italic>. trichopoda</italic>
) by maximum likelihood using MEGA5 (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). In each species, the
<italic>NAT</italic>
family was divided into four clades, which we will refer to as clades I–III and clade V, according to the classification of
<xref rid="evu293-B39" ref-type="bibr">Maurino et al. (2006)</xref>
.
<italic>Amborella trichopoda</italic>
had these four
<italic>NAT</italic>
clades, indicating that these four clades originated from duplication events prior to the γ event (
<xref ref-type="fig" rid="evu293-F5">fig. 5</xref>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S3</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).
<fig id="evu293-F5" position="float">
<label>F
<sc>ig</sc>
. 5.—</label>
<caption>
<p>Copy number variation in the
<italic>NAT</italic>
family in eudicots. The phylogenetic tree of
<italic>NAT</italic>
genes is shown on the left, and the species tree is shown at the top. The α, β, γ, and salicoid duplications and the
<italic>Brassica</italic>
-specific triplication are indicated on the branches of the trees according to the Plant Genome Duplication Database. The
<italic>NAT</italic>
-family phylogenetic tree was constructed from protein sequences using maximum likelihood in MEGA5. Numbers are copy numbers of each gene in
<italic>Brassica rapa</italic>
(Bra),
<italic>Arabidopsis thaliana</italic>
(Ath),
<italic>Carica papaya</italic>
(Cpa),
<italic>Populus trichocarpa</italic>
(Ptr),
<italic>Vitis vinifera</italic>
(Vvi), and
<italic>Amborella trichopoda</italic>
(Atr).</p>
</caption>
<graphic xlink:href="evu293f5p"></graphic>
</fig>
</p>
<p>However, the
<italic>NAT</italic>
genes that were duplicated in those events were mainly in clades II and III. For each of these two clades, only one gene was found in
<italic>A</italic>
<italic>m</italic>
<italic>. trichopoda</italic>
, suggesting that they had not duplicated prior to the γ event. The footprints of
<italic>NAT4</italic>
and
<italic>NAT6</italic>
appeared after the γ event, and those of
<italic>NAT5</italic>
,
<italic>NAT8</italic>
, and
<italic>NAT9</italic>
were found after the α and β duplications in
<italic>A. thaliana</italic>
(
<xref ref-type="fig" rid="evu293-F5">fig. 5</xref>
)
<italic>.</italic>
Specifically, based on
<italic>K
<sub>s</sub>
</italic>
values and the study by
<xref rid="evu293-B9" ref-type="bibr">Bowers et al. (2003)</xref>
,
<italic>AtNAT5</italic>
and
<italic>AtNAT6</italic>
locus duplicated in the β duplication,
<italic>AtNAT7</italic>
and
<italic>AtNAT8</italic>
locus duplicated in the α duplication, whereas
<italic>AtNAT9</italic>
and
<italic>AtNAT10</italic>
locus may duplicated after the α duplication (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S7</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Interestingly,
<italic>NAT8</italic>
and
<italic>NAT9</italic>
were absent in
<italic>Brassica</italic>
. In clades I and V, the
<italic>NAT</italic>
genes had a high degree of retention, because all six species contained all members. Furthermore,
<italic>P. trichocarpa</italic>
and
<italic>B. rapa</italic>
contained more family members than did the other four species because of the salicoid duplication and
<italic>Brassica</italic>
WGT events, respectively (
<xref rid="evu293-B58" ref-type="bibr">Tuskan et al. 2006</xref>
;
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
).</p>
<p>Based on phylogenetic analysis, we inferred a possible evolutionary history of the
<italic>NAT</italic>
family (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Before the divergence of Brassicales, the family included all
<italic>NAT</italic>
genes except
<italic>NAT5</italic>
,
<italic>NAT8</italic>
, and
<italic>NAT9</italic>
. The gene family further expanded within Brassicaceae. Thus, the
<italic>NAT</italic>
family doubled in size in the
<italic>B. rapa</italic>
genome compared with that of
<italic>A</italic>
<italic>m</italic>
<italic>. trichopoda</italic>
through three duplications, one triplication, and fractionation.</p>
</sec>
<sec>
<title>Characteristics, Structure, and Expression Analysis of NAT Proteins</title>
<p>NATs are highly hydrophobic proteins and are predicted to possess membrane-spanning helices (
<xref rid="evu293-B48" ref-type="bibr">Schwacke et al. 2003</xref>
). To better understand the characteristics of
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
NAT proteins, we identified all AtNAT and BraNAT proteins using the TMHMM server v. 2.0 (
<xref rid="evu293-B33" ref-type="bibr">Krogh et al. 2001</xref>
). The number of α-helical transmembrane helices ranged from 9 to 13 (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S8</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online), suggesting that their activities were related to substance transportation.</p>
<p>To discover motifs shared among the AtNAT and BraNAT proteins, we identified ten motifs using MEME (
<xref rid="evu293-B5" ref-type="bibr">Bailey et al. 2009</xref>
) and annotated them using SMART (
<xref rid="evu293-B35" ref-type="bibr">Letunic et al. 2012</xref>
). The annotations indicated that motifs 1–6 and 10 corresponded to the Xan_ur_permease domain, which has transporter activity. In the phylogenetic trees, the NAT proteins generally clustered in subgroups that shared similar motif compositions (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S5</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online), indicating functional similarities among members of the same subgroup. The
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
NAT proteins had similar structures within each clade. Interestingly, the protein structure in clade V was significantly different from those in the other three clades (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S5
<italic>C</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Protein sequence alignments revealed that
<italic>NAT11</italic>
and
<italic>NAT12</italic>
(present in clade V) possessed a highly hydrophilic N-terminal extension of about 120–130 amino acids (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S6</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>The tissue-specific (roots, stems, leaves, and flowers) expression patterns of
<italic>AtNAT</italic>
and
<italic>BraNAT</italic>
genes was studied by using AtGenExpress and
<italic>B. rapa</italic>
RNA-seq data (
<xref rid="evu293-B47" ref-type="bibr">Schmid et al. 2005</xref>
;
<xref rid="evu293-B57" ref-type="bibr">Tong et al. 2013</xref>
), respectively (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S5
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The patterns were diverse, but homologous genes showed similar expression patterns. Notably, little or no signal for
<italic>NAT10</italic>
was detected in either species (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S5
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
<sec>
<title>Triplication and Fractionation of AsA
<sc>l</sc>
-Galactose Pathway Genes</title>
<p>In 1998, the
<sc>l</sc>
-galactose (D-Man/L-Gal) pathway was proposed (
<xref rid="evu293-B62" ref-type="bibr">Wheeler et al. 1998</xref>
). Several other pathways have been subsequently reported, including the galacturonate,
<sc>l</sc>
-gulose, and
<italic>myo</italic>
-inositol pathways (
<xref ref-type="fig" rid="evu293-F1">fig. 1</xref>
) (
<xref rid="evu293-B59" ref-type="bibr">Valpuesta and Botella 2004</xref>
). However, biochemical and molecular genetic evidence support that the
<sc>l</sc>
-galactose pathway is the main source of AsA in plants (
<xref rid="evu293-B15" ref-type="bibr">Conklin et al. 1999</xref>
;
<xref rid="evu293-B52" ref-type="bibr">Tabata et al. 2001</xref>
;
<xref rid="evu293-B19" ref-type="bibr">Dowdle et al. 2007</xref>
). To investigate the triplication and fractionation of the key biosynthesis pathway genes in different species, including Chlorophyta, bryophytes, and angiosperms, we collected relevant enzyme genes from KEGG and considered their evolutionary relationships according to the Plant Genome Duplication Database (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S9</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online;
<xref rid="evu293-B32" ref-type="bibr">Kanehisa et al. 2012</xref>
;
<xref rid="evu293-B34" ref-type="bibr">Lee et al. 2013</xref>
). Given that AsA is one of the most important antioxidants, it may be present in the common ancestor of all aerobic organisms. Using these data sets, all of the genes were identified in the common ancestor of embryophytes and some green algae species (
<italic>Chlamydomonas reinhardtii</italic>
,
<italic>Volvox carteri</italic>
, and
<italic>Coccomyxa subellipsoidea</italic>
). For green algae, 9 species were analyzed, including 2 chlorophyceae species, 5 prasinophytes species and 2 trebouxiophyceae species (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S9</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). According to the KEGG annotation, except chlorophyceae species, all prasinophytes and one of trebouxiophyceae species lack some genes in this pathway (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S9</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). Therefore, the AsA
<sc>l</sc>
-galactose biosynthesis pathway might have functioned in all higher plants and few green algae plants. There were no significant differences in the numbers of genes in these 20 plant species (
<xref ref-type="fig" rid="evu293-F6">fig. 6</xref>
), although WGD events occurred, implying that these AsA-related synthase genes had high conservatism and retention.
<fig id="evu293-F6" position="float">
<label>F
<sc>ig</sc>
. 6.—</label>
<caption>
<p>Deeply conserved AsA
<sc>l</sc>
-galactose pathway genes.
<sc>l</sc>
-Galactose pathway genes (rows) are conserved among plant families (columns), as indicated by species represented in Plant Genome Duplication Database. Boxes are highlighted if the enzyme-related genes were identified, and the color intensity reflects gene number according to KEGG.</p>
</caption>
<graphic xlink:href="evu293f6p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Characteristics and Expression of AsA
<sc>l</sc>
-Galactose and Recycling Pathway Genes</title>
<p>In the
<sc>l</sc>
-galactose pathway, AsA is synthesized from the precursor
<sc>d</sc>
-glucose via nine enzymatic steps. The four upstream steps are responsible for glycolysis (ko00010) and for fructose and mannose metabolism (ko00051), which serves as the substrate for AsA biosynthesis (
<xref rid="evu293-B32" ref-type="bibr">Kanehisa et al. 2012</xref>
). The final five steps, starting with GDP-D-mannose, are unique to ascorbate biosynthesis (ko00053;
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S7
<italic>A</italic>
</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">
<italic>C</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The expression of these
<italic>A. thaliana</italic>
genes in root, stem, leaf, and flower were discussed in this study (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S7
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). It revealed that these genes were tissue-specific, but all genes were expressed in these four tissues, especially
<italic>AtPMM</italic>
and
<italic>AtVTC4</italic>
, implying that they play important roles in AsA biosynthesis. These genes were also analyzed in
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S7
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). The
<italic>B. rapa</italic>
contained one to three homologs of the
<italic>A. thaliana</italic>
AsA genes, but the expression of homologous genes was different between both species, indicating the diversification of AsA-related gene regulating. The expression of three genes (
<italic>BraPMI2</italic>
,
<italic>BraPMM.c</italic>
, and
<italic>BraVTC1.a</italic>
) was lower in these tissues than other genes, implying these duplicated genes may be lost their function.</p>
<p>AsA metabolism-related enzymes, such as ascorbate oxidase (AO), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDAR), are normally encoded by genes from multigene families (
<xref rid="evu293-B10" ref-type="bibr">Chen et al. 2003</xref>
). Their cycle can be depicted as a triangular loop (
<xref ref-type="fig" rid="evu293-F7">fig. 7</xref>
). In this study, their phylogenetic relationships and expression patterns were analyzed (
<xref ref-type="fig" rid="evu293-F7">fig. 7</xref>
). The proteins that shared a clade were closely related, indicating that they were functionally similar, but some of their expression patterns were different. Two homologous members for DHAR, MDAR, APX, and AO genes, respectively, in
<italic>B. rapa</italic>
were found with little expression (
<xref ref-type="fig" rid="evu293-F7">fig. 7</xref>
). It indicated that their function may be lost during the
<italic>Brassica</italic>
-specific WGT event. The tissue-specific expression patterns of these genes were found in
<italic>A. thaliana</italic>
, whereas high expression in all tissues was found in 11
<italic>B. rapa</italic>
genes (
<xref ref-type="fig" rid="evu293-F8">fig. 8</xref>
). The different expression patterns in this multigene family may help plants adapt to different environments.
<fig id="evu293-F7" position="float">
<label>F
<sc>ig</sc>
. 7.—</label>
<caption>
<p>Characteristics of the AsA recycling pathway genes and their expression patterns in
<italic>Arabidopsis thaliana</italic>
and
<italic>Brassica rapa</italic>
. The recycling pathway can be represented as a triangular loop. Gray arrows (reactions) connect metabolites of substrates to products via the corresponding enzymes. Maximum likelihood trees of each of four multigene families (APX, AO, DHAR, and MDAR) were built. Multiple sequence alignment of full-length proteins was performed using ClustalW2, and the phylogenetic trees were constructed using the MEGA5.2. Expression levels of these genes were determined in four tissues (root, stem, leaf, and flower).</p>
</caption>
<graphic xlink:href="evu293f7p"></graphic>
</fig>
<fig id="evu293-F8" position="float">
<label>F
<sc>ig</sc>
. 8.—</label>
<caption>
<p>Expression patterns analysis of all AsA-related genes in
<italic>Arabidopsis thaliana</italic>
and
<italic>Brassica rapa</italic>
. Expression levels were analyzed in root, stem, leaf, and flower tissues. (
<italic>A</italic>
) The
<italic>A. thaliana</italic>
expression profiling was analyzed using the AtGenExpress Visualization Tool with mean-normalized values (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S10</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). (
<italic>B</italic>
) Heat map of RNA-Seq data for
<italic>Brassica rapa</italic>
AsA-related genes. Gene expression FPKM values were analyzed. The bar at the bottom of each heat map represents relative expression values (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S11</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). (
<italic>C</italic>
) Venn diagram showing the numbers of AsA-related genes with similar and different expression patterns in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
; those gene names are colored red in (
<italic>A</italic>
) and (
<italic>B</italic>
).</p>
</caption>
<graphic xlink:href="evu293f8p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Function and Expression of AsA-Related Genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
</title>
<p>Based on sequence homology, all 73 AsA-related genes in
<italic>A. thaliana</italic>
and 101 such genes in
<italic>B. rapa</italic>
could be categorized into 13 functional groups (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S8
<italic>A</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online); no GO annotation information was available for
<italic>Bra019082</italic>
(
<italic>BraVTC2.c</italic>
). In each of the three main GO categories (biological process, cellular component, and molecular function), “binding,” “catalytic,” and “metabolic process” terms were dominant. Furthermore, the percentages of each classification for AsA-related genes were similar in
<italic>A. thaliana</italic>
and in
<italic>B. rapa</italic>
, indicating that AsA-related genes were highly conserved and may have similar functions in both species. One gene for “Organelle” was found in
<italic>B. rapa</italic>
(
<italic>BraNAT10.a</italic>
), but none occurred in
<italic>A. thaliana</italic>
; perhaps the protein structure of BraNAT10.a changed (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S8
<italic>A</italic>
</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">
<italic>B</italic>
</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
<p>Through our analysis of gene function, we inferred that the AsA-related genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
may have similar functions. Our expression study revealed that only some of these homologs had similar expression patterns. We also analyzed the expression profile of all the AsA-related genes by cluster analysis in both species (
<xref ref-type="fig" rid="evu293-F8">fig. 8</xref>
<italic>A</italic>
and
<italic>B</italic>
). In particular, three genes have no or lower expression in
<italic>A. thaliana</italic>
(FPKM value <1.0), while there were 24 such genes in
<italic>B. rapa</italic>
. In four different tissues, the gene-expression numbers were similar in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
(70 and 79), whereas the AsA contents in leaves were also similar (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S9</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">table S12</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). We screened some genes with similar expression by comparing the homologs in these two species (
<xref ref-type="fig" rid="evu293-F8">fig. 8</xref>
<italic>C</italic>
). Approximately one-third of the AsA-related genes had similar expression in both species; 18 of 33 belonged to the LF subgenome of
<italic>B. rapa</italic>
.
<xref rid="evu293-B12" ref-type="bibr">Cheng, Wu, Fang, Sun, et al. (2012)</xref>
found that genes in the LF subgenome were dominantly expressed over those in the MF subgenomes, consistent with our results for AsA-related genes. We also compared the segmentally duplicated genes in the three subgenomes of
<italic>B. rapa</italic>
. Their expression patterns had significantly diverged, except in five gene pairs in the two subgenomes of
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S10</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online).</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Most higher plant lineages have undergone polyploidization during their long evolutionary history. WGD events were important to the evolution of complexity in multicellular eukaryotes (
<xref rid="evu293-B20" ref-type="bibr">Edger and Pires 2009</xref>
). After duplication events, some gene copies are retained because they have important functions, while those that are functionally redundant may be lost (
<xref rid="evu293-B38" ref-type="bibr">Lynch and Conery 2000</xref>
;
<xref rid="evu293-B44" ref-type="bibr">Qian et al. 2010</xref>
). The gene balance hypothesis predicts that genes whose products participate in macromolecular complexes or in transcriptional or signaling networks are more likely to be retained, thus avoiding network instability caused by loss of one member (
<xref rid="evu293-B8" ref-type="bibr">Birchler and Veitia 2007</xref>
;
<xref rid="evu293-B37" ref-type="bibr">Lou et al. 2012</xref>
). Thus, genes that are highly connected within metabolic networks exhibit preferential retention in
<italic>A. thaliana</italic>
(
<xref rid="evu293-B7" ref-type="bibr">Bekaert et al. 2011</xref>
). The recycling and biosynthesis pathways involving AsA-related genes form a large network that affects plant growth, development, and stress responses (
<xref rid="evu293-B4" ref-type="bibr">Arrigoni 1994</xref>
;
<xref rid="evu293-B62" ref-type="bibr">Wheeler et al. 1998</xref>
).
<italic>Brassica rapa</italic>
has undergone WGT since it shared a common ancestor with
<italic>A. thaliana</italic>
and provides a resource for studying the evolution of polyploid genomes (
<xref rid="evu293-B60" ref-type="bibr">Wang et al. 2011</xref>
).</p>
<p>WGD results in gene duplication and is typically followed by substantial gene loss (
<xref rid="evu293-B34" ref-type="bibr">Lee et al. 2013</xref>
). To identify intra- or intergenome syntenic relationships among plant genes, we compared the whole-genome sequences of
<italic>B. rapa</italic>
with those of the model Brassicaceae species
<italic>A. thaliana</italic>
and identified the AsA-related genes. Most AsA-related genes in
<italic>B. rapa</italic>
were retained; only 9.6% of such genes in
<italic>A. thaliana</italic>
were not found in the
<italic>B. rapa</italic>
syntenic regions. Then, we compared the AsA-related genes with a randomly chosen gene set, a set of genes flanking the AsA-related genes, and core eukaryotic gene set; the AsA-related genes were retained at a higher frequency. This preferential retention was statistically significant for AsA-related genes as a whole, was especially evident for the AsA biosynthesis genes, and was weak for the ascorbate transporter genes. This finding may indicate the importance of the AsA biosynthesis genes, some of which are responsible for the biosynthesis of nucleotide sugar, which serves as the substrate not only for AsA biosynthesis but also for the biosyntheses of cell wall polysaccharides and glycoproteins.</p>
<p>The ascorbate transporters are nucleobase transporters. These NATs, also known as the nucleobase: cation symporter-2 family, have been identified in prokaryotes, fungi, plants, and mammals (
<xref rid="evu293-B39" ref-type="bibr">Maurino et al. 2006</xref>
). In this study, their numbers were steady in six angiosperm species and these orthologues of different species shared a higher similarity degree than the paralogues of one species (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary fig. S4</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). A strong selection pressure against gene duplication and gene loss might exist in these NAT transporter genes. It was consistent with the ATP-binding cassette transporters (
<xref rid="evu293-B23" ref-type="bibr">Gbelska et al 2006</xref>
). Given that highly connected genes within metabolic networks are preferentially retained (
<xref rid="evu293-B7" ref-type="bibr">Bekaert et al. 2011</xref>
), the AsA biosynthetic and metabolic genes support the gene dosage hypothesis. Gene loss from the three subgenomes of
<italic>B. rapa</italic>
was biased; the LF subgenome preferentially retained AsA genes, similar to the report by
<xref rid="evu293-B60" ref-type="bibr">Wang et al. (2011)</xref>
that this subgenome retained more genes in
<italic>B. rapa</italic>
.</p>
<p>In addition to analyses of the evolutionary history of AsA-related genes, attempts have been made to predict their functions in diverse species based on sequence similarities and complete genome sequences (
<xref rid="evu293-B27" ref-type="bibr">Huang et al. 2013</xref>
;
<xref rid="evu293-B63" ref-type="bibr">Xu et al. 2013</xref>
). AsA-related proteins are highly conserved in eukaryotes, with nearly 60% identity among
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
orthologs. These orthologs did not differ significantly among the three subgenomes, and the
<italic>K
<sub>s</sub>
</italic>
values supported this conclusion. The orthologs had similar intron and exon numbers (
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary tables S13</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">S14</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online), indicating they may have similar gene structures. The proteins were analyzed by MEME, further proving that they were highly conserved.</p>
<p>During the evolution of higher plants, the basic enzymes of the AsA biosynthesis and recycling pathways have remained almost unchanged (
<xref ref-type="fig" rid="evu293-F1">fig. 1</xref>
), but different numbers of the enzyme genes have yielded multiple interlocking feedback loops. One might logically infer that repeated WGD events facilitated that increase in complexity, highlighting the consequences for AsA content and function of more recent polyploidization events, such as those in
<italic>B. rapa</italic>
. In this study, 102 AsA-related genes were found in
<italic>B. rapa</italic>
, a species that is the evolutionary product of a
<italic>Brassica</italic>
-specific WGT. During evolution, the AsA-related gene network has become increasingly complex (
<xref ref-type="fig" rid="evu293-F9">fig. 9</xref>
); repeated WGD events probably facilitated this progression from lower plants to higher plants. However, the expression patterns of these genes indicated that the numbers of genes expressed in roots, stems, leaves, and flowers were similar in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
. The AsA contents in leaves were also similar. We inferred that genes in the network that were not expressed were substitutes to prevent network outages caused by sudden failure of a gene or to adapt to the stress. It has been proposed that functionally redundant duplicate genes are used to backup important functions in the event of a severe mutation (
<xref rid="evu293-B44" ref-type="bibr">Qian et al. 2010</xref>
). Thus, plant AsA-related genes are highly conserved, and their architectural complexity may be a necessary byproduct of WGD and provided more flexibility to adapt to different environments.
<fig id="evu293-F9" position="float">
<label>F
<sc>ig</sc>
. 9.—</label>
<caption>
<p>Interaction network of AsA-related genes in
<italic>Arabidopsis thaliana</italic>
and
<italic>Brassica rapa</italic>
. (
<italic>A</italic>
) Specific protein interactions of AsA-related genes in
<italic>A. thaliana</italic>
were constructed using STRING (Search Tool for the Retrieval of Interacting Genes/Proteins;
<ext-link ext-link-type="uri" xlink:href="http://string-db.org/">http://string-db.org/</ext-link>
, last accessed January 8, 2015). (
<italic>B</italic>
) The interaction network of AsA-related genes in
<italic>B. rapa</italic>
was based on the orthologs in
<italic>A. thaliana</italic>
. Ellipses represent AsA-related genes; green indicates genes with high expression levels in leaves, and white indicates those with no or low expression in leaves.</p>
</caption>
<graphic xlink:href="evu293f9p"></graphic>
</fig>
</p>
<p>In summary, AsA, a significant antioxidant, protects plants against oxidative damage resulting from aerobic metabolism, photosynthesis, and a range of pollutants (
<xref rid="evu293-B28" ref-type="bibr">Iqbal et al. 2009</xref>
). AsA-related genes have been duplicated by WGT events. A total of 102 AsA-related genes were identified in
<italic>B. rapa</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S2</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online), and 73 are known in
<italic>A. thaliana</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">supplementary table S1</ext-link>
,
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary Material</ext-link>
online). In
<italic>B. rapa</italic>
, relatively few (9.6%) AsA-related genes were completely lost compared with three other gene sets (neighboring genes, randomly chosen genes, and core eukaryotic genes). The
<sc>l</sc>
-galactose pathway is the main route of AsA biosynthesis (
<xref rid="evu293-B64" ref-type="bibr">Zhang 2013</xref>
). Its genes may function in all higher plants, because they were found in all lineages higher than green algae. The expression patterns of homologs in
<italic>B. rapa</italic>
were not entirely consistent, indicating diversification of gene transcription regulation in AsA biosynthesis. Furthermore, AsA content and the number of expressed genes did not increase notably with the increase in AsA-related genes after the WGT event. AsA-related genes must be retained for plant growth and survival, especially to protect against oxidative stress, and the AsA content had not been as a breeding objective in
<italic>B. rapa</italic>
by humans. The AsA-related genes that are not expressed may act as substitutes during emergencies. Our analyses may provide new opportunities to discover AsA-related genes in
<italic>A. thaliana</italic>
and
<italic>B. rapa</italic>
, and the bioinformatics results also provided basic resources to examine the molecular regulation of the AsA-related genes in
<italic>B. rapa</italic>
. Our findings will help to select appropriate candidate genes for further functional characterization.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">Supplementary figures S1–S11</ext-link>
and
<ext-link ext-link-type="uri" xlink:href="http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu293/-/DC1">tables S1–S14</ext-link>
are available at
<italic>Genome Biology and Evolution</italic>
online (
<ext-link ext-link-type="uri" xlink:href="http://www.gbe.oxfordjournals.org/">http://www.gbe.oxfordjournals.org/</ext-link>
).</p>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_7_1_299__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="x-zip-compressed" xlink:href="supp_evu293_suppl_data.zip"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work is supported by the
<funding-source>National Program on Key Basic Research Projects</funding-source>
(The
<award-id>973</award-id>
Programs,
<award-id>2012CB113900</award-id>
,
<award-id>2009CB119001</award-id>
), the
<funding-source>National Natural Science Foundation of China</funding-source>
(
<award-id>31272173</award-id>
,
<award-id>31301782</award-id>
), and the
<funding-source>Fundamental Research Funds for the Central Universities of China</funding-source>
(
<award-id>KYZ201111</award-id>
), the
<funding-source>Jiangsu Province Natural Science Foundation</funding-source>
(
<award-id>BK20130673</award-id>
) and
<funding-source>China Postdoctoral Science Foundation</funding-source>
(
<award-id>2014M550294</award-id>
).</p>
</ack>
<ref-list>
<title>Literature Cited</title>
<ref id="evu293-B1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albert</surname>
<given-names>VA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Amborella</italic>
genome and the evolution of flowering plants</article-title>
<source>Science</source>
<year>2013</year>
<volume>342</volume>
<fpage>1241089</fpage>
<pub-id pub-id-type="pmid">24357323</pub-id>
</element-citation>
</ref>
<ref id="evu293-B2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Basic local alignment search tool</article-title>
<source>J Mol Biol.</source>
<year>1990</year>
<volume>215</volume>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="pmid">2231712</pub-id>
</element-citation>
</ref>
<ref id="evu293-B3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Argyrou</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sophianopoulou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Schultes</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Diallinas</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Functional characterization of a maize purine transporter by expression in
<italic>Aspergillus nidulans</italic>
</article-title>
<source>Plant Cell</source>
<year>2001</year>
<volume>13</volume>
<fpage>953</fpage>
<lpage>964</lpage>
<pub-id pub-id-type="pmid">11283348</pub-id>
</element-citation>
</ref>
<ref id="evu293-B4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arrigoni</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Ascorbate system in plant development</article-title>
<source>J Bioenerg Biomembr.</source>
<year>1994</year>
<volume>26</volume>
<fpage>407</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="pmid">7844116</pub-id>
</element-citation>
</ref>
<ref id="evu293-B5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bailey</surname>
<given-names>TL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MEME SUITE: tools for motif discovery and searching</article-title>
<source>Nucleic Acids Res.</source>
<year>2009</year>
<volume>37</volume>
<fpage>W202</fpage>
<lpage>W208</lpage>
<pub-id pub-id-type="pmid">19458158</pub-id>
</element-citation>
</ref>
<ref id="evu293-B6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barth</surname>
<given-names>C</given-names>
</name>
<name>
<surname>De Tullio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conklin</surname>
<given-names>PL</given-names>
</name>
</person-group>
<article-title>The role of ascorbic acid in the control of flowering time and the onset of senescence</article-title>
<source>J Exp Bot.</source>
<year>2006</year>
<volume>57</volume>
<fpage>1657</fpage>
<lpage>1665</lpage>
<pub-id pub-id-type="pmid">16698812</pub-id>
</element-citation>
</ref>
<ref id="evu293-B7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bekaert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Edger</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Conant</surname>
<given-names>GC</given-names>
</name>
</person-group>
<article-title>Two-phase resolution of polyploidy in the
<italic>Arabidopsis</italic>
metabolic network gives rise to relative and absolute dosage constraints</article-title>
<source>Plant Cell</source>
<year>2011</year>
<volume>23</volume>
<fpage>1719</fpage>
<lpage>1728</lpage>
<pub-id pub-id-type="pmid">21540436</pub-id>
</element-citation>
</ref>
<ref id="evu293-B8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birchler</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Veitia</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>The gene balance hypothesis: from classical genetics to modern genomics</article-title>
<source>Plant Cell</source>
<year>2007</year>
<volume>19</volume>
<fpage>395</fpage>
<lpage>402</lpage>
<pub-id pub-id-type="pmid">17293565</pub-id>
</element-citation>
</ref>
<ref id="evu293-B9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowers</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Paterson</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events</article-title>
<source>Nature</source>
<year>2003</year>
<volume>422</volume>
<fpage>433</fpage>
<lpage>438</lpage>
<pub-id pub-id-type="pmid">12660784</pub-id>
</element-citation>
</ref>
<ref id="evu293-B10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Ling</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Gallie</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Increasing vitamin C content of plants through enhanced ascorbate recycling</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2003</year>
<volume>100</volume>
<fpage>3525</fpage>
<lpage>3530</lpage>
<pub-id pub-id-type="pmid">12624189</pub-id>
</element-citation>
</ref>
<ref id="evu293-B11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Deciphering the diploid ancestral genome of the mesohexaploid
<italic>Brassica rapa</italic>
</article-title>
<source>Plant Cell</source>
<year>2013</year>
<volume>25</volume>
<fpage>1541</fpage>
<lpage>1554</lpage>
<pub-id pub-id-type="pmid">23653472</pub-id>
</element-citation>
</ref>
<ref id="evu293-B12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biased gene fractionation and dominant gene expression among the subgenomes of
<italic>Brassica rapa</italic>
</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e36442</fpage>
<pub-id pub-id-type="pmid">22567157</pub-id>
</element-citation>
</ref>
<ref id="evu293-B13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Syntenic gene analysis between
<italic>Brassica rapa</italic>
and other
<italic>Brassicaceae</italic>
species</article-title>
<source>Front Plant Sci.</source>
<year>2012</year>
<volume>3</volume>
<fpage>198</fpage>
<pub-id pub-id-type="pmid">22969786</pub-id>
</element-citation>
</ref>
<ref id="evu293-B14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conklin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Barth</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence</article-title>
<source>Plant Cell Environ.</source>
<year>2004</year>
<volume>27</volume>
<fpage>959</fpage>
<lpage>970</lpage>
</element-citation>
</ref>
<ref id="evu293-B15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conklin</surname>
<given-names>PL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>1999</year>
<volume>96</volume>
<fpage>4198</fpage>
<lpage>4203</lpage>
<pub-id pub-id-type="pmid">10097187</pub-id>
</element-citation>
</ref>
<ref id="evu293-B17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cruz-Rus</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Amaya</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Valpuesta</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The challenge of increasing vitamin C content in plant foods</article-title>
<source>Biotechnol J.</source>
<year>2012</year>
<volume>7</volume>
<fpage>1110</fpage>
<lpage>1121</lpage>
<pub-id pub-id-type="pmid">22890788</pub-id>
</element-citation>
</ref>
<ref id="evu293-B18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Koning</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Diallinas</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Nucleobase transporters</article-title>
<source>Mol Membr Biol.</source>
<year>2000</year>
<volume>17</volume>
<fpage>75</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">10989458</pub-id>
</element-citation>
</ref>
<ref id="evu293-B19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dowdle</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ishikawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Gatzek</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rolinski</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Smirnoff</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Two genes in
<italic>Arabidopsis thaliana</italic>
encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability</article-title>
<source>Plant J.</source>
<year>2007</year>
<volume>52</volume>
<fpage>673</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="pmid">17877701</pub-id>
</element-citation>
</ref>
<ref id="evu293-B20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edger</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Pires</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes</article-title>
<source>Chromosome Res.</source>
<year>2009</year>
<volume>17</volume>
<fpage>699</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">19802709</pub-id>
</element-citation>
</ref>
<ref id="evu293-B21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franceschi</surname>
<given-names>VR</given-names>
</name>
<name>
<surname>Tarlyn</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants</article-title>
<source>Plant Physiol.</source>
<year>2002</year>
<volume>130</volume>
<fpage>649</fpage>
<lpage>656</lpage>
<pub-id pub-id-type="pmid">12376632</pub-id>
</element-citation>
</ref>
<ref id="evu293-B22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeling</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>BC</given-names>
</name>
</person-group>
<article-title>Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity</article-title>
<source>Genome Res.</source>
<year>2006</year>
<volume>16</volume>
<fpage>805</fpage>
<lpage>814</lpage>
<pub-id pub-id-type="pmid">16818725</pub-id>
</element-citation>
</ref>
<ref id="evu293-B23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gbelska</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Krijger</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Breunig</surname>
<given-names>KD</given-names>
</name>
</person-group>
<article-title>Evolution of gene families: the multidrug resistance transporter genes in five related yeast species</article-title>
<source>FEMS Yeast Res.</source>
<year>2006</year>
<volume>6</volume>
<fpage>345</fpage>
<lpage>355</lpage>
<pub-id pub-id-type="pmid">16630275</pub-id>
</element-citation>
</ref>
<ref id="evu293-B24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodstein</surname>
<given-names>DM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Phytozome: a comparative platform for green plant genomics</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>D1178</fpage>
<lpage>D1186</lpage>
<pub-id pub-id-type="pmid">22110026</pub-id>
</element-citation>
</ref>
<ref id="evu293-B25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hittinger</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Gene duplication and the adaptive evolution of a classic genetic switch</article-title>
<source>Nature</source>
<year>2007</year>
<volume>449</volume>
<fpage>677</fpage>
<lpage>681</lpage>
<pub-id pub-id-type="pmid">17928853</pub-id>
</element-citation>
</ref>
<ref id="evu293-B26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horemans</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Asard</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Transport and action of ascorbate at the plant plasma membrane</article-title>
<source>Trends Plant Sci.</source>
<year>2000</year>
<volume>5</volume>
<fpage>263</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">10838618</pub-id>
</element-citation>
</ref>
<ref id="evu293-B27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Draft genome of the kiwifruit
<italic>Actinidia chinensis</italic>
</article-title>
<source>Nat Commun.</source>
<year>2013</year>
<volume>4</volume>
<fpage>2640</fpage>
<comment>doi:10.1038/ncomms3640</comment>
<pub-id pub-id-type="pmid">24136039</pub-id>
</element-citation>
</ref>
<ref id="evu293-B28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iqbal</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ihsanullah</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Shaheen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hussain</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Significance of vitamin C in plants</article-title>
<source>J Chem Soc Pak.</source>
<year>2009</year>
<volume>31</volume>
<fpage>169</fpage>
<lpage>170</lpage>
</element-citation>
</ref>
<ref id="evu293-B29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaillon</surname>
<given-names>O</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla</article-title>
<source>Nature</source>
<year>2007</year>
<volume>449</volume>
<fpage>463</fpage>
<lpage>467</lpage>
<pub-id pub-id-type="pmid">17721507</pub-id>
</element-citation>
</ref>
<ref id="evu293-B30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ancestral polyploidy in seed plants and angiosperms</article-title>
<source>Nature</source>
<year>2011</year>
<volume>473</volume>
<fpage>97</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="pmid">21478875</pub-id>
</element-citation>
</ref>
<ref id="evu293-B31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kampfenkel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Vanmontag</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inze</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Extraction and determination of ascorbate and dehydroascorbate from plant tissue</article-title>
<source>Anal Biochem.</source>
<year>1995</year>
<volume>225</volume>
<fpage>165</fpage>
<lpage>167</lpage>
<pub-id pub-id-type="pmid">7778771</pub-id>
</element-citation>
</ref>
<ref id="evu293-B32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanehisa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Furumichi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tanabe</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>KEGG for integration and interpretation of large-scale molecular data sets</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>D109</fpage>
<lpage>D114</lpage>
<pub-id pub-id-type="pmid">22080510</pub-id>
</element-citation>
</ref>
<ref id="evu293-B33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krogh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Larsson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sonnhammer</surname>
<given-names>EL</given-names>
</name>
</person-group>
<article-title>Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes</article-title>
<source>J Mol Biol.</source>
<year>2001</year>
<volume>305</volume>
<fpage>567</fpage>
<lpage>580</lpage>
<pub-id pub-id-type="pmid">11152613</pub-id>
</element-citation>
</ref>
<ref id="evu293-B34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Paterson</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>PGDD: a database of gene and genome duplication in plants</article-title>
<source>Nucleic Acids Res.</source>
<year>2013</year>
<volume>41</volume>
<fpage>D1152</fpage>
<lpage>D1158</lpage>
<pub-id pub-id-type="pmid">23180799</pub-id>
</element-citation>
</ref>
<ref id="evu293-B35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Letunic</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Doerks</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bork</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>SMART 7: recent updates to the protein domain annotation resource</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>D302</fpage>
<lpage>D305</lpage>
<pub-id pub-id-type="pmid">22053084</pub-id>
</element-citation>
</ref>
<ref id="evu293-B36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levine</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>New concepts in the biology and biochemistry of ascorbic acid</article-title>
<source>New Engl J Med.</source>
<year>1986</year>
<volume>314</volume>
<fpage>892</fpage>
<lpage>902</lpage>
<pub-id pub-id-type="pmid">3513016</pub-id>
</element-citation>
</ref>
<ref id="evu293-B37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lou</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preferential retention of circadian clock genes during diploidization following whole genome triplication in
<italic>Brassica rapa</italic>
</article-title>
<source>Plant Cell</source>
<year>2012</year>
<volume>24</volume>
<fpage>2415</fpage>
<lpage>2426</lpage>
<pub-id pub-id-type="pmid">22685167</pub-id>
</element-citation>
</ref>
<ref id="evu293-B38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conery</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>The evolutionary fate and consequences of duplicate genes</article-title>
<source>Science</source>
<year>2000</year>
<volume>290</volume>
<fpage>1151</fpage>
<lpage>1155</lpage>
<pub-id pub-id-type="pmid">11073452</pub-id>
</element-citation>
</ref>
<ref id="evu293-B39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maurino</surname>
<given-names>VG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification and expression analysis of twelve members of the nucleobase–ascorbate transporter (NAT) gene family in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>Plant Cell Physiol.</source>
<year>2006</year>
<volume>47</volume>
<fpage>1381</fpage>
<lpage>1393</lpage>
<pub-id pub-id-type="pmid">16982705</pub-id>
</element-citation>
</ref>
<ref id="evu293-B40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ming</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The draft genome of the transgenic tropical fruit tree papaya (
<italic>Carica papaya</italic>
Linnaeus)</article-title>
<source>Nature</source>
<year>2008</year>
<volume>452</volume>
<fpage>991</fpage>
<lpage>996</lpage>
<pub-id pub-id-type="pmid">18432245</pub-id>
</element-citation>
</ref>
<ref id="evu293-B41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olmos</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kiddle</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pellny</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Modulation of plant morphology, root architecture, and cell structure by low vitamin C in
<italic>Arabidopsis thaliana</italic>
</article-title>
<source>J Exp Bot.</source>
<year>2006</year>
<volume>57</volume>
<fpage>1645</fpage>
<lpage>1655</lpage>
<pub-id pub-id-type="pmid">16720601</pub-id>
</element-citation>
</ref>
<ref id="evu293-B42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parra</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bradnam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Korf</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes</article-title>
<source>Bioinformatics</source>
<year>2007</year>
<volume>23</volume>
<fpage>1061</fpage>
<lpage>1067</lpage>
<pub-id pub-id-type="pmid">17332020</pub-id>
</element-citation>
</ref>
<ref id="evu293-B43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Punta</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Pfam protein families database</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>D290</fpage>
<lpage>D301</lpage>
<pub-id pub-id-type="pmid">22127870</pub-id>
</element-citation>
</ref>
<ref id="evu293-B44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qian</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>BY</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>AYF</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Maintenance of duplicate genes and their functional redundancy by reduced expression</article-title>
<source>Trends Genet.</source>
<year>2010</year>
<volume>26</volume>
<fpage>425</fpage>
<lpage>430</lpage>
<pub-id pub-id-type="pmid">20708291</pub-id>
</element-citation>
</ref>
<ref id="evu293-B46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quevillon</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>InterProScan: protein domains identifier</article-title>
<source>Nucleic Acids Res.</source>
<year>2005</year>
<volume>33</volume>
<fpage>W116</fpage>
<lpage>W120</lpage>
<pub-id pub-id-type="pmid">15980438</pub-id>
</element-citation>
</ref>
<ref id="evu293-B47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmid</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A gene expression map of
<italic>Arabidopsis thaliana</italic>
development</article-title>
<source>Nat Genet.</source>
<year>2005</year>
<volume>37</volume>
<fpage>501</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="pmid">15806101</pub-id>
</element-citation>
</ref>
<ref id="evu293-B48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwacke</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>ARAMEMNON, a novel database for
<italic>Arabidopsis</italic>
integral membrane proteins</article-title>
<source>Plant Physiol.</source>
<year>2003</year>
<volume>131</volume>
<fpage>16</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">12529511</pub-id>
</element-citation>
</ref>
<ref id="evu293-B49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smirnoff</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Conklin</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Loewus</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Biosynthesis of ascorbic acid in plants: a renaissance</article-title>
<source>Annu Rev Plant Biol.</source>
<year>2001</year>
<volume>52</volume>
<fpage>437</fpage>
<lpage>467</lpage>
</element-citation>
</ref>
<ref id="evu293-B50">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Stebbins</surname>
<given-names>CL</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<source>Variation and evolution in plants</source>
<year>1950</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="evu293-B51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swarbreck</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The
<italic>Arabidopsis</italic>
Information Resource (TAIR): gene structure and function annotation</article-title>
<source>Nucleic Acids Res.</source>
<year>2008</year>
<volume>36</volume>
<fpage>D1009</fpage>
<lpage>D1014</lpage>
<pub-id pub-id-type="pmid">17986450</pub-id>
</element-citation>
</ref>
<ref id="evu293-B52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tabata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ôba</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Esaka</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1, 4-lactone dehydrogenase</article-title>
<source>Plant J.</source>
<year>2001</year>
<volume>27</volume>
<fpage>139</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="pmid">11489191</pub-id>
</element-citation>
</ref>
<ref id="evu293-B53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods</article-title>
<source>Mol Biol Evol.</source>
<year>2011</year>
<volume>28</volume>
<fpage>2731</fpage>
<lpage>2739</lpage>
<pub-id pub-id-type="pmid">21546353</pub-id>
</element-citation>
</ref>
<ref id="evu293-B54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altered patterns of fractionation and exon deletions in
<italic>Brassica rapa</italic>
support a two-step model of paleohexaploidy</article-title>
<source>Genetics</source>
<year>2012</year>
<volume>190</volume>
<fpage>1563</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="pmid">22308264</pub-id>
</element-citation>
</ref>
<ref id="evu293-B55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Pedersen</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Freeling</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Following tetraploidy in an
<italic>Arabidopsis</italic>
ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes</article-title>
<source>Genome Res.</source>
<year>2006</year>
<volume>16</volume>
<fpage>934</fpage>
<lpage>946</lpage>
<pub-id pub-id-type="pmid">16760422</pub-id>
</element-citation>
</ref>
<ref id="evu293-B56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Multiple sequence alignment using ClustalW and ClustalX</article-title>
<source>Curr Protoc Bioinform.</source>
<year>2002</year>
<volume>00:2.3</volume>
<fpage>2.3.1</fpage>
<lpage>2.3.22</lpage>
</element-citation>
</ref>
<ref id="evu293-B57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tong</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in
<italic>Brassica rapa</italic>
</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>689</fpage>
<pub-id pub-id-type="pmid">24098974</pub-id>
</element-citation>
</ref>
<ref id="evu293-B58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuskan</surname>
<given-names>GA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of black cottonwood,
<italic>Populus trichocarpa</italic>
(Torr. & Gray)</article-title>
<source>Science</source>
<year>2006</year>
<volume>313</volume>
<fpage>1596</fpage>
<lpage>1604</lpage>
<pub-id pub-id-type="pmid">16973872</pub-id>
</element-citation>
</ref>
<ref id="evu293-B59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valpuesta</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Botella</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant</article-title>
<source>Trends Plant Sci.</source>
<year>2004</year>
<volume>9</volume>
<fpage>573</fpage>
<lpage>577</lpage>
<pub-id pub-id-type="pmid">15564123</pub-id>
</element-citation>
</ref>
<ref id="evu293-B60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The genome of the mesopolyploid crop species
<italic>Brassica rapa</italic>
</article-title>
<source>Nat Genet.</source>
<year>2011</year>
<volume>43</volume>
<fpage>1035</fpage>
<lpage>1039</lpage>
<pub-id pub-id-type="pmid">21873998</pub-id>
</element-citation>
</ref>
<ref id="evu293-B61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity</article-title>
<source>Nucleic Acids Res.</source>
<year>2012</year>
<volume>40</volume>
<fpage>e49</fpage>
<pub-id pub-id-type="pmid">22217600</pub-id>
</element-citation>
</ref>
<ref id="evu293-B62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wheeler</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Smirnoff</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The biosynthetic pathway of vitamin C in higher plants</article-title>
<source>Nature</source>
<year>1998</year>
<volume>393</volume>
<fpage>365</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="pmid">9620799</pub-id>
</element-citation>
</ref>
<ref id="evu293-B63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The draft genome of sweet orange (
<italic>Citrus sinensis</italic>
)</article-title>
<source>Nat Genet.</source>
<year>2013</year>
<volume>45</volume>
<fpage>59</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">23179022</pub-id>
</element-citation>
</ref>
<ref id="evu293-B64">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Ascorbate biosynthesis in plants</article-title>
<source>Ascorbic acid in plants</source>
<year>2013</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Springer Press</publisher-name>
<fpage>35</fpage>
<lpage>43</lpage>
</element-citation>
</ref>
<ref id="evu293-B65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>KaKs_Calculator: calculating Ka and Ks through model selection and model averaging</article-title>
<source>Genomics Proteomics Bioinformatics</source>
<year>2006</year>
<volume>4</volume>
<fpage>259</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="pmid">17531802</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4316640
   |texte=   Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25552535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024