Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced production of pectinase by Aspergillusterreus NCFT 4269.10 using banana peels as substrate

Identifieur interne : 000545 ( Pmc/Corpus ); précédent : 000544; suivant : 000546

Enhanced production of pectinase by Aspergillusterreus NCFT 4269.10 using banana peels as substrate

Auteurs : Bijay Kumar Sethi ; Prativa Kumari Nanda ; Santilata Sahoo

Source :

RBID : PMC:4724355

Abstract

Aspergillus terreus NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (Musa paradisiaca L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml−1; SSF: 6500 ± 1116.21 Ug−1). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K+ (1 mM), Riboflavin (10 mg 100 ml−1) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.


Url:
DOI: 10.1007/s13205-015-0353-y
PubMed: NONE
PubMed Central: 4724355

Links to Exploration step

PMC:4724355

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced production of pectinase by
<italic>Aspergillus</italic>
<italic>terreus</italic>
NCFT 4269.10 using banana peels as substrate</title>
<author>
<name sortKey="Sethi, Bijay Kumar" sort="Sethi, Bijay Kumar" uniqKey="Sethi B" first="Bijay Kumar" last="Sethi">Bijay Kumar Sethi</name>
<affiliation>
<nlm:aff id="Aff1">Microbiology Research Laboratory, P. G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">MITS School of Biotechnology, 2 (P), Infocity, Patia, Chandaka Industrial Estate, Bhubaneswar, Odisha 751024 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nanda, Prativa Kumari" sort="Nanda, Prativa Kumari" uniqKey="Nanda P" first="Prativa Kumari" last="Nanda">Prativa Kumari Nanda</name>
<affiliation>
<nlm:aff id="Aff2">Department of Botany, Saila Bala Women’s College, Cuttack, Odisha 753001 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sahoo, Santilata" sort="Sahoo, Santilata" uniqKey="Sahoo S" first="Santilata" last="Sahoo">Santilata Sahoo</name>
<affiliation>
<nlm:aff id="Aff1">Microbiology Research Laboratory, P. G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmc">4724355</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724355</idno>
<idno type="RBID">PMC:4724355</idno>
<idno type="doi">10.1007/s13205-015-0353-y</idno>
<idno type="pmid">NONE</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000545</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Enhanced production of pectinase by
<italic>Aspergillus</italic>
<italic>terreus</italic>
NCFT 4269.10 using banana peels as substrate</title>
<author>
<name sortKey="Sethi, Bijay Kumar" sort="Sethi, Bijay Kumar" uniqKey="Sethi B" first="Bijay Kumar" last="Sethi">Bijay Kumar Sethi</name>
<affiliation>
<nlm:aff id="Aff1">Microbiology Research Laboratory, P. G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">MITS School of Biotechnology, 2 (P), Infocity, Patia, Chandaka Industrial Estate, Bhubaneswar, Odisha 751024 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nanda, Prativa Kumari" sort="Nanda, Prativa Kumari" uniqKey="Nanda P" first="Prativa Kumari" last="Nanda">Prativa Kumari Nanda</name>
<affiliation>
<nlm:aff id="Aff2">Department of Botany, Saila Bala Women’s College, Cuttack, Odisha 753001 India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sahoo, Santilata" sort="Sahoo, Santilata" uniqKey="Sahoo S" first="Santilata" last="Sahoo">Santilata Sahoo</name>
<affiliation>
<nlm:aff id="Aff1">Microbiology Research Laboratory, P. G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">3 Biotech</title>
<idno type="eISSN">2190-5738</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Aspergillus terreus</italic>
NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (
<italic>Musa paradisiaca</italic>
L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml
<sup>−1</sup>
; SSF: 6500 ± 1116.21 Ug
<sup>−1</sup>
). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K
<sup>+</sup>
(1 mM), Riboflavin (10 mg 100 ml
<sup>−1</sup>
) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abbasi, H" uniqKey="Abbasi H">H Abbasi</name>
</author>
<author>
<name sortKey="Mortazavipur, Sr" uniqKey="Mortazavipur S">SR Mortazavipur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adeleke, Aj" uniqKey="Adeleke A">AJ Adeleke</name>
</author>
<author>
<name sortKey="Odunfa, Sa" uniqKey="Odunfa S">SA Odunfa</name>
</author>
<author>
<name sortKey="Olanbiwonninu, A" uniqKey="Olanbiwonninu A">A Olanbiwonninu</name>
</author>
<author>
<name sortKey="Owoseni, Mc" uniqKey="Owoseni M">MC Owoseni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Afifi, Af" uniqKey="Afifi A">AF Afifi</name>
</author>
<author>
<name sortKey="Kamel, Em" uniqKey="Kamel E">EM Kamel</name>
</author>
<author>
<name sortKey="Khalil, Aa" uniqKey="Khalil A">AA Khalil</name>
</author>
<author>
<name sortKey="Foaad, Ma" uniqKey="Foaad M">MA Foaad</name>
</author>
<author>
<name sortKey="Fawzi, Em" uniqKey="Fawzi E">EM Fawzi</name>
</author>
<author>
<name sortKey="Houseny, Mm" uniqKey="Houseny M">MM Houseny</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akhter, N" uniqKey="Akhter N">N Akhter</name>
</author>
<author>
<name sortKey="Morshed, Ma" uniqKey="Morshed M">MA Morshed</name>
</author>
<author>
<name sortKey="Uddin, A" uniqKey="Uddin A">A Uddin</name>
</author>
<author>
<name sortKey="Begum, F" uniqKey="Begum F">F Begum</name>
</author>
<author>
<name sortKey="Sultan, T" uniqKey="Sultan T">T Sultan</name>
</author>
<author>
<name sortKey="Azad, Ak" uniqKey="Azad A">AK Azad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akintobi, Ao" uniqKey="Akintobi A">AO Akintobi</name>
</author>
<author>
<name sortKey="Oluitiola, Po" uniqKey="Oluitiola P">PO Oluitiola</name>
</author>
<author>
<name sortKey="Olawale, Ak" uniqKey="Olawale A">AK Olawale</name>
</author>
<author>
<name sortKey="Odu, Nn" uniqKey="Odu N">NN Odu</name>
</author>
<author>
<name sortKey="Okonko, Io" uniqKey="Okonko I">IO Okonko</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blandino, A" uniqKey="Blandino A">A Blandino</name>
</author>
<author>
<name sortKey="Iqbalsyah, T" uniqKey="Iqbalsyah T">T Iqbalsyah</name>
</author>
<author>
<name sortKey="Pandiella, Ss" uniqKey="Pandiella S">SS Pandiella</name>
</author>
<author>
<name sortKey="Cantero, D" uniqKey="Cantero D">D Cantero</name>
</author>
<author>
<name sortKey="Webb, C" uniqKey="Webb C">C Webb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demir, N" uniqKey="Demir N">N Demir</name>
</author>
<author>
<name sortKey="Nadaroglu, H" uniqKey="Nadaroglu H">H Nadaroglu</name>
</author>
<author>
<name sortKey="Tasgin, E" uniqKey="Tasgin E">E Tasgin</name>
</author>
<author>
<name sortKey="Adiguzel, A" uniqKey="Adiguzel A">A Adiguzel</name>
</author>
<author>
<name sortKey="Gulluce, M" uniqKey="Gulluce M">M Gulluce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dinu, D" uniqKey="Dinu D">D Dinu</name>
</author>
<author>
<name sortKey="Nechifor, Mt" uniqKey="Nechifor M">MT Nechifor</name>
</author>
<author>
<name sortKey="Stoian, G" uniqKey="Stoian G">G Stoian</name>
</author>
<author>
<name sortKey="Costache, M" uniqKey="Costache M">M Costache</name>
</author>
<author>
<name sortKey="Dinischiotu, A" uniqKey="Dinischiotu A">A Dinischiotu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fasidi, Io" uniqKey="Fasidi I">IO Fasidi</name>
</author>
<author>
<name sortKey="Akwakwa, Do" uniqKey="Akwakwa D">DO Akwakwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Garrido, Jm" uniqKey="Garcia Garrido J">JM Garcia-Garrido</name>
</author>
<author>
<name sortKey="Tribak, M" uniqKey="Tribak M">M Tribak</name>
</author>
<author>
<name sortKey="Rejon Palomares, A" uniqKey="Rejon Palomares A">A Rejon-Palomares</name>
</author>
<author>
<name sortKey="Ocampo, Ja" uniqKey="Ocampo J">JA Ocampo</name>
</author>
<author>
<name sortKey="Garcia Romera, I" uniqKey="Garcia Romera I">I Garcia-Romera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Godfrey, T" uniqKey="Godfrey T">T Godfrey</name>
</author>
<author>
<name sortKey="West, S" uniqKey="West S">S West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez Montelongo, R" uniqKey="Gonzalez Montelongo R">R González-Montelongo</name>
</author>
<author>
<name sortKey="Lobo, Mg" uniqKey="Lobo M">MG Lobo</name>
</author>
<author>
<name sortKey="Gonzalez, M" uniqKey="Gonzalez M">M González</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoondal, Gs" uniqKey="Hoondal G">GS Hoondal</name>
</author>
<author>
<name sortKey="Tiwari, Rp" uniqKey="Tiwari R">RP Tiwari</name>
</author>
<author>
<name sortKey="Tiwari, R" uniqKey="Tiwari R">R Tiwari</name>
</author>
<author>
<name sortKey="Dahiya, N" uniqKey="Dahiya N">N Dahiya</name>
</author>
<author>
<name sortKey="Beg, Qk" uniqKey="Beg Q">QK Beg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Lk" uniqKey="Huang L">LK Huang</name>
</author>
<author>
<name sortKey="Mahoney, Rr" uniqKey="Mahoney R">RR Mahoney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iftikhar, T" uniqKey="Iftikhar T">T Iftikhar</name>
</author>
<author>
<name sortKey="Niaz, M" uniqKey="Niaz M">M Niaz</name>
</author>
<author>
<name sortKey="Zia, Ma" uniqKey="Zia M">MA Zia</name>
</author>
<author>
<name sortKey="Haq, Iu" uniqKey="Haq I">IU Haq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jagadeeshbabu, Pe" uniqKey="Jagadeeshbabu P">PE JagadeeshBabu</name>
</author>
<author>
<name sortKey="Viswanathan, R" uniqKey="Viswanathan R">R Viswanathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jana, A" uniqKey="Jana A">A Jana</name>
</author>
<author>
<name sortKey="Maity, C" uniqKey="Maity C">C Maity</name>
</author>
<author>
<name sortKey="Halder, Sk" uniqKey="Halder S">SK Halder</name>
</author>
<author>
<name sortKey="Das, A" uniqKey="Das A">A Das</name>
</author>
<author>
<name sortKey="Pati, Br" uniqKey="Pati B">BR Pati</name>
</author>
<author>
<name sortKey="Mondal, Kc" uniqKey="Mondal K">KC Mondal</name>
</author>
<author>
<name sortKey="Das Mohapatra, Pk" uniqKey="Das Mohapatra P">PK Das Mohapatra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jonathan, Sg" uniqKey="Jonathan S">SG Jonathan</name>
</author>
<author>
<name sortKey="Fasidi, Io" uniqKey="Fasidi I">IO Fasidi</name>
</author>
<author>
<name sortKey="Ajayi, Ej" uniqKey="Ajayi E">EJ Ajayi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juarez Garcia, L" uniqKey="Juarez Garcia L">L Juarez-Garcia</name>
</author>
<author>
<name sortKey="Agama Aceredo, E" uniqKey="Agama Aceredo E">E Agama-Aceredo</name>
</author>
<author>
<name sortKey="Sayago Ayerdi, Sg" uniqKey="Sayago Ayerdi S">SG Sayago-Ayerdi</name>
</author>
<author>
<name sortKey="Rodriguez Ambriz, Sl" uniqKey="Rodriguez Ambriz S">SL Rodriguez-Ambriz</name>
</author>
<author>
<name sortKey="Bello Perez, La" uniqKey="Bello Perez L">LA Bello-perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapoor, M" uniqKey="Kapoor M">M Kapoor</name>
</author>
<author>
<name sortKey="Beg, Qk" uniqKey="Beg Q">QK Beg</name>
</author>
<author>
<name sortKey="Bhushan, B" uniqKey="Bhushan B">B Bhushan</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K Singh</name>
</author>
<author>
<name sortKey="Dadich, Ks" uniqKey="Dadich K">KS Dadich</name>
</author>
<author>
<name sortKey="Hoondal, Gs" uniqKey="Hoondal G">GS Hoondal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kashyap, Dr" uniqKey="Kashyap D">DR Kashyap</name>
</author>
<author>
<name sortKey="Vohra, Pk" uniqKey="Vohra P">PK Vohra</name>
</author>
<author>
<name sortKey="Chopra, S" uniqKey="Chopra S">S Chopra</name>
</author>
<author>
<name sortKey="Tewari, R" uniqKey="Tewari R">R Tewari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khairnar, Y" uniqKey="Khairnar Y">Y Khairnar</name>
</author>
<author>
<name sortKey="Vamsi, Kk" uniqKey="Vamsi K">KK Vamsi</name>
</author>
<author>
<name sortKey="Boraste, A" uniqKey="Boraste A">A Boraste</name>
</author>
<author>
<name sortKey="Gupta, N" uniqKey="Gupta N">N Gupta</name>
</author>
<author>
<name sortKey="Trivedi, S" uniqKey="Trivedi S">S Trivedi</name>
</author>
<author>
<name sortKey="Patil, P" uniqKey="Patil P">P Patil</name>
</author>
<author>
<name sortKey="Gupta, G" uniqKey="Gupta G">G Gupta</name>
</author>
<author>
<name sortKey="Gupta, M" uniqKey="Gupta M">M Gupta</name>
</author>
<author>
<name sortKey="Jhadav, A" uniqKey="Jhadav A">A Jhadav</name>
</author>
<author>
<name sortKey="Mujapara, A" uniqKey="Mujapara A">A Mujapara</name>
</author>
<author>
<name sortKey="Joshi, B" uniqKey="Joshi B">B Joshi</name>
</author>
<author>
<name sortKey="Mishra, D" uniqKey="Mishra D">D Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laemmli, Uk" uniqKey="Laemmli U">UK Laemmli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lowry, Oh" uniqKey="Lowry O">OH Lowry</name>
</author>
<author>
<name sortKey="Rosebrough, Nj" uniqKey="Rosebrough N">NJ Rosebrough</name>
</author>
<author>
<name sortKey="Farr, Al" uniqKey="Farr A">AL Farr</name>
</author>
<author>
<name sortKey="Randall, Rj" uniqKey="Randall R">RJ Randall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maciel, Mdhc" uniqKey="Maciel M">MDHC Maciel</name>
</author>
<author>
<name sortKey="Herculano, Pn" uniqKey="Herculano P">PN Herculano</name>
</author>
<author>
<name sortKey="Porto, Ts" uniqKey="Porto T">TS Porto</name>
</author>
<author>
<name sortKey="Teixeira, Mfs" uniqKey="Teixeira M">MFS Teixeira</name>
</author>
<author>
<name sortKey="Moreira, Ka" uniqKey="Moreira K">KA Moreira</name>
</author>
<author>
<name sortKey="De Souza Motta, Cm" uniqKey="De Souza Motta C">CM de Souza-Motta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maller, A" uniqKey="Maller A">A Maller</name>
</author>
<author>
<name sortKey="Damasio, Arl" uniqKey="Damasio A">ARL Damásio</name>
</author>
<author>
<name sortKey="Silva, Tm" uniqKey="Silva T">TM Silva</name>
</author>
<author>
<name sortKey="Jorge, Ja" uniqKey="Jorge J">JA Jorge</name>
</author>
<author>
<name sortKey="Terenzi, Hf" uniqKey="Terenzi H">HF Terenzi</name>
</author>
<author>
<name sortKey="Polizeli, Mltm" uniqKey="Polizeli M">MLTM Polizeli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maller, A" uniqKey="Maller A">A Maller</name>
</author>
<author>
<name sortKey="Da Silva, Tm" uniqKey="Da Silva T">TM da Silva</name>
</author>
<author>
<name sortKey="Damasio, Arl" uniqKey="Damasio A">ARL Damásio</name>
</author>
<author>
<name sortKey="Hirata, Iy" uniqKey="Hirata I">IY Hirata</name>
</author>
<author>
<name sortKey="Jorge, Ja" uniqKey="Jorge J">JA Jorge</name>
</author>
<author>
<name sortKey="Terenzi, Hf" uniqKey="Terenzi H">HF Terenzi</name>
</author>
<author>
<name sortKey="Polizeli, Mltm" uniqKey="Polizeli M">MLTM Polizeli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martens Uzunova, Es" uniqKey="Martens Uzunova E">ES Martens-Uzunova</name>
</author>
<author>
<name sortKey="Schaap, Pj" uniqKey="Schaap P">PJ Schaap</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mrudula, S" uniqKey="Mrudula S">S Mrudula</name>
</author>
<author>
<name sortKey="Anitharaj, R" uniqKey="Anitharaj R">R Anitharaj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Negi, S" uniqKey="Negi S">S Negi</name>
</author>
<author>
<name sortKey="Banerjee, R" uniqKey="Banerjee R">R Banerjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oszmia Ski, J" uniqKey="Oszmia Ski J">J Oszmiański</name>
</author>
<author>
<name sortKey="Wojdylo, A" uniqKey="Wojdylo A">A Wojdylo</name>
</author>
<author>
<name sortKey="Kolniak, J" uniqKey="Kolniak J">J Kolniak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pandey, A" uniqKey="Pandey A">A Pandey</name>
</author>
<author>
<name sortKey="Benjamin, S" uniqKey="Benjamin S">S Benjamin</name>
</author>
<author>
<name sortKey="Soccol, Cr" uniqKey="Soccol C">CR Soccol</name>
</author>
<author>
<name sortKey="Nigam, P" uniqKey="Nigam P">P Nigam</name>
</author>
<author>
<name sortKey="Krieger, N" uniqKey="Krieger N">N Krieger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patil, Sr" uniqKey="Patil S">SR Patil</name>
</author>
<author>
<name sortKey="Dayanand, A" uniqKey="Dayanand A">A Dayanand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patil, Np" uniqKey="Patil N">NP Patil</name>
</author>
<author>
<name sortKey="Patil, Kp" uniqKey="Patil K">KP Patil</name>
</author>
<author>
<name sortKey="Chaudhari, Bl" uniqKey="Chaudhari B">BL Chaudhari</name>
</author>
<author>
<name sortKey="Chincholkar, Sb" uniqKey="Chincholkar S">SB Chincholkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedrolli, Db" uniqKey="Pedrolli D">DB Pedrolli</name>
</author>
<author>
<name sortKey="Carmona, Ec" uniqKey="Carmona E">EC Carmona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pereira, Jf" uniqKey="Pereira J">JF Pereira</name>
</author>
<author>
<name sortKey="De Queiroz, Mv" uniqKey="De Queiroz M">MV de Queiroz</name>
</author>
<author>
<name sortKey="Gomes, Ea" uniqKey="Gomes E">EA Gomes</name>
</author>
<author>
<name sortKey="Muro Abad, Ji" uniqKey="Muro Abad J">JI Muro-Abad</name>
</author>
<author>
<name sortKey="De Araujo, Ef" uniqKey="De Araujo E">EF de Araujo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramadas, M" uniqKey="Ramadas M">M Ramadas</name>
</author>
<author>
<name sortKey="Holst, O" uniqKey="Holst O">O Holst</name>
</author>
<author>
<name sortKey="Mattiasson, B" uniqKey="Mattiasson B">B Mattiasson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Revilla, I" uniqKey="Revilla I">I Revilla</name>
</author>
<author>
<name sortKey="Jose, Gs" uniqKey="Jose G">GS Jose</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sebastian, Fc" uniqKey="Sebastian F">FC Sebastian</name>
</author>
<author>
<name sortKey="Jorge, Aa" uniqKey="Jorge A">AA Jorge</name>
</author>
<author>
<name sortKey="Roque, Ah" uniqKey="Roque A">AH Roque</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sethi, Bk" uniqKey="Sethi B">BK Sethi</name>
</author>
<author>
<name sortKey="Nanda, Pk" uniqKey="Nanda P">PK Nanda</name>
</author>
<author>
<name sortKey="Sahoo, Sl" uniqKey="Sahoo S">SL Sahoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sethi, Bk" uniqKey="Sethi B">BK Sethi</name>
</author>
<author>
<name sortKey="Rout, Jr" uniqKey="Rout J">JR Rout</name>
</author>
<author>
<name sortKey="Das, R" uniqKey="Das R">R Das</name>
</author>
<author>
<name sortKey="Nanda, Pk" uniqKey="Nanda P">PK Nanda</name>
</author>
<author>
<name sortKey="Sahoo, Sl" uniqKey="Sahoo S">SL Sahoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, Jr" uniqKey="Singh J">JR Singh</name>
</author>
<author>
<name sortKey="Saxena, S" uniqKey="Saxena S">S Saxena</name>
</author>
<author>
<name sortKey="Gupta, R" uniqKey="Gupta R">R Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taragano, V" uniqKey="Taragano V">V Taragano</name>
</author>
<author>
<name sortKey="Sanchez, Ve" uniqKey="Sanchez V">VE Sanchez</name>
</author>
<author>
<name sortKey="Pilosof, Amr" uniqKey="Pilosof A">AMR Pilosof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tari, C" uniqKey="Tari C">C Tari</name>
</author>
<author>
<name sortKey="Gogus, N" uniqKey="Gogus N">N Gogus</name>
</author>
<author>
<name sortKey="Tokatli, F" uniqKey="Tokatli F">F Tokatli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thakur, A" uniqKey="Thakur A">A Thakur</name>
</author>
<author>
<name sortKey="Pahwa, R" uniqKey="Pahwa R">R Pahwa</name>
</author>
<author>
<name sortKey="Singh, S" uniqKey="Singh S">S Singh</name>
</author>
<author>
<name sortKey="Gupta, R" uniqKey="Gupta R">R Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeni, J" uniqKey="Zeni J">J Zeni</name>
</author>
<author>
<name sortKey="Cence, K" uniqKey="Cence K">K Cence</name>
</author>
<author>
<name sortKey="Grando, Ce" uniqKey="Grando C">CE Grando</name>
</author>
<author>
<name sortKey="Tiggermann, L" uniqKey="Tiggermann L">L Tiggermann</name>
</author>
<author>
<name sortKey="Colet, R" uniqKey="Colet R">R Colet</name>
</author>
<author>
<name sortKey="Lerin, La" uniqKey="Lerin L">LA Lerin</name>
</author>
<author>
<name sortKey="Cansian, Rl" uniqKey="Cansian R">RL Cansian</name>
</author>
<author>
<name sortKey="Toniazzo, G" uniqKey="Toniazzo G">G Toniazzo</name>
</author>
<author>
<name sortKey="De Oliveira, D" uniqKey="De Oliveira D">D de Oliveira</name>
</author>
<author>
<name sortKey="Valduga, E" uniqKey="Valduga E">E Valduga</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">3 Biotech</journal-id>
<journal-id journal-id-type="iso-abbrev">3 Biotech</journal-id>
<journal-title-group>
<journal-title>3 Biotech</journal-title>
</journal-title-group>
<issn pub-type="epub">2190-5738</issn>
<publisher>
<publisher-name>Springer Berlin Heidelberg</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmc">4724355</article-id>
<article-id pub-id-type="publisher-id">353</article-id>
<article-id pub-id-type="doi">10.1007/s13205-015-0353-y</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Enhanced production of pectinase by
<italic>Aspergillus</italic>
<italic>terreus</italic>
NCFT 4269.10 using banana peels as substrate</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Sethi</surname>
<given-names>Bijay Kumar</given-names>
</name>
<address>
<email>reach4bijay@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nanda</surname>
<given-names>Prativa Kumari</given-names>
</name>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sahoo</surname>
<given-names>Santilata</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Microbiology Research Laboratory, P. G. Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India</aff>
<aff id="Aff2">
<label></label>
Department of Botany, Saila Bala Women’s College, Cuttack, Odisha 753001 India</aff>
<aff id="Aff3">
<label></label>
MITS School of Biotechnology, 2 (P), Infocity, Patia, Chandaka Industrial Estate, Bhubaneswar, Odisha 751024 India</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>23</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>23</day>
<month>1</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2016</year>
</pub-date>
<volume>6</volume>
<issue>1</issue>
<elocation-id>36</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>8</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>
<italic>Aspergillus terreus</italic>
NCFT4269.10 was implemented in solid-state (SSF) and liquid static surface fermentation (LSSF) for biosynthesis of pectinase. Amongst various substrates, like, mustard oil cake, neem oil cake, groundnut oil cake, black gram peels, green gram peels, chickling vetch peels/grass pea peels wheat bran, pearl millet residues, finger millet waste, broken rice, banana peels (BP), apple pomace (AP) and orange peels, banana peel (
<italic>Musa paradisiaca</italic>
L.; Family: Musaceae) was most suitable for pectinase biosynthesis (LSSF: 400 ± 21.45 Uml
<sup>−1</sup>
; SSF: 6500 ± 1116.21 Ug
<sup>−1</sup>
). Optimization of process parameters using one-variable-at-a-time method revealed that an initial medium pH of 5.0 at 30 °C and 96 h of incubation along with mannitol, urea, ammonium persulfate and isoleucine have positive influence on pectinase production. Further, K
<sup>+</sup>
(1 mM), Riboflavin (10 mg 100 ml
<sup>−1</sup>
) and gibberellic acid (0.025 %, w/v) supported in enhanced pectinase production. Banana peels and AP at a ratio of 9:1, moisture content of 90 % with 2 % inoculum size were suitable combinations for production of pectinase. Similarly, 96 h of soaking time with 0.1 M phosphate buffer (pH 6.5) is essential for pectinase recovery. Purification to electrophoretic homogeneity revealed 1.42 fold purification with 8.08 % yield and a molecular weight of 24.6 kDa. Scaling up of various fermentation parameters and supplementing BP as the substrate for pectinase production with better recovery could make it promising for different industrial exploitation.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>
<italic>Aspergillus terreus</italic>
</kwd>
<kwd>Liquid static surface fermentation</kwd>
<kwd>OVAT</kwd>
<kwd>Solid state fermentation</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution>University Grants Commission, New Delhi, India</institution>
</funding-source>
<award-id>F.14-2 (SC)/2008 (SA-III), Dated. 31 MARCH, 2009</award-id>
<principal-award-recipient>
<name>
<surname>Sethi</surname>
<given-names>Bijay Kumar</given-names>
</name>
</principal-award-recipient>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>In the industrial arena, pectinase, the catch-all idiom that refers to mixtures of primarily three different enzymatic activities [pectin Esterase (PE), polygalacturonase (PG) and pectin/pectate lyase (PL/PAL)] is produced by a variety of bacteria (Kashyap et al.
<xref ref-type="bibr" rid="CR21">2001</xref>
) and fungi (Huang and Mahoney
<xref ref-type="bibr" rid="CR48">1999</xref>
). Huge portions of the fungal glycoside hydrolases belongs to GH family 28 are associated with the biodegradation of pectin backbone (Martens-Uzunova and Schaap
<xref ref-type="bibr" rid="CR28">2009</xref>
). The enzymes that hydrolyze pectic substances are broadly known as pectinolytic enzymes or pectinases, which include polygalacturonase, pectin esterase, pectin lyase, and pectate lyase on the basis of their mode of action (Dinu et al.
<xref ref-type="bibr" rid="CR9">2007</xref>
). Pectinolytic enzymes are categorized on the basis of their cleavage of the galacturonan portion of the pectin molecule. They can be distinguished between pectinesterases (PE, E.C 3.1.1.11), which modify pectin esters into low methoxyl pectins or pectic acid and pectin deploymerases, that split the glycosidic linkages between galacturonosyl (methyl ester) residues. Polygalacturonases split glycosidic linkage next to free carboxyl groups by hydrolysis, while pectin and pectate lyases split α-1, 4-glycosidic linkages by transelimination ensuing in galacturonide with a double bond between C
<sub>4</sub>
and C
<sub>5</sub>
at the non-reducing end and smite the α-1, 4-allied
<sc>d</sc>
-galacturonic acid remainders within the smooth provinces of pectin through a β, α-elimination mechanism. Both these endo types of PGs and PLs (E.C 3.2.1.15 and E.C 4.2.2.2, respectively) are recognized as the arbitrary splitters of pectin chain. Exo-polygalacturonases (exo-PGs, E.C 3.2.1.67) liberate monomers or dimmers from the non-reducing side of the chain, whereas exopectate lyases (exo-PALs, E.C 4.2.2.9) discharge unsaturated dimers from the reducing end. Pectinases comprise a consortium of enzymes indispensable for the hydrolysis of pectin, which consist of endo-polygalacturonase (EC 3.2.1.15), exo-polygalacturonase (EC 3.2.1.67), pectate lyase (EC 4.2.2.2), Exo-poly α-galactouronosidase (E.C.3.2.1.82), pectin lyase (EC 4.2.2.10), Exo-pectatelyase (E.C.4.2.2.9), Endopectin lyase (E.C.4.2.2.10) and pectin methyl esterase (EC 3.1.1.11). Depending on the pH optima, pectinases can also be categorized into acidic and alkaline types.</p>
<p>At contemporary, agricultural and food wastes are the major sources of pollution in developing countries which is being controlled by biological degradation using microorganisms for the biosynthesis of valuable compounds such as proteins, polysaccharides, oligosaccharides, vitamins, hormones, enzymes and others as raw materials for medical and industrial exploitations (El-Sheikh et al.
<xref ref-type="bibr" rid="CR10">2009</xref>
). Several microbes are capable of using these substances as carbon and energy sources for the biosynthesis of a vast array of pectinolytic enzymes in different environmental niches. But, the best-acknowledged microbial producers of pectinase are various species of
<italic>Aspergillus</italic>
and
<italic>A.</italic>
<italic>niger</italic>
is the most admired one (Godfrey and West
<xref ref-type="bibr" rid="CR13">1996</xref>
). The impending fungal species exploited for the biosynthesis of pectinase are
<italic>A. foetidus</italic>
(Sebastian et al.
<xref ref-type="bibr" rid="CR40">1996</xref>
),
<italic>A. niger</italic>
(Taragano et al.
<xref ref-type="bibr" rid="CR44">1997</xref>
),
<italic>A. awamori</italic>
(Blandino et al.
<xref ref-type="bibr" rid="CR7">2002</xref>
),
<italic>Rhizopus, Trichoderma, Penicillium</italic>
and
<italic>Fusarium</italic>
spp. (Zeni et al.
<xref ref-type="bibr" rid="CR47">2011</xref>
).</p>
<p>Pectinases, explicitly polygalacturonases (PG) have gained significant worldwide applications in food and textile industries, in the biosynthesis of fruit juice (Singh et al.
<xref ref-type="bibr" rid="CR43">2005</xref>
), plant tissue maceration, wastewater treatment, degumming of plant webbers without any damage to the end products (Kapoor et al.
<xref ref-type="bibr" rid="CR20">2001</xref>
) and processing of vegetables and fruits and for clarification of juices and wines (Pereira et al.
<xref ref-type="bibr" rid="CR36">2002</xref>
). To reiterate, commercially significant pectinases (PG) have been employed in preparation of apple juice for higher juice yield, clarity, colloid concentration and polyphenolic contents (Oszmianski et al.
<xref ref-type="bibr" rid="CR31">2009</xref>
), coffee and tea fermentations, oil extraction (Hoondal et al.
<xref ref-type="bibr" rid="CR15">2000</xref>
), purification of viruses (Salazar and Jayasinghe
<xref ref-type="bibr" rid="CR39">1999</xref>
), and enhancement of chromaticity and stability of red wines (Revilla and Jose
<xref ref-type="bibr" rid="CR38">2003</xref>
). It has also been successfully supplemented in concurrence with amylase, lipases, cellulases, and hemicellulases to get rid of sizing agents from cotton in a secure and eco-friendly approach (Hoondal et al.
<xref ref-type="bibr" rid="CR15">2000</xref>
). Altogether, pectinases from microbial sources contribute almost 25 % of world wide food enzyme trading (Tari et al.
<xref ref-type="bibr" rid="CR45">2007</xref>
).</p>
<p>Solid-state fermentation has been advocated superior than submerged culture for the processing of agricultural and agro-based industrial wastes for generating higher enzyme yield and regulating the biosynthesis of particular composition of enzyme mixtures (Patil and Dayanand
<xref ref-type="bibr" rid="CR33">2006</xref>
). The water activity (
<italic>a</italic>
<sub>w</sub>
), pH, temperature, incubation time, moisture content, inoculums size, presence of inhibitors or activators, carbon and nitrogen sources are critical factors that also influence pectinase biosynthesis in solid-state fermentation (Taragano et al.
<xref ref-type="bibr" rid="CR44">1997</xref>
). Further, the selection and optimization of substrate and culture condition is another most imperative approach to trim down industrial costs of enzyme biosynthesis.</p>
<p>Keeping in view, this present work aims at the bio-utilization of banana peels for biosynthesis of pectinase by
<italic>Aspergillus</italic>
<italic>terreus</italic>
NCFT4269.10. In this study, various process parameters were evaluated, optimized and established for enhanced biosynthesis of biotechnologically significant pectinase by
<italic>A. terreus</italic>
NCFT 4269.10 based on the medium composition and cultural conditions in tune with the effective utilization of banana peels and biosynthesis of pectinase for future promises.</p>
</sec>
<sec id="Sec2" sec-type="materials|methods">
<title>Materials and methods</title>
<sec id="Sec3">
<title>Substrates and chemicals</title>
<p>Various agro-waste residues like mustard oil cake (MoC), neem oil cake (NoC), groundnut oil cake (GnoC), black gram peels (BGP), green gram peels (GGP), chickling vetch peels/grass pea peels (CVP) wheat bran (WB), pearl millet residues (PMR), finger millet waste (FMW), broken rice (BR), banana peels (BP), apple pomace (AP), and orange peels (OP) were purchased from the market of Bhubaneswar, Odisha, India. Substrates were dried in the hot air oven at 60 °C up to 48 h, ground to fine powder, sieved and kept in sterile containers until used. All chemicals used in this study were of analytical reagent (AR) grade and purchased from Sigma, Hi-Media Limited, SRL Pvt. Limited and Merck India Limited (Mumbai, India).</p>
</sec>
<sec id="Sec4">
<title>Source of fungal inoculum</title>
<p>A pectinase producing seven-day-old potato dextrose agar (PDA) slant culture of
<italic>Aspergillus terreus</italic>
(NCFT 4269.10) (Sethi et al.
<xref ref-type="bibr" rid="CR41">2013a</xref>
) was suspended in 5.0 ml of sterile deionised water. Then, 1.0 ml of spore suspension was used as the inoculum for pre-fermentation culture and incubated at 30 ± 1 °C for a week to obtain about 5.0 × 10
<sup>8</sup>
 spores ml
<sup>−1</sup>
. Finally, an initial spore density of 1 × 10
<sup>7</sup>
 spores ml
<sup>−1</sup>
was used as inoculum for fermentation (Sethi et al.
<xref ref-type="bibr" rid="CR42">2013b</xref>
).</p>
</sec>
<sec id="Sec5">
<title>Selection of suitable substrate for fermentation</title>
<p>Liquid static surface fermentation (LSSF) and solid state fermentation (SSF) were carried out using pre-processed substrates (10 g) as the constituents of fermentation medium. In Erlenmeyer flask of 150 ml capacity, sterilized fermentation medium (50 ml) having either MoC, NoC, GnoC, BGP, GGP, CVP, WB, PMR, FMW, BR, BP, AP, and OP as substrates was inoculated with 1 × 10
<sup>7</sup>
 spores ml
<sup>−1</sup>
from 7 days old pre-fermentation culture broth and incubated at 30 ± 1 °C under static condition (Sethi et al.
<xref ref-type="bibr" rid="CR42">2013b</xref>
). Similarly, Erlenmeyer flasks (250 ml) containing each sterilized 5 g (w/w) of substrate and 8 ml of minimal salt solution were inoculated aseptically with optimum number of spore inoculum and incubated at 30 ± 1 °C with intermittent observation. After 96 h, fermented media (both LSSF and SSF) were processed for recovery of crude pectinase. Further, LSSF and SSF were carried out by taking the selected substrate for extracellular pectinase biosynthesis. The crude pectinase thus obtained was preserved at −20 °C for subsequent experiments. Dry weight of the biomass was determined after drying at 80 °C in hot air oven (Wadegati Instruments Ltd., Mumbai) up to 24 h.</p>
</sec>
<sec id="Sec6">
<title>Optimization of process parameters</title>
<p>Various environmental, nutritional and other fermentation parameters were established for enhanced production of pectinase using banana peel as the fermentation medium by SSF and LSSF. The process parameters optimized were pH (3–10), temperature (24–45 °C @ 3 °C interval), incubation time (24–168 h), additional carbon sources (1.0 %, w/w), nitrogen sources (organic and inorganic, 1.0 %, w/w), amino acids (1.0 mM), metal ions (1.0 mM), antioxidant vitamins (10–50 mg 100 ml
<sup>−1</sup>
), growth hormones (0.0025 mgg
<sup>−1</sup>
, w/w), combined agro-wastes, inoculum size (2–10 %) and initial moisture content (20–100 %). The effect of soaking time on fermented products (1–96 h), repeated extraction and various extractants were also standardized for the ease and economic down-streaming of pectinase. The approach adopted was to scale up one-variable-at-a-time (OVAT), independent of the others and consequently established conditions were adopted in rest of the experiments.</p>
</sec>
<sec id="Sec7">
<title>Purification of pectinase</title>
<p>The crude culture filtrate (~500 ml) was precipitated by gradual addition of 40–80 % ammonium sulfate [(NH
<sub>4</sub>
)
<sub>2</sub>
S0
<sub>4</sub>
] with constant stirring by a magnetic stirrer at 4 °C up to 24 h. Each precipitate was separated from the supernatant by centrifugation at 10,000×
<italic>g</italic>
for 15 min at 4 °C. After centrifugation, the supernatant was decanted and the solid precipitate was dissolved in phosphate buffer (pH 6.5) at a ratio of 0.1 g ml
<sup>−1</sup>
so as to obtain 10-times more concentrated enzyme solution (Jana et al.
<xref ref-type="bibr" rid="CR18">2013</xref>
). Thereafter, ammonium sulfate precipitated enzyme solution was dialyzed for 24 h at 4 °C with incessant stirring against a large volume (1 l capacity) of phosphate buffer (pH 6.5) for the complete removal of lower molecular weight metabolites and ammonium sulfate from the dialysate. To improve solute exchange, the dialysis buffer was replaced after every 2 h of incubation so as to ascertain a new concentration gradient. Then, the dialyzed enzyme was loaded into the Sephadex G-100 column (2.5 cm × 70 cm) and eluted with 50 mM phosphate buffer (pH 6.5) with the flow rate of 1 ml min
<sup>−1</sup>
. Fractions of 2 ml each were subsequently collected for estimation of protein (Lowry et al.
<xref ref-type="bibr" rid="CR24">1951</xref>
). The fractions showing maximum absorption at 750 nm were collected and evaluated for its enzyme activity. The enzyme positive fractions with higher enzyme activity were combined together, lyophilized and stored at −20 °C for further characterization.</p>
</sec>
<sec id="Sec8">
<title>Analytical methods</title>
<sec id="Sec9">
<title>Total protein determination</title>
<p>Crude and purified protein content was estimated as per Lowry et al. (
<xref ref-type="bibr" rid="CR24">1951</xref>
) taking bovine serum albumin as the standard and was expressed as µg of protein present per ml of extract obtained after fermentation and purification.</p>
</sec>
<sec id="Sec10">
<title>Pectinase assay</title>
<p>The Standard protocol of Sigma Quality Control Department (Khairnar et al.
<xref ref-type="bibr" rid="CR22">2009</xref>
) was used for the enzyme assay. 0.5 % pectin solution (4.90 ml), 50 mM iodine with 200 mM potassium iodide (5.0 ml), 1 M sodium carbonate (1.0 ml), 2 M sulfuric acid (2.0 ml), 1 % pectin indicator (1–2 drops) and diluted pectinase solution (100 µl) were mixed thoroughly by swirling. The mixture (test and blank) was titrated with 100 mM sodium thiosulfate until it was turned to light yellow. To that, 1 drop of pectin indicator (starch) was added and continuously titrated until solution becomes colorless. One unit (U) of pectinase activity was defined as the amount of enzyme that releases 1 µg of product in 1 min under the assay conditions. The calculation for pectinase activity is presented below.
<disp-formula id="Equ34">
<alternatives>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Units}}/{\text{ml}}\,{\text{enzyme}} = \left[ {\left( 1 \right) \, \left( {100} \right)\left( {{\text{ml}}\,{\text{of}}\,{\text{sodium}}\,{\text{thiosulfate}}\,{\text{for}}\,{\text{blank}} - {\text{ml}}\,{\text{of}}\,{\text{sodium}}\,{\text{thiosulfate}}\,{\text{for}}\,{\text{test}}} \right)\left( {\text{df}} \right)} \right]/\left( 5 \right) \, \left( {0.1} \right) \, \left( 2 \right)$$\end{document}</tex-math>
<mml:math id="M2" display="block">
<mml:mrow>
<mml:mtext>Units</mml:mtext>
<mml:mo stretchy="false">/</mml:mo>
<mml:mtext>ml</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>enzyme</mml:mtext>
<mml:mo>=</mml:mo>
<mml:mfenced close="]" open="[" separators="">
<mml:mrow>
<mml:mfenced close=")" open="(">
<mml:mn>1</mml:mn>
</mml:mfenced>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mfenced close=")" open="(">
<mml:mn>100</mml:mn>
</mml:mfenced>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mtext>ml</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>of</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>sodium</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>thiosulfate</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>for</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>blank</mml:mtext>
<mml:mo>-</mml:mo>
<mml:mtext>ml</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>of</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>sodium</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>thiosulfate</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>for</mml:mtext>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mtext>test</mml:mtext>
</mml:mrow>
</mml:mfenced>
<mml:mfenced close=")" open="(">
<mml:mtext>df</mml:mtext>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
<mml:mo stretchy="false">/</mml:mo>
<mml:mfenced close=")" open="(">
<mml:mn>5</mml:mn>
</mml:mfenced>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mn>0.1</mml:mn>
</mml:mrow>
</mml:mfenced>
<mml:mspace width="0.166667em"></mml:mspace>
<mml:mfenced close=")" open="(">
<mml:mn>2</mml:mn>
</mml:mfenced>
</mml:mrow>
</mml:math>
<graphic xlink:href="13205_2015_353_Article_Equ34.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where, 1 = one μmole galacturonic acid is oxidized by 1 microequivalent of I
<sub>2</sub>
, 100 = microequivalents of S
<sub>2</sub>
O
<sub>3</sub>
/ml of reagent E, df = dilution factor, 5 = time of reaction in minutes, 0.1 = volume (in mm) of enzyme used, 2 = microequivalents of S
<sub>2</sub>
O
<sub>3</sub>
oxidized per microequivalent of I
<sub>2</sub>
reduced.</p>
</sec>
<sec id="Sec11">
<title>SDS-PAGE and Zymographic analysis</title>
<p>The samples (crude and purified pectinase) were electrophoresed in 10 % SDS-PAGE for molecular weight determination (Laemmli
<xref ref-type="bibr" rid="CR23">1970</xref>
). For visualization of bands, gels were stained in a staining solution [0.1 % (w/v) Coomassie-Brilliant Blue R-250, 50 % (v/v) methanol, 7 % (v/v) glacial acetic acid and 43 ml milli Q distilled water] for 90 min at room temperature followed by destaining with 30 % (v/v) methanol, 7 % (v/v) acetic acid and 63 ml milli Q distilled water until the background was clear. The relative positions of bands were analyzed using Bio-Rad Gel documentation system. Different molecular weight protein markers ranging from 7–175 kDa (Bangalore Genei Ltd.) were used for SDS-PAGE.</p>
<p>For native PAGE, enzyme sample was loaded with loading dye in a 10 % non-denaturing gel and run for 8 h in a discontinuous buffer system using 50 mM Tris-0.1 M glycine running buffer (pH 8.8) at 4 °C and 20 mA current. The gel was incubated for 16 h at 37 °C in 1 % soluble pectin prepared by 50 mM citrate–phosphate buffer (pH 5.0) followed by staining with 1 % congo red solution for 15 min. Stained gel was washed repeatedly with 1 M NaCl until the bands become clear (Garcia-Garrido et al.
<xref ref-type="bibr" rid="CR12">2000</xref>
). The gel image was taken and analyzed by Bio-Rad Gel doc system.</p>
</sec>
<sec id="Sec12">
<title>Fermentation kinetics study</title>
<p>For fermentation using agro-wastes by
<italic>A. terreus</italic>
, the logistic Eq. (
<xref rid="Equ1" ref-type="">1</xref>
) and Luedeking-Piret model (Eq. 
<xref rid="Equ2" ref-type="">2</xref>
) were employed for microbial growth and enzyme biosynthesis, respectively. It is as follows.
<disp-formula id="Equ1">
<label>1</label>
<alternatives>
<tex-math id="M3">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{d}}x/{\text{d}}t = \mu_{\hbox{max} } \left\{ {1 - \left( {x/x_{\hbox{max} } } \right)} \right\}x$$\end{document}</tex-math>
<mml:math id="M4" display="block">
<mml:mrow>
<mml:mtext>d</mml:mtext>
<mml:mi>x</mml:mi>
<mml:mo stretchy="false">/</mml:mo>
<mml:mtext>d</mml:mtext>
<mml:mi>t</mml:mi>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi mathvariant="italic">μ</mml:mi>
<mml:mtext>max</mml:mtext>
</mml:msub>
<mml:mfenced close="}" open="{" separators="">
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>-</mml:mo>
<mml:mfenced close=")" open="(" separators="">
<mml:mrow>
<mml:mi>x</mml:mi>
<mml:mo stretchy="false">/</mml:mo>
<mml:msub>
<mml:mi>x</mml:mi>
<mml:mtext>max</mml:mtext>
</mml:msub>
</mml:mrow>
</mml:mfenced>
</mml:mrow>
</mml:mfenced>
<mml:mi>x</mml:mi>
</mml:mrow>
</mml:math>
<graphic xlink:href="13205_2015_353_Article_Equ1.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
<disp-formula id="Equ2">
<label>2</label>
<alternatives>
<tex-math id="M5">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{d}}P/{\text{d}}t = \alpha \mu x - \beta x$$\end{document}</tex-math>
<mml:math id="M6" display="block">
<mml:mrow>
<mml:mtext>d</mml:mtext>
<mml:mi>P</mml:mi>
<mml:mo stretchy="false">/</mml:mo>
<mml:mtext>d</mml:mtext>
<mml:mi>t</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi mathvariant="italic">α</mml:mi>
<mml:mi mathvariant="italic">μ</mml:mi>
<mml:mi>x</mml:mi>
<mml:mo>-</mml:mo>
<mml:mi mathvariant="italic">β</mml:mi>
<mml:mi>x</mml:mi>
</mml:mrow>
</mml:math>
<graphic xlink:href="13205_2015_353_Article_Equ2.gif" position="anchor"></graphic>
</alternatives>
</disp-formula>
where dx/dt: biomass accumulation in the culture medium (g l
<sup>−1</sup>
 h
<sup>−1</sup>
); d
<italic>P</italic>
/d
<italic>t</italic>
: enzyme accumulation in the culture medium (U ml
<sup>−1</sup>
 h
<sup>−1</sup>
);
<bold>
<italic>x</italic>
</bold>
: biomass (mg ml
<sup>−1</sup>
) at time (
<italic>t</italic>
);
<italic> µ</italic>
: specific growth rate (h
<sup>−1</sup>
);
<italic> µ</italic>
<sub>max</sub>
: highest specific growth rate observed during batch culture (mgl
<sup>−1</sup>
 h
<sup>−1</sup>
);
<italic> x</italic>
<sub>max</sub>
: maximum attainable biomass (mg ml
<sup>−1</sup>
);
<italic> α</italic>
: growth associated coefficient of enzyme production (U g
<sup>−1</sup>
);
<italic> β</italic>
: growth-independent coefficient of enzyme production (U g
<sup>−1</sup>
 h
<sup>−1</sup>
).</p>
</sec>
</sec>
<sec id="Sec13">
<title>Reproducibility of results</title>
<p>All experiments were carried out in triplicates (
<italic>n</italic>
 = 3) and repeated three times. The samples collected from each replicate were analyzed for biosynthesis of the enzyme including its activity and optimization (scale up) of culture conditions. Each value is an average of three parallel replicates. The ± and error bars indicate standard deviation among the replicates. For each individual experiment, one way ANOVA was calculated using SPSS 16.0 workbook software. Least significant differences were also calculated using Duncan’s new multiple range tests.</p>
</sec>
</sec>
<sec id="Sec14">
<title>Results and discussion</title>
<sec id="Sec15">
<title>Selection of suitable substrate</title>
<p>The increasing energy demands have focused worldwide attention on the utilization of renewable resources, particularly agricultural and forest residues, the major components of which are cellulose, starch, lignin, xylan, and pectin. These materials have attracted considerable attention as an alternative feedstock and energy source, since they are abundantly available in developing countries like India. Several microbes are capable of using these substances as carbon and energy sources by producing a vast array of enzymes in different environmental niches. Although, a large number of organisms biosynthesizing pectinases have been documented, but, assortment of industrially pertinent microbes remains a tiresome job especially, when physiologically impending strains are to be isolated to attain utmost yield (Pandey et al.
<xref ref-type="bibr" rid="CR32">1999</xref>
). The most difficult, labor intensive task in designing the production process entirely relies on the nature of microorganism, fermentation system and the substrate chosen. Keeping in view, a preliminary screening was performed using commercial citrus pectin for the selection of a suitable pectinolytic fungus (Sethi et al.
<xref ref-type="bibr" rid="CR41">2013a</xref>
). A native fungal isolate,
<italic>Aspergillus</italic>
<italic>terrues</italic>
NCFT 4269.10 was found to be superior in pectinase production as compared to the previously reported results (Patil et al.
<xref ref-type="bibr" rid="CR34">2012</xref>
; Maller et al.
<xref ref-type="bibr" rid="CR27">2013</xref>
). Therefore, this fungal species was used for the subsequent experiments. Nevertheless, commercial pectin as medium component may be too costly to accommodate in any fermentation process. Therefore, for selection of suitable and economic substrate for pectinase biosynthesis using fermentation, various low cost substrates like MoC, NoC, GnoC, BGP, GGP, CVP, WB, BR, PM, FM, BP, AP, and OP were evaluated individually as principal media components. Among the various substrates, BP was found suitable for noticeable production of pectinase (550 ± 70.71 Uml
<sup>−1</sup>
; 6500 ± 1116.21 Ugds
<sup>−1</sup>
) (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). Most of the substrates could not support the remarkable biosynthesis of pectinase except AP and OP (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). This can be attributed to the higher pectin content (10–21 %) of banana peels as compared to the different agro-wastes taken for the study. Further, banana peel is also prosperous in proteins, essential amino acids, dietary fibre, polyunsaturated fatty acids, iron, and potassium (Juarez-Garcia et al.
<xref ref-type="bibr" rid="CR19">2006</xref>
). The peels are rich in large quantities of dopamine, an antioxidants (80–560 mg per 100 g in peel) containing 9.14 % of N (González-Montelongo et al.
<xref ref-type="bibr" rid="CR14">2010</xref>
) which is the cause of enhanced production of pectinase. SSF system has been explored than SmF for high volume-high-valued pectinase production using a variety of solid residues, many of which are of agro-industrial residues in origin. They include apple peels (
<italic>Malus domestica</italic>
), orange peels (
<italic>Citrus sinensis</italic>
), lemon peels (
<italic>Citrus latifolia</italic>
), passion fruit peels (
<italic>Passiflora edulis</italic>
), commercial mate herb (
<italic>Illex paraguariensis</italic>
), rice straw (
<italic>Oryza sativa</italic>
), sugar cane bagasse (
<italic>Saccharum officinarum</italic>
), corn cob (
<italic>Zea mays</italic>
), wheat bran (
<italic>Triticum aestivum</italic>
), and soya bran (
<italic>Glycine max</italic>
) (Maller et al.
<xref ref-type="bibr" rid="CR26">2011</xref>
). Likewise, wheat bran (Abbasi and Mortazavipur
<xref ref-type="bibr" rid="CR1">2011</xref>
) and cocoa beans (Akintobi et al.
<xref ref-type="bibr" rid="CR5">2012</xref>
) were also utilized for biosynthesis of pectinase. The substrate specificity was also reported for polygalacturonases from
<italic>Mucor circinelloides</italic>
ITCC 6025 (Thakur et al.
<xref ref-type="bibr" rid="CR46">2010</xref>
) and
<italic>Aspergillus giganteus</italic>
(Pedrolli and Carmona
<xref ref-type="bibr" rid="CR35">2010</xref>
). Ramadas et al. (
<xref ref-type="bibr" rid="CR37">1996</xref>
) have reported three fold higher enzymatic activity in solid-state fermentation compared to static culture fermentation using
<italic>A</italic>
.
<italic>niger</italic>
that supports the present findings. In the same vein, this present study on agricultural residues has also shown that SSF is significantly better as a cultivation regimen as compared to SmF for production of fungal pectinase on banana peels.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Pectinase biosynthesis by
<italic>Aspergillus terreus</italic>
NCFT4269.10 in liquid static surface fermentation and solid state fermentation systems using various agricultural wastes as the substrates</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Fermentation medium</th>
<th align="left">Cultivation regimen</th>
<th align="left">Pectinase activity</th>
<th align="left">Total protein</th>
<th align="left">Biomass (g 50 ml
<sup>−1</sup>
)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2">MoC</td>
<td align="left">LSSF</td>
<td align="left">100 ± 11.11</td>
<td align="left">478.33 ± 23.75</td>
<td align="left">0.203 ± 0.013</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">21.75 ± 4.42</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">NoC</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">1723 ± 211.84</td>
<td align="left">0.094 ± 0.007</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">3.13 ± 0.77</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">GnoC</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">1759.99 ± 25.76</td>
<td align="left">0.243 ± 0.002</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">2593.33 ± 42.78</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">BGP</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">2446.64 ± 39.61</td>
<td align="left">0.085 ± 0.002</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">1106.64 ± 11.27</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">GGP</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">4229.99 ± 56.24</td>
<td align="left">0.157 ± 0.004</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">3889.98 ± 47.34</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">CVP</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">2266.98 ± 28.44</td>
<td align="left">0.2108 ± 0.006</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">2066.33 ± 21.11</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">WB</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">458.98 ± 11.72</td>
<td align="left">0.080 ± 0.001</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">229.99 ± 27.41</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">PM</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">246.19 ± 3.76</td>
<td align="left">0.1412 ± 0.212</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">288.98 ± 5.66</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">FM</td>
<td align="left">LSSF</td>
<td align="left">500 ± 47.66</td>
<td align="left">446.64 ± 11.91</td>
<td align="left">0.032 ± 0.004</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">4000 ± 256.91</td>
<td align="left">106.64 ± 7.37</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">BR</td>
<td align="left">LSSF</td>
<td align="left">0</td>
<td align="left">759.99 ± 5.073</td>
<td align="left">0.1981 ± 0.0812</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">0</td>
<td align="left">593.33 ± 3.121</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">BP</td>
<td align="left">LSSF</td>
<td align="left">550 ± 70.71</td>
<td align="left">1234.99 ± 57.97</td>
<td align="left">0.017 ± 0.044</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">6500 ± 1116.21</td>
<td align="left">1478.33 ± 76.44</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">AP</td>
<td align="left">LSSF</td>
<td align="left">400 ± 21.45</td>
<td align="left">4488.98 ± 112.56</td>
<td align="left">0.2117 ± 0.0217</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">4000 ± 276.82</td>
<td align="left">4467.33 ± 125.42</td>
<td align="left"></td>
</tr>
<tr>
<td align="left" rowspan="2">OP</td>
<td align="left">LSSF</td>
<td align="left">250 ± 21.77</td>
<td align="left">1759.99 ± 89.65</td>
<td align="left">0.031 ± 0.065</td>
</tr>
<tr>
<td align="left">SSF</td>
<td align="left">4000 ± 276.93</td>
<td align="left">2459.98 ± 124.76</td>
<td align="left"></td>
</tr>
<tr>
<td align="left">Control
<sup>a</sup>
</td>
<td align="left">LSSF</td>
<td align="left">100 ± 11.79</td>
<td align="left">1234.99 ± 48.22</td>
<td align="left">0.0804 ± 0.001</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The liquid static surface fermentation (LSSF) and solid state fermentation (SSF) experiments were performed for 96 h at 30 °C. The data represent mean ± SD of replicates (
<italic>n</italic>
 = 3). {Uml-1, µg/ml and µmol/ml are used for LSSF; Ugds-1, mg/gds and µmol/gds are used for SSF}</p>
<p>[Weight of biomass (W3) = weight of biomass and filter paper (W1)–only weight of filter paper (W2)]</p>
<p>
<sup>a</sup>
Control refers to the basal medium with 1 % (w/v) commercial pectin as the inducer of pectinase</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec16">
<title>Scale up of process parameters for enhanced biosynthesis of pectinase</title>
<sec id="Sec17">
<title>Effect of initial medium pH</title>
<p>For enhanced production of pectinase by
<italic>A. terreus</italic>
NCFT 4692.10, pH 5.0 was found to be suitable (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) which is supported by the findings of Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) and Adeleke et al. (
<xref ref-type="bibr" rid="CR2">2012</xref>
). But Patil et al. (
<xref ref-type="bibr" rid="CR34">2012</xref>
) reported that pH 6.0 was optimum for production of pectinase by
<italic>Paecilomyces</italic>
<italic>variotii</italic>
NFCCI 1769. As this enzyme was synthesized maximum at pH 5.0, hence can be an acidic pectinase (Kashyap et al.
<xref ref-type="bibr" rid="CR21">2001</xref>
) and it is polygalacturonase/pectin depolymerase/pectinase (E.C. 3.2.1.15). A decrease in final pH of the medium was observed in most of the cases. The pH of the medium also regulates the growth of the culture or exerts impact upon catalytic activity of the enzyme. According to Zeni et al. (
<xref ref-type="bibr" rid="CR47">2011</xref>
), the acidification or alkalization of culture medium reflects the substrate consumption. Due to this, relation between the synthesis of polygalacturonases and the consumption of nitrogen compounds, the change of pH can be used to conclude with important information about the enzyme production with commencement and retardation of its synthesis.
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Effect of pH (3.0–10.0), incubation time (24–144 h) and temperature (24–45 °C @ 3 °C interval) on pectinase production and mycelia growth in liquid static surface culture (LSSF) by
<italic>Aspergillus terreus</italic>
NCFT 4269.10 (for pH, biomass of
<italic>A. terreus</italic>
:
<italic>filled square</italic>
; pectinase:
<italic>filled diamond</italic>
; for temperature, biomass of
<italic>A. terreus</italic>
:
<italic>open square</italic>
; pectinase:
<italic>open diamond</italic>
)</p>
</caption>
<graphic xlink:href="13205_2015_353_Fig1_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
<sec id="Sec18">
<title>Effect of temperature</title>
<p>Keeping the pH of the fermentation medium constant (pH 5.0), the LSSF was carried out at varying range of temperature (24–45 °C; an interval of 3 °C) for 96 h. Biosynthesis of pectinase and mycelial growth were utmost at 30 °C (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). The enzyme, pectinase biosynthesis by
<italic>A</italic>
.
<italic>terreus</italic>
is in accordance with the report of Maciel et al. (
<xref ref-type="bibr" rid="CR25">2011</xref>
). Similarly, for pectinase biosynthesis, Patil et al. (
<xref ref-type="bibr" rid="CR34">2012</xref>
), Adeleke et al. (
<xref ref-type="bibr" rid="CR2">2012</xref>
) and Maller et al. (
<xref ref-type="bibr" rid="CR27">2013</xref>
) reported that 40 °C temperature was suitable which disagrees with the present findings. Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) have also documented an optimum biosynthesis of pectinase using orange peels by
<italic>Aspergillus niger</italic>
at 50 °C. Nevertheless, the assessment of enzyme activities biosynthesized by numerous microorganisms is complicated, while discrete culture parameters and enzyme activity determinations have been employed (Maciel et al.
<xref ref-type="bibr" rid="CR25">2011</xref>
).</p>
</sec>
<sec id="Sec19">
<title>Effect of incubation time on biosynthesis of pectinase</title>
<p>At constant pH and temperature, the liquid static surface fermentation was performed at varying incubation period and concluded that maximum production was attained at 96 h of incubation though the biosynthesis started at 24 h. Meanwhile, the generation of biomass initiated within 24 h and gradually increased up to 144 h without showing any decline in growth profile. Further, the biosynthesis of enzyme was not strongly correlated with biomass production (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Maller et al. (
<xref ref-type="bibr" rid="CR26">2011</xref>
) have also reported that production of maximum pectinase by
<italic>A</italic>
.
<italic>niveus</italic>
was recorded at 96 h of incubation which is in accordance with the current findings. Similarly, Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) reported an optimum production of pectinase using orange peels as the agro-wastes by
<italic>Aspergillus niger</italic>
at 50 °C, pH 5 and 96 h of incubation. Patil et al. (
<xref ref-type="bibr" rid="CR34">2012</xref>
) reported that maximum exo-polygalacturonase activity was obtained on the third day of incubation at 40 °C which differs from the present findings. Adeleke et al. (
<xref ref-type="bibr" rid="CR2">2012</xref>
) concluded that
<italic>Penicillium atrovenetum</italic>
,
<italic>Aspergillus flavus</italic>
and
<italic>A. oryzae</italic>
produced polygalacturonase optimally on the 5th day while endoglucanase was produced optimally on the 7th day. The present finding was somehow different from the above reports and this might be due to the nature of substrate that induces the production of the enzyme at early late phase.</p>
</sec>
<sec id="Sec20">
<title>Effect of carbon sources on production of pectinase</title>
<p>Pectinase was produced at constant pH and temperature for 96 h with supplementation of additional carbon sources. It was concluded that pectinase production was enhanced when mannitol was served as the additional source of carbon. Rest of the carbon sources was not appropriate for biosynthesis of pectinase. Almost half of the activity was reduced as compared to the control when starch was supplemented with the banana peels as the nutrient supplement (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Starch as a substrate could not be able to support the secretion of pectinase is also reported by Arotupin (
<xref ref-type="bibr" rid="CR6">2007</xref>
). Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) reported an optimum production of pectinase on orange peels by
<italic>Aspergillus niger</italic>
when supplemented with sucrose. Similarly, Abbasi and Mortazavipur (
<xref ref-type="bibr" rid="CR1">2011</xref>
) reported glucose and pectin supplementation along with wheat flour enhanced the Exo-PGase activity. This ability of
<italic>A. terreus</italic>
indicates that polygalacturonase production is not only inducible but constitutive.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Effect of various carbon and nitrogen sources on the mycelia growth and pectinase production by
<italic>Aspergillus terreus</italic>
, where,
<italic>Glu</italic>
glucose,
<italic>Mal</italic>
maltose,
<italic>Lac</italic>
lactose,
<italic>Man</italic>
mannitol,
<italic>Suc</italic>
sucrose,
<italic>Str</italic>
starch,
<italic>Cell</italic>
cellulose,
<italic>AP</italic>
ammonium persulfate,
<italic>AN</italic>
ammonium nitrate,
<italic>AS</italic>
ammonium sulfate,
<italic>AC</italic>
ammonium chloride,
<italic>SN</italic>
sodium nitrate,
<italic>UR</italic>
urea,
<italic>Pep</italic>
peptone,
<italic>Trp</italic>
tryptone,
<italic>Gly</italic>
glycine,
<italic>Gel</italic>
gelatin,
<italic>YE</italic>
yeast extract and
<italic>BE</italic>
beef extract</p>
</caption>
<graphic xlink:href="13205_2015_353_Fig2_HTML" id="MO4"></graphic>
</fig>
</p>
</sec>
<sec id="Sec21">
<title>Effect of nitrogen sources on production of pectinase</title>
<p>Out of the five organic nitrogen sources, peptone was found to be the best organic nitrogen source followed by yeast extract for exuberant biosynthesis of pectinase. Among all inorganic nitrogen sources evaluated, ammonium persulfate was most suitable for production of pectinase followed by sodium nitrate and urea. About three-fold increase in pectinase activity was attained with ammonium persulfate. All inorganic nitrogen sources have positive influence on pectinase biosynthesis indicating that the enzyme synthesis can be enhanced by supplementing cost-effective inorganic nitrogen sources (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). In a study by Adeleke et al. (
<xref ref-type="bibr" rid="CR2">2012</xref>
), highest production of polygalacturonase and endoglucanase by
<italic>Penicillium atrovenetum</italic>
was observed at pH 5, 40 °C and at 0.2 % ammonium persulfate which supports the present finding with maximum synthesis of pectinase (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Similar finding was also obtained by Akhter et al. (
<xref ref-type="bibr" rid="CR4">2011</xref>
). Among the organic nitrogen substrates utilized peptone supported pectinase yield and can be comparable with the results reported by Akhter et al. (
<xref ref-type="bibr" rid="CR4">2011</xref>
). This is in consonance with Arotupin (
<xref ref-type="bibr" rid="CR6">2007</xref>
) who reported that organic nitrogen sources maintain the growth of fungi more than inorganic nitrogen sources. During growth, the fungi probably hydrolyze the organic nitrogen releasing their mineral component and other growth factors present in them into constituents that can be easily incorporated into the cellular metabolism.</p>
</sec>
<sec id="Sec22">
<title>Effect of amino acids on production of pectinase</title>
<p>In the present study, seventeen amino acids were supplemented to the fermentation medium and found that isoleucine at a concentration of 1 mM enhanced three-fold biosynthesis of pectinase, whereas, maximum biomass was attained with proline (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Demir et al. (
<xref ref-type="bibr" rid="CR8">2011</xref>
) suggested that
<sc>l</sc>
-cysteine and ascorbic acid significantly enhanced pectinase activity in
<italic>Geobacillus</italic>
<italic>stearothermophilus</italic>
which differs from the present findings.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Effect of amino acids, metal ions, vitamins and growth regulators on the mycelia growth and pectinase production by
<italic>Aspergillus terreus</italic>
NCFT 4269.10
<sup>a</sup>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Different sources</th>
<th align="left" colspan="3">Pectinase</th>
</tr>
<tr>
<th align="left">Biomass (g/50 ml)</th>
<th align="left">Activity (Uml
<sup>−1</sup>
)</th>
<th align="left">pH
<sup>b</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="4">
<italic>Amino acids (5</italic>
 
<italic>mM/100</italic>
 
<italic>ml)</italic>
</td>
</tr>
<tr>
<td align="left">Alanine</td>
<td align="left">0.45 ± 0.001
<sup>bc</sup>
</td>
<td align="left">1150 ± 71
<sup>ef</sup>
</td>
<td align="left">4.3</td>
</tr>
<tr>
<td align="left">Proline</td>
<td align="left">0.78 ± 0.007
<sup>a</sup>
</td>
<td align="left">450 ± 71
<sup>jk</sup>
</td>
<td align="left">5.6</td>
</tr>
<tr>
<td align="left">Valine</td>
<td align="left">0.52 ± 0.006
<sup>b</sup>
</td>
<td align="left">800 ± 14
<sup>1h</sup>
</td>
<td align="left">4.6</td>
</tr>
<tr>
<td align="left">Aspartic acid</td>
<td align="left">0.41 ± 0.005
<sup>c</sup>
</td>
<td align="left">700 ± 14
<sup>1i</sup>
</td>
<td align="left">4.2</td>
</tr>
<tr>
<td align="left">Methionine</td>
<td align="left">0.67 ± 0.228
<sup>ab</sup>
</td>
<td align="left">750 ± 71
<sup>ih</sup>
</td>
<td align="left">4.8</td>
</tr>
<tr>
<td align="left">Glutamate</td>
<td align="left">0.35 ± 0.007
<sup>c</sup>
</td>
<td align="left">350 ± 71
<sup>k</sup>
</td>
<td align="left">3.9</td>
</tr>
<tr>
<td align="left">
<sc>l</sc>
-lycine</td>
<td align="left">0.39 ± 0.008
<sup>c</sup>
</td>
<td align="left">950 ± 71
<sup>g</sup>
</td>
<td align="left">4.4</td>
</tr>
<tr>
<td align="left">Cysteine</td>
<td align="left">0.39 ± 0.007
<sup>c</sup>
</td>
<td align="left">850 ± 71
<sup>gh</sup>
</td>
<td align="left">4.4</td>
</tr>
<tr>
<td align="left">Histidine</td>
<td align="left">0.42 ± 0.004
<sup>c</sup>
</td>
<td align="left">650 ± 71
<sup>j</sup>
</td>
<td align="left">4.2</td>
</tr>
<tr>
<td align="left">Phenyl alanine</td>
<td align="left">0.32 ± 0.007
<sup>c</sup>
</td>
<td align="left">850 ± 71
<sup>gh</sup>
</td>
<td align="left">4.7</td>
</tr>
<tr>
<td align="left">Isoleucine</td>
<td align="left">0.49 ± 0.031
<sup>bc</sup>
</td>
<td align="left">1700 ± 141
<sup>b</sup>
</td>
<td align="left">7.7</td>
</tr>
<tr>
<td align="left">Threonine</td>
<td align="left">0.32 ± 0.001
<sup>c</sup>
</td>
<td align="left">1400 ± 141
<sup>d</sup>
</td>
<td align="left">4.2</td>
</tr>
<tr>
<td align="left">Tryptophan</td>
<td align="left">0.46 ± 0.009
<sup>bc</sup>
</td>
<td align="left">200 ± 0.00 
<sup>l</sup>
</td>
<td align="left">4.1</td>
</tr>
<tr>
<td align="left">Agrinine</td>
<td align="left">0.28 ± 0.007
<sup>d</sup>
</td>
<td align="left">850 ± 71
<sup>gh</sup>
</td>
<td align="left">4.9</td>
</tr>
<tr>
<td align="left">Leucine</td>
<td align="left">0.37 ± 0.000
<sup>bc</sup>
</td>
<td align="left">250 ± 71
<sup>kl</sup>
</td>
<td align="left">4.3</td>
</tr>
<tr>
<td align="left">Glycine</td>
<td align="left">0.35 ± 0.000
<sup>c</sup>
</td>
<td align="left">1150 ± 71
<sup>ef</sup>
</td>
<td align="left">4.7</td>
</tr>
<tr>
<td align="left">Serine</td>
<td align="left">ND</td>
<td align="left">ND</td>
<td align="left">ND</td>
</tr>
<tr>
<td align="left" colspan="4">
<italic>Metal ions (1</italic>
 
<italic>mM)</italic>
</td>
</tr>
<tr>
<td align="left">Zn
<sup>2+</sup>
</td>
<td align="left">0.05 ± 0.001
<sup>h</sup>
</td>
<td align="left">350 ± 71
<sup>kl</sup>
</td>
<td align="left">4.9</td>
</tr>
<tr>
<td align="left">K
<sup>+</sup>
</td>
<td align="left">0.12 ± 0.051
<sup>e</sup>
</td>
<td align="left">1650 ± 71
<sup>bc</sup>
</td>
<td align="left">4.9</td>
</tr>
<tr>
<td align="left">Ag
<sup>2+</sup>
</td>
<td align="left">0.08 ± 0.002
<sup>f</sup>
</td>
<td align="left">50 ± 71
<sup>m</sup>
</td>
<td align="left">4.4</td>
</tr>
<tr>
<td align="left">Fe
<sup>2+</sup>
</td>
<td align="left">0.11 ± 0.012
<sup>e</sup>
</td>
<td align="left">250 ± 71
<sup>l</sup>
</td>
<td align="left">4.8</td>
</tr>
<tr>
<td align="left">Mg
<sup>+</sup>
</td>
<td align="left">0.15 ± 0.011
<sup>e</sup>
</td>
<td align="left">200 ± 71
<sup>l</sup>
</td>
<td align="left">4.7</td>
</tr>
<tr>
<td align="left">Cu
<sup>2+</sup>
</td>
<td align="left">0.13 ± 0.014
<sup>e</sup>
</td>
<td align="left">450 ± 71
<sup>k</sup>
</td>
<td align="left">4.2</td>
</tr>
<tr>
<td align="left">Mn
<sup>+</sup>
</td>
<td align="left">0.13 ± 0.011
<sup>e</sup>
</td>
<td align="left">1250 ± 141
<sup>e</sup>
</td>
<td align="left">4.4</td>
</tr>
<tr>
<td align="left">Ca
<sup>+</sup>
</td>
<td align="left">0.11 ± 0.000
<sup>e</sup>
</td>
<td align="left">200 ± 71
<sup>l</sup>
</td>
<td align="left">5.1</td>
</tr>
<tr>
<td align="left">Hg
<sup>+</sup>
</td>
<td align="left">0.05 ± 0.001
<sup>g</sup>
</td>
<td align="left">750 ± 141
<sup>ih</sup>
</td>
<td align="left">5.0</td>
</tr>
<tr>
<td align="left">EDTA</td>
<td align="left">0.12 ± 0.016
<sup>e</sup>
</td>
<td align="left">400 ± 71
<sup>k</sup>
</td>
<td align="left">4.7</td>
</tr>
<tr>
<td align="left" colspan="4">
<italic>Vitamins (mg/100</italic>
 
<italic>ml)</italic>
</td>
</tr>
<tr>
<td align="left" colspan="4">Vitamin C</td>
</tr>
<tr>
<td align="left"> 10</td>
<td align="left">1.89 ± 0.00
<sup>b</sup>
</td>
<td align="left">3650 ± 212
<sup>a</sup>
</td>
<td align="left">6.9</td>
</tr>
<tr>
<td align="left"> 20</td>
<td align="left">1.95 ± 0.03
<sup>a</sup>
</td>
<td align="left">3150 ± 71
<sup>e</sup>
</td>
<td align="left">6.4</td>
</tr>
<tr>
<td align="left"> 30</td>
<td align="left">2.03 ± 0.07
<sup>a</sup>
</td>
<td align="left">3250 ± 71
<sup>d</sup>
</td>
<td align="left">6.1</td>
</tr>
<tr>
<td align="left"> 40</td>
<td align="left">1.89 ± 0.12
<sup>b</sup>
</td>
<td align="left">3350 ± 212
<sup>cd</sup>
</td>
<td align="left">6.4</td>
</tr>
<tr>
<td align="left"> 50</td>
<td align="left">1.99 ± 0.02
<sup>a</sup>
</td>
<td align="left">3350 ± 212
<sup>cd</sup>
</td>
<td align="left">6.5</td>
</tr>
<tr>
<td align="left" colspan="4">Riboflavin</td>
</tr>
<tr>
<td align="left"> 10</td>
<td align="left">1.98 ± 0.01
<sup>a</sup>
</td>
<td align="left">3700 ± 141
<sup>a</sup>
</td>
<td align="left">6.2</td>
</tr>
<tr>
<td align="left"> 20</td>
<td align="left">1.81 ± 0.08
<sup>cd</sup>
</td>
<td align="left">3350 ± 212
<sup>c</sup>
</td>
<td align="left">6.6</td>
</tr>
<tr>
<td align="left"> 30</td>
<td align="left">1.59 ± 0.13
<sup>e</sup>
</td>
<td align="left">3250 ± 71
<sup>d</sup>
</td>
<td align="left">6.6</td>
</tr>
<tr>
<td align="left"> 40</td>
<td align="left">1.52 ± 0.08
<sup>e</sup>
</td>
<td align="left">3150 ± 71
<sup>e</sup>
</td>
<td align="left">6.7</td>
</tr>
<tr>
<td align="left"> 50</td>
<td align="left">2.11 ± 0.02
<sup>a</sup>
</td>
<td align="left">3450 ± 71
<sup>b</sup>
</td>
<td align="left">6.2</td>
</tr>
<tr>
<td align="left" colspan="4">Folic acid</td>
</tr>
<tr>
<td align="left"> 10</td>
<td align="left">1.64 ± 0.05
<sup>de</sup>
</td>
<td align="left">3400 ± 141
<sup>bc</sup>
</td>
<td align="left">5.2</td>
</tr>
<tr>
<td align="left"> 20</td>
<td align="left">1.45 ± 0.03
<sup>ef</sup>
</td>
<td align="left">3250 ± 71
<sup>ce</sup>
</td>
<td align="left">5.1</td>
</tr>
<tr>
<td align="left"> 30</td>
<td align="left">1.54 ± 0.06
<sup>e</sup>
</td>
<td align="left">3250 ± 71
<sup>cd</sup>
</td>
<td align="left">5.4</td>
</tr>
<tr>
<td align="left"> 40</td>
<td align="left">1.48 ± 0.02
<sup>e</sup>
</td>
<td align="left">3350 ± 212
<sup>c</sup>
</td>
<td align="left">5.3</td>
</tr>
<tr>
<td align="left"> 50</td>
<td align="left">1.12 ± 0.02
<sup>g</sup>
</td>
<td align="left">3250 ± 71
<sup>cd</sup>
</td>
<td align="left">5.5</td>
</tr>
<tr>
<td align="left" colspan="4">Vitamin E</td>
</tr>
<tr>
<td align="left"> 10</td>
<td align="left">1.78 ± 0.12
<sup>d</sup>
</td>
<td align="left">3400 ± 141
<sup>c</sup>
</td>
<td align="left">6.3</td>
</tr>
<tr>
<td align="left"> 20</td>
<td align="left">1.89 ± 0.01
<sup>b</sup>
</td>
<td align="left">3450 ± 71
<sup>bc</sup>
</td>
<td align="left">6.2</td>
</tr>
<tr>
<td align="left"> 30</td>
<td align="left">1.37 ± 0.01
<sup>f</sup>
</td>
<td align="left">3250 ± 71
<sup>d</sup>
</td>
<td align="left">5.7</td>
</tr>
<tr>
<td align="left"> 40</td>
<td align="left">1.42 ± 0.01
<sup>ef</sup>
</td>
<td align="left">3350 ± 71
<sup>bc</sup>
</td>
<td align="left">6.3</td>
</tr>
<tr>
<td align="left"> 50</td>
<td align="left">1.04 ± 0.00
<sup>g</sup>
</td>
<td align="left">3300 ± 141
<sup>c</sup>
</td>
<td align="left">6.4</td>
</tr>
<tr>
<td align="left" colspan="4">
<italic>Growth regulators (0.0025</italic>
 
<italic>mg/g, w/w)</italic>
</td>
</tr>
<tr>
<td align="left">Gibberellic acid</td>
<td align="left">1.08 ± 0.16
<sup>a</sup>
</td>
<td align="left">1400 ± 100
<sup>a</sup>
</td>
<td align="left">5.2</td>
</tr>
<tr>
<td align="left">Kinetin</td>
<td align="left">1.03 ± 0.13
<sup>a</sup>
</td>
<td align="left">950 ± 50
<sup>bc</sup>
</td>
<td align="left">4.7</td>
</tr>
<tr>
<td align="left">6-Benzylaminopurine</td>
<td align="left">0.93 ± 0.21
<sup>b</sup>
</td>
<td align="left">700 ± 100
<sup>c</sup>
</td>
<td align="left">4.9</td>
</tr>
<tr>
<td align="left">2,4-Dichlorophenoxyacetic acid</td>
<td align="left">0.47 ± 0.08
<sup>c</sup>
</td>
<td align="left">200 ± 58
<sup>d</sup>
</td>
<td align="left">5.3</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The data represent mean ± SD of replicates (
<italic>n</italic>
 = 3). Mean values within a column with different upper-script letters are significantly different at
<italic>p</italic>
 ≤ 0.05</p>
<p>
<sup>a</sup>
The liquid static surface fermentation experiments were performed for 4 days at 30 °C for all the cases</p>
<p>
<sup>b</sup>
pH: initial pH was adjusted 7.0 required for the biosynthesis of pectinase</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec23">
<title>Effect of metal ions</title>
<p>In the present study, it was observed that K
<sup>+</sup>
has positive influence on biosynthesis of pectinase in comparison to other metal ions. Nonetheless, Cu
<sup>2+</sup>
, Zn
<sup>2+</sup>
and Ca
<sup>2+</sup>
have supported in biomass production. Addition of K
<sup>+</sup>
to the fermentation medium at pH 5.0, temperature 30 °C and incubation of 96 h exhibited about three-fold higher pectinase biosynthesis (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). This is also authenticated that pectinase may be a metalloenzyme, which is activated in the presence of metals, especially, the K
<sup>+</sup>
. JagadeeshBabu and Viswanathan (
<xref ref-type="bibr" rid="CR17">2010</xref>
) have reported that significant enhancement in the level of pectinase production by
<italic>A.</italic>
<italic>foetidus</italic>
NCIM 505 was achieved with Cu
<sup>2+</sup>
which was found to be deleterious for
<italic>A</italic>
.
<italic>terreus</italic>
.</p>
</sec>
<sec id="Sec24">
<title>Effect of vitamins on biosynthesis of pectinase</title>
<p>The influence of various vitamins on the production of biomass and pectinase using
<italic>A. terreus</italic>
was evaluated by supplementing with banana peel medium at LSSF and found that riboflavin at 10 mg/100 ml concentration exhibited ~sevenfolds pectinase activity (3700 ± 53.03 Uml
<sup>−1</sup>
) (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Maximum biomass was obtained with riboflavin when supplemented at 50 mg/100 ml concentration to the fermentation medium. Afifi et al. (
<xref ref-type="bibr" rid="CR3">2008</xref>
) also reported that vitamin C had the most pronounced effect on growth, protein accumulation and pectinase production by
<italic>P. olsonii</italic>
which deviates from the present findings. Similarly, vitamin C and riboflavin stimulated the synthesis of pectinase. From the results obtained with
<italic>A. terreus,</italic>
it is suggested that supplementation of vitamins is not an absolute demand for the production of pectinase and growth. Similar observations were also reported with
<italic>Volvariella esculanta</italic>
(Jonathan et al.
<xref ref-type="bibr" rid="CR49">2004</xref>
) and
<italic>V. speciosa</italic>
(Fasidi and Akwakwa
<xref ref-type="bibr" rid="CR11">1996</xref>
), the edible mushrooms of Nigeria.</p>
</sec>
<sec id="Sec25">
<title>Effect of plant growth hormones on biosynthesis of pectinase</title>
<p>To determine the effect of growth hormones (BAP, 2–4 D, Kinetin and gibberellic acid) on production of the enzyme, fermentation medium was supplemented with various growth hormones at the concentration of 0.025 % (w/v) after sterilization. Except 2–4, D, all the rest three supported in secretion of pectinase as well as production of protein and biomass (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Negi and Banerjee (
<xref ref-type="bibr" rid="CR30">2010</xref>
) also studied the effect of growth hormones on production of pectinase and protease and observed that indol acetic acid (IAA) and Indol-3-butyric acid (IBA) stimulated production of both the enzymes produced by
<italic>A. awamori</italic>
. The report of Negi and Banerjee (
<xref ref-type="bibr" rid="CR30">2010</xref>
) indicates that napthelene acitic acid (NAA) and 2–4, D enhanced production of protease but on the other hand, biosynthesis of pectinase was reduced.</p>
</sec>
<sec id="Sec26">
<title>Effect of mixed substrates on enzyme production</title>
<p>Various agro-wastes were mixed at different proportions and evaluated for their suitability to enhance the production of pectinase using SSF. It was concluded that BP: AP @ 9:1; BP: OP @ 3:7 exhibited highest pectinase production (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). Similarly, Adeleke et al. (
<xref ref-type="bibr" rid="CR2">2012</xref>
) evaluated the potential of the fungi to biosynthesize pectinase and cellulase employing orange peels as substrates. Mixture of orange bagasse and wheat bran was the best substrate for the production of pectinase in solid state fermentation using a
<italic>Penicillium</italic>
sp.
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Effect of mixed agro-wastes on pectinase biosynthesis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Mixed substrates</th>
<th align="left">Ratio</th>
<th align="left">Pectinase activity (Ugds
<sup>−1</sup>
)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="5">Banana peels : orange peels</td>
<td align="left">1:9</td>
<td char="±" align="char">8500 ± 707.1
<sup>bc</sup>
</td>
</tr>
<tr>
<td align="left">3:7</td>
<td char="±" align="char">10,000 ± 0.00
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left">5:5</td>
<td char="±" align="char">8500 ± 707.1
<sup>c</sup>
</td>
</tr>
<tr>
<td align="left">7:3</td>
<td char="±" align="char">7500 ± 707.1
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left">9:1</td>
<td char="±" align="char">9000 ± 0.00
<sup>bc</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="5">Banana peels: apple pomace</td>
<td align="left">1:9</td>
<td char="±" align="char">4500 ± 707.1
<sup>g</sup>
</td>
</tr>
<tr>
<td align="left">3:7</td>
<td char="±" align="char">4000 ± 0.00
<sup>g</sup>
</td>
</tr>
<tr>
<td align="left">5:5</td>
<td char="±" align="char">8500 ± 707.1
<sup>c</sup>
</td>
</tr>
<tr>
<td align="left">7:3</td>
<td char="±" align="char">9500 ± 707.1
<sup>b</sup>
</td>
</tr>
<tr>
<td align="left">9:1</td>
<td char="±" align="char">10,500 ± 707.1
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="5">Orange peels : apple pomace</td>
<td align="left">1:9</td>
<td char="±" align="char">7000 ± 1414.2
<sup>de</sup>
</td>
</tr>
<tr>
<td align="left">3:7</td>
<td char="±" align="char">6500 ± 707.1
<sup>e</sup>
</td>
</tr>
<tr>
<td align="left">5:5</td>
<td char="±" align="char">7000 ± 1414.2
<sup>de</sup>
</td>
</tr>
<tr>
<td align="left">7:3</td>
<td char="±" align="char">9500 ± 707.1
<sup>bc</sup>
</td>
</tr>
<tr>
<td align="left">9:1</td>
<td char="±" align="char">7000 ± 1414.2
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left">Control
<sup>a</sup>
</td>
<td align="left"></td>
<td char="±" align="char">5500 ± 707.1
<sup>f</sup>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<sup>a</sup>
Control refers to only BP taken as solid state fermentation medium (10 % w/v). The solid state fermentation setups were performed as per the above combination for a period of 96 h at 30 °C. The data represent mean ± SD of replicates (
<italic>n</italic>
 = 3). Mean values within a column with different upper-script letters are significantly different at
<italic>p</italic>
 ≤ 0.05</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec27">
<title>Effect of inoculum size</title>
<p>To determine the effect of inoculum size on production of enzyme, 2–10 % (v/w) inoculum was used in SSF medium by spore counting with haemocytometer and spectrophotometric analysis and evaluated for the production of enzyme. With 2 % inoculum, the biosynthesis of pectinase was maximum. However, further increase in size of inoculum resulted in decreased enzyme synthesis, probably due to depletion of the nutrients in the fermented medium. Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) reported an optimum production of pectinase on orange peels by
<italic>Aspergillus niger</italic>
using 2.5 ml inoculums size. Maciel et al. (
<xref ref-type="bibr" rid="CR25">2011</xref>
) have also reported that 1 × 10
<sup>7</sup>
sporesg
<sup>−1</sup>
was best for maximum synthesis of pectinase which was also similar with the report obtained from
<italic>A</italic>
.
<italic>terreus</italic>
.</p>
</sec>
<sec id="Sec28">
<title>Effect of initial moisture content</title>
<p>At 90 % moisture content optimum pectinase was produced (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). But, Maller et al. (
<xref ref-type="bibr" rid="CR26">2011</xref>
) reported 67 % humidity is suitable for biosynthesis of pectinase which is different in case of
<italic>A. terreus</italic>
(Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Mrudula and Anitharaj (
<xref ref-type="bibr" rid="CR29">2011</xref>
) reported an optimum production of pectinase using orange peels by
<italic>Aspergillus niger</italic>
with 1:2 % (v/w) moisture.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Effect of inoculum size and initial moisture content on biosynthesis of extracellular pectinase by
<italic>Aspergillus terreus</italic>
NCFT 4269.10 performed for 96 h at 30 °C using solid state fermentation</p>
</caption>
<graphic xlink:href="13205_2015_353_Fig3_HTML" id="MO5"></graphic>
</fig>
</p>
</sec>
<sec id="Sec29">
<title>Down streaming of pectinase</title>
<p>After the successful SSF, extraction of pectinase was an obligatory step in achieving maximum recovery of this enzyme. Hence, the fermented matter was soaked with phosphate buffer (0.1 M) at varying interval of time to standardize an efficient soaking time for maximum release of enzyme. To extract the pectinase, fermented matter was soaked with phosphate buffer and 48 h of soaking was most suitable for maximum recovery of the enzyme. Repeated extraction with buffer facilitated the release of pectinase. However, at second time extraction with phosphate buffer, the release of enzyme was better than the first extraction. Among nine extractants, phosphate buffer (pH 6.5; 0.1 M) was most suitable in the release of enzyme. Other extractants were less supportive for efficient release of pectinase (Table 
<xref rid="Tab4" ref-type="table">4</xref>
).
<table-wrap id="Tab4">
<label>Table 4</label>
<caption>
<p>Effect of soaking time, repeated extraction and various extractants on pectinase recovery</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Extraction</th>
<th align="left" colspan="3">Pectinase activity</th>
</tr>
<tr>
<th align="left">Ugds
<sup>−1</sup>
</th>
<th align="left">Umg
<sup>−1</sup>
</th>
<th align="left">Ug
<sup>−1</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="4">
<italic>Soaking time (h)</italic>
</td>
</tr>
<tr>
<td align="left">0.5</td>
<td char="±" align="char">2500 ± 710
<sup>f</sup>
</td>
<td char="±" align="char">963 ± 270
<sup>h</sup>
</td>
<td char="±" align="char">500 ± 140
<sup>g</sup>
</td>
</tr>
<tr>
<td align="left">1</td>
<td char="±" align="char">3500 ± 710
<sup>e</sup>
</td>
<td char="±" align="char">1251 ± 190
<sup>g</sup>
</td>
<td char="±" align="char">700 ± 140
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">3</td>
<td char="±" align="char">4500 ± 710
<sup>d</sup>
</td>
<td char="±" align="char">1954 ± 300
<sup>f</sup>
</td>
<td char="±" align="char">900 ± 140
<sup>e</sup>
</td>
</tr>
<tr>
<td align="left">5</td>
<td char="±" align="char">5500 ± 710
<sup>c</sup>
</td>
<td char="±" align="char">2574 ± 220
<sup>e</sup>
</td>
<td char="±" align="char">1100 ± 140
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left">7</td>
<td char="±" align="char">7500 ± 710
<sup>b</sup>
</td>
<td char="±" align="char">3736 ± 220
<sup>c</sup>
</td>
<td char="±" align="char">1500 ± 140
<sup>b</sup>
</td>
</tr>
<tr>
<td align="left">17</td>
<td char="±" align="char">6500 ± 710
<sup>bc</sup>
</td>
<td char="±" align="char">3592 ± 690
<sup>c</sup>
</td>
<td char="±" align="char">1300 ± 140
<sup>c</sup>
</td>
</tr>
<tr>
<td align="left">24</td>
<td char="±" align="char">5500 ± 710
<sup>c</sup>
</td>
<td char="±" align="char">2541 ± 260
<sup>e</sup>
</td>
<td char="±" align="char">1100 ± 140
<sup>cd</sup>
</td>
</tr>
<tr>
<td align="left">48</td>
<td char="±" align="char">12,500 ± 710
<sup>a</sup>
</td>
<td char="±" align="char">5297 ± 420
<sup>a</sup>
</td>
<td char="±" align="char">2500 ± 140
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left">72</td>
<td char="±" align="char">12,000 ± 0
<sup>a</sup>
</td>
<td char="±" align="char">4727 ± 130
<sup>b</sup>
</td>
<td char="±" align="char">2400 ± 140
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left">96</td>
<td char="±" align="char">11,500 ± 710
<sup>a</sup>
</td>
<td char="±" align="char">4652 ± 230
<sup>ab</sup>
</td>
<td char="±" align="char">2500 ± 140
<sup>a</sup>
</td>
</tr>
<tr>
<td align="left" colspan="4">
<italic>Repeated extraction</italic>
</td>
</tr>
<tr>
<td align="left">1</td>
<td char="±" align="char">6500 ± 710
<sup>bc</sup>
</td>
<td char="±" align="char">870.8 ± 270
<sup>i</sup>
</td>
<td char="±" align="char">700 ± 140
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">2</td>
<td char="±" align="char">7500 ± 710
<sup>b</sup>
</td>
<td char="±" align="char">3280 ± 410
<sup>d</sup>
</td>
<td char="±" align="char">1500 ± 140
<sup>b</sup>
</td>
</tr>
<tr>
<td align="left">3</td>
<td char="±" align="char">5500 ± 710
<sup>c</sup>
</td>
<td char="±" align="char">3726 ± 210
<sup>c</sup>
</td>
<td char="±" align="char">1100 ± 140
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left" colspan="4">
<italic>Different extractants</italic>
</td>
</tr>
<tr>
<td align="left">PB (0.1 M)</td>
<td char="±" align="char">5500 ± 710
<sup>c</sup>
</td>
<td char="±" align="char">1992 ± 310
<sup>f</sup>
</td>
<td char="±" align="char">1100 ± 140
<sup>d</sup>
</td>
</tr>
<tr>
<td align="left">PB +Trit × 100 (0.1 %, w/v)</td>
<td char="±" align="char">4500 ± 710
<sup>d</sup>
</td>
<td char="±" align="char">2066 ± 280
<sup>ef</sup>
</td>
<td char="±" align="char">900 ± 140
<sup>e</sup>
</td>
</tr>
<tr>
<td align="left">PB +Trit × 100 (0.5 %, w/v)</td>
<td char="±" align="char">3500 ± 710
<sup>e</sup>
</td>
<td char="±" align="char">1187 ± 210
<sup>gh</sup>
</td>
<td char="±" align="char">700 ± 140
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">PB +Trit × 100 (1 %, w/v)</td>
<td char="±" align="char">3000 ± 710
<sup>ef</sup>
</td>
<td char="±" align="char">865.4 ± 310
<sup>i</sup>
</td>
<td char="±" align="char">600 ± 140
<sup>fg</sup>
</td>
</tr>
<tr>
<td align="left">PB + Urea (1 M)</td>
<td char="±" align="char">2500 ± 710
<sup>f</sup>
</td>
<td char="±" align="char">599.4 ± 340
<sup>j</sup>
</td>
<td char="±" align="char">500 ± 140
<sup>g</sup>
</td>
</tr>
<tr>
<td align="left">PB + Amm. Sulfate (1 M)</td>
<td char="±" align="char">3500 ± 710
<sup>de</sup>
</td>
<td char="±" align="char">1260 ± 220
<sup>g</sup>
</td>
<td char="±" align="char">700 ± 140
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">NaCl (0.5 %)</td>
<td char="±" align="char">2500 ± 710
<sup>f</sup>
</td>
<td char="±" align="char">1098 ± 180
<sup>h</sup>
</td>
<td char="±" align="char">500 ± 140
<sup>g</sup>
</td>
</tr>
<tr>
<td align="left">DW</td>
<td char="±" align="char">3500 ± 710
<sup>d</sup>
</td>
<td char="±" align="char">993 ± 230
<sup>h</sup>
</td>
<td char="±" align="char">700 ± 140
<sup>f</sup>
</td>
</tr>
<tr>
<td align="left">Czapek Dox</td>
<td char="±" align="char">3000 ± 710
<sup>e</sup>
</td>
<td char="±" align="char">886 ± 120
<sup>i</sup>
</td>
<td char="±" align="char">600 ± 140
<sup>fg</sup>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The solid state fermentation setups were performed for a period of 96 h at 30 °C.
<italic>ND</italic>
not determined. The data represent mean ± SD of replicates (
<italic>n</italic>
 = 3). Mean values within a column with different upper-script letters are significantly different at
<italic>p</italic>
 ≤ 0.05</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec30">
<title>Purification of pectinase</title>
<p>When gel filtration was employed for the pectic enzyme of
<italic>A. terreus</italic>
, only one absorption peak was obtained with 1.42 fold purification and 8.08 % yield with an increase in the specific activity from 445.35 to 634.73 Umg
<sup>−1</sup>
(Table 
<xref rid="Tab5" ref-type="table">5</xref>
). Maller et al. (
<xref ref-type="bibr" rid="CR27">2013</xref>
) purified pectinase from
<italic>Aspergillus</italic>
<italic>niveus</italic>
using DEAE-cellulose followed by Biogel P-100 column and resulted in PG purification approximately 4.4-fold with 17.4 % recovery. While working with
<italic>Paecilomyces</italic>
<italic>variotii</italic>
NFCCI 1769, Patil et al. (
<xref ref-type="bibr" rid="CR34">2012</xref>
) reported that overall purification of pectinase was about 41.91 fold with a recovery of 26.90 %.
<table-wrap id="Tab5">
<label>Table 5</label>
<caption>
<p>Purification summary of isolated pectinase</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Steps</th>
<th align="left">Volume</th>
<th align="left">Activity (Uml
<sup>−1</sup>
)</th>
<th align="left">Total pectinase activity (U)</th>
<th align="left">Total protein (mg)</th>
<th align="left">Specific activity (Umg
<sup>−1</sup>
)</th>
<th align="left">Purification fold</th>
<th align="left">Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Crude</td>
<td char="." align="char">422</td>
<td char="." align="char">550</td>
<td char="." align="char">232,100</td>
<td char="." align="char">521.165</td>
<td char="." align="char">445.35</td>
<td char="." align="char">1.0</td>
<td char="." align="char">100</td>
</tr>
<tr>
<td align="left">Ammonium sulfate precipitation</td>
<td char="." align="char">24</td>
<td char="." align="char">950</td>
<td char="." align="char">22,800</td>
<td char="." align="char">44.64</td>
<td char="." align="char">510.75</td>
<td char="." align="char">1.15</td>
<td char="." align="char">9.82</td>
</tr>
<tr>
<td align="left">Sephadex G-100</td>
<td char="." align="char">15</td>
<td char="." align="char">1250</td>
<td char="." align="char">18,750</td>
<td char="." align="char">29.54</td>
<td char="." align="char">634.73</td>
<td char="." align="char">1.42</td>
<td char="." align="char">8.08</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="Sec31">
<title>Molecular weight determination by SDS-PAGE and Zymographic analysis</title>
<p>The bands produced by the crude extracts of pectinase ranged from 7 to 175 kDa. But, the molecular weight of purified pectinase was found to be ~25 kDa (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Enzymatic activity was confirmed in native PAGE (zymographic analysis) that showed a unique degradation of sodium polypectate band. Reports also describe PG with high molecular mass as 60–70 kDa from
<italic>Aspergillus</italic>
<italic>giganteus</italic>
(Pedrolli and Carmona
<xref ref-type="bibr" rid="CR35">2010</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Electrophoretic analysis of pectinase
<bold>a</bold>
(
<italic>M</italic>
marker,
<italic>CP</italic>
crude pectinase),
<bold>b</bold>
(
<italic>M</italic>
marker,
<italic>PEC</italic>
purified pectinase),
<bold>c</bold>
(
<italic>ZA</italic>
zymographic analysis of pectinase)</p>
</caption>
<graphic xlink:href="13205_2015_353_Fig4_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
<sec id="Sec32">
<title>Fermentation kinetics study</title>
<p>Data obtained from above experiment was subjected to kinetics analysis for the calculations of
<italic>μ</italic>
<sub>max</sub>
(h
<sup>−1</sup>
) (specific growth rate), qp (unit product produced/g spores s/h), qs (g substrate consumed/g spores s/h), Yp/s (unit product produced/g substrate consumed), Yp/x (unit product produced/g spores s formed), Yx/s (g spores s/g substrate utilized), Qp (g spores s produced/l/h) and Qs (g substrate consumed/l/h). The kinetic evaluation results also revealed that the optimum fermentation period for extracellular biosynthesis of pectinase by
<italic>A. terreus</italic>
was 96 h with a constant growth rate. Nonetheless, growth and enzyme secretion were significantly affected by engineering of the fermentation media (supplementation of nutrients) and optimization of different parameter. The specific production rate and growth coefficient revealed hyperproducibility of extracellular pectinase (Table 
<xref rid="Tab6" ref-type="table">6</xref>
). Similar type of observation was also reported by Iftikhar et al. (
<xref ref-type="bibr" rid="CR16">2010</xref>
) for production of lipase from
<italic>Rhizopus oligosporus</italic>
var.
<italic>microsporus</italic>
.
<table-wrap id="Tab6">
<label>Table 6</label>
<caption>
<p>Fermentation kinetics of biosynthesized pectinase</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Optimum conditions</th>
<th align="left">Y
<sub>e/s</sub>
(Ug
<sup>−1</sup>
)</th>
<th align="left">Y
<sub>x/s</sub>
(gg
<sup>−1</sup>
)</th>
<th align="left">
<italic>α</italic>
(Ug
<sup>−1</sup>
)</th>
<th align="left">
<italic>β</italic>
(Ug
<sup>−1</sup>
 h
<sup>−1</sup>
)</th>
<th align="left">q
<sub>c</sub>
(mgg
<sup>−1</sup>
 h
<sup>−1</sup>
)</th>
<th align="left">d
<italic>x/</italic>
d
<italic>t</italic>
(gL
<sup>−1</sup>
h
<sup>−1</sup>
)</th>
<th align="left">d
<italic>P</italic>
/d
<italic>t</italic>
(Uml
<sup>−1</sup>
 h
<sup>−1</sup>
)</th>
<th align="left">
<italic>x</italic>
(mg ml
<sup>−1</sup>
)</th>
<th align="left">
<italic>µ</italic>
<sub>max</sub>
(mgl
<sup>−1</sup>
 h
<sup>−1</sup>
)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">pH (5.0)</td>
<td char="." align="char">120</td>
<td align="left">0.015</td>
<td align="left">7594.93</td>
<td align="left">1.25</td>
<td align="left">3.29</td>
<td align="left">0.016</td>
<td align="left">6.25</td>
<td align="left">1.58</td>
<td align="left">16.46</td>
</tr>
<tr>
<td align="left">Temperature (30 °C)</td>
<td char="." align="char">110</td>
<td align="left">0.031</td>
<td align="left">3481.01</td>
<td align="left">1.145</td>
<td align="left">6.583</td>
<td align="left">0.033</td>
<td align="left">5.73</td>
<td align="left">3.16</td>
<td align="left">32.92</td>
</tr>
<tr>
<td align="left">Incubation period (96 h)</td>
<td char="." align="char">230</td>
<td align="left">0.037</td>
<td align="left">6084.65</td>
<td align="left">2.395</td>
<td align="left">7.875</td>
<td align="left">0.040</td>
<td align="left">11.98</td>
<td align="left">3.78</td>
<td align="left">39.37</td>
</tr>
<tr>
<td align="left">Carbon source (Mannitol)</td>
<td char="." align="char">130</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">1.354</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">6.77</td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">Organic nitrogen (Urea)</td>
<td char="." align="char">140</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">1.458</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">7.29</td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">Inorganic nitrogen (NH
<sub>4</sub>
S
<sub>2</sub>
O
<sub>8</sub>
)</td>
<td char="." align="char">370</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">3.854</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">19.27</td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">Amino acid (Isoleucine)</td>
<td char="." align="char">340</td>
<td align="left">0.098</td>
<td align="left">3469.38</td>
<td align="left">3.541</td>
<td align="left">20.41</td>
<td align="left">0.102</td>
<td align="left">17.71</td>
<td align="left">9.80</td>
<td align="left">102.08</td>
</tr>
<tr>
<td align="left">Metal ion (K
<sup>+</sup>
)</td>
<td char="." align="char">330</td>
<td align="left">0.197</td>
<td align="left">1671.73</td>
<td align="left">3.437</td>
<td align="left">41.12</td>
<td align="left">0.017</td>
<td align="left">17.19</td>
<td align="left">19.74</td>
<td align="left">205.62</td>
</tr>
<tr>
<td align="left">Vitamins (Riboflavin, 10 mg)</td>
<td char="." align="char">740</td>
<td align="left">0.396</td>
<td align="left">1868.68</td>
<td align="left">7.708</td>
<td align="left">82.5</td>
<td align="left">0.412</td>
<td align="left">38.54</td>
<td align="left">39.60</td>
<td align="left">412.50</td>
</tr>
<tr>
<td align="left">Inoculums size (2 %), SSF</td>
<td char="." align="char">5500</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">57.29</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
<tr>
<td align="left">Moisture content (90 %), SSF</td>
<td char="." align="char">13,000</td>
<td align="left"></td>
<td align="left"></td>
<td align="left">135.42</td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
<td align="left"></td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
</sec>
</sec>
<sec id="Sec33" sec-type="conclusion">
<title>Conclusion</title>
<p>This study revealed the possibilities of effective utilization of agro-wastes in fermentation (LSSF and SSF) processes as potential substrates where they can act as carbon, nitrogen sources and ultimately produced industrially pertinent enzymes. Obviously, such amalgamation of processes would not only facilitate to trim down the entire production cost, but also focus on the approaches towards effective management of agro-wastes. This study portrays a gainful, expedient, non-tedious, easier technique to scale up for enhanced production of pectinase.</p>
</sec>
</body>
<back>
<ack>
<p>Authors greatly acknowledge the University Grants Commission, New Delhi, India for financial assistance through Rajiv Gandhi National Fellowship Scheme with award letter Number F.14-2 (SC)/2008 (SA-III), Dated. 31 March, 2009. One of the author, BKS would like to thank Dr. Keshab C. Mondal, Head, Department of Microbiology, Vidyasagar University, West Midnapur, West Bengal, India for his help and necessary laboratory facilities.</p>
</ack>
<notes notes-type="conflict-interest">
<title>Compliance with ethical standards</title>
<sec id="FPar1">
<title>Conflict of interest</title>
<p>We declare no conflict of interest.</p>
</sec>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abbasi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mortazavipur</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Production of exopolygalacturonase from wheat flour by
<italic>Aspergillus awamori</italic>
in submerged and surface culture fermentation</article-title>
<source>Afr J Plant Sci</source>
<year>2011</year>
<volume>5</volume>
<fpage>226</fpage>
<lpage>232</lpage>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adeleke</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Odunfa</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Olanbiwonninu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Owoseni</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Production of cellulase and pectinase from orange peels by fungi</article-title>
<source>Nat Sci</source>
<year>2012</year>
<volume>10</volume>
<fpage>107</fpage>
<lpage>112</lpage>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Afifi</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Kamel</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Khalil</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Foaad</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Fawzi</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Houseny</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Purification and characterization of α-amylase from
<italic>Penicillium olsonii</italic>
under the effect of some antioxidant vitamins</article-title>
<source>Global J Biotechnol Biochem</source>
<year>2008</year>
<volume>3</volume>
<fpage>14</fpage>
<lpage>21</lpage>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akhter</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Morshed</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Uddin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Begum</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sultan</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Azad</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Production of pectinase by
<italic>Aspergillus niger</italic>
cultured in solid state media</article-title>
<source>Int J Biosci</source>
<year>2011</year>
<volume>1</volume>
<fpage>33</fpage>
<lpage>42</lpage>
</element-citation>
</ref>
<ref id="CR5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akintobi</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Oluitiola</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Olawale</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Odu</surname>
<given-names>NN</given-names>
</name>
<name>
<surname>Okonko</surname>
<given-names>IO</given-names>
</name>
</person-group>
<article-title>Production of pectinase enzymes system in culture filtrates of
<italic>Penicillium variabile</italic>
Sopp</article-title>
<source>Nat Sci</source>
<year>2012</year>
<volume>10</volume>
<fpage>99</fpage>
<lpage>109</lpage>
</element-citation>
</ref>
<ref id="CR6">
<mixed-citation publication-type="other">Arotupin DJ (2007) Microbiology and pectinase activity of fungi associated with soils cultivated with different crops. Ph.D. Thesis, F. U. T., Akure, Nigeria</mixed-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blandino</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Iqbalsyah</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pandiella</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Cantero</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Polygalacturonase production by
<italic>Aspergillus awamori</italic>
on wheat in solid-state fermentation</article-title>
<source>Appl Microbiol Biotechnol</source>
<year>2002</year>
<volume>58</volume>
<fpage>164</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1007/s00253-001-0893-4</pub-id>
<pub-id pub-id-type="pmid">11876407</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demir</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nadaroglu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tasgin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Adiguzel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gulluce</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Purification and characterization of a pectin lyase produced by
<italic>Geobacillus</italic>
<italic>stearothermophilus</italic>
Ah22 and its application in fruit juice production</article-title>
<source>Ann Microbiol</source>
<year>2011</year>
<volume>61</volume>
<fpage>939</fpage>
<lpage>946</lpage>
<pub-id pub-id-type="doi">10.1007/s13213-011-0217-6</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nechifor</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Stoian</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Costache</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dinischiotu</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Enzymes with new biochemical properties in the pectinolytic complex produced by
<italic>Aspergillus</italic>
<italic>niger</italic>
MIUG 16</article-title>
<source>J Biotechnol</source>
<year>2007</year>
<volume>131</volume>
<fpage>128</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="doi">10.1016/j.jbiotec.2007.06.005</pub-id>
<pub-id pub-id-type="pmid">17655960</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<mixed-citation publication-type="other">El-Sheikh M, Kouros CD, Erath S, Cummings EM, Keller P, Staton L (2009) Marital conflict and children’s externalizing behavior: interactions between parasympathetic and sympathetic nervous system activity. Monogr Soc Res Child Dev 74:vii 1–79</mixed-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fasidi</surname>
<given-names>IO</given-names>
</name>
<name>
<surname>Akwakwa</surname>
<given-names>DO</given-names>
</name>
</person-group>
<article-title>Growth requirements of
<italic>Volvariella speciosa</italic>
(Fr. Ex. Fr.) Sing., a Nigerian edible mushroom</article-title>
<source>Food Chem</source>
<year>1996</year>
<volume>55</volume>
<fpage>165</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/0308-8146(95)00083-6</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Garrido</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Tribak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rejon-Palomares</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ocampo</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Garcia-Romera</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Hydrolytic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots</article-title>
<source>J Exp Bot</source>
<year>2000</year>
<volume>51</volume>
<fpage>1443</fpage>
<lpage>1448</lpage>
<pub-id pub-id-type="doi">10.1093/jexbot/51.349.1443</pub-id>
<pub-id pub-id-type="pmid">10944158</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Godfrey</surname>
<given-names>T</given-names>
</name>
<name>
<surname>West</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>Industrial Enzymology</source>
<year>1996</year>
<edition>2</edition>
<publisher-loc>London</publisher-loc>
<publisher-name>The Macmillan Press Ltd.</publisher-name>
</element-citation>
</ref>
<ref id="CR14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>González-Montelongo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lobo</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>González</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds</article-title>
<source>Food Chem</source>
<year>2010</year>
<volume>119</volume>
<fpage>1030</fpage>
<lpage>1039</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodchem.2009.08.012</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoondal</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Tiwari</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dahiya</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Beg</surname>
<given-names>QK</given-names>
</name>
</person-group>
<article-title>Microbial alkaline pectinases and their applications: a review</article-title>
<source>Appl Microbiol Biotechnol</source>
<year>2000</year>
<volume>59</volume>
<fpage>409</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="pmid">12172603</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>LK</given-names>
</name>
<name>
<surname>Mahoney</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>Purification and characterization of an endo-polygalacturonase from
<italic>Verticillum alboatrum</italic>
</article-title>
<source>J Appl Microbiol</source>
<year>1999</year>
<volume>86</volume>
<fpage>145</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2672.1999.00645.x</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iftikhar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Niaz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zia</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Haq</surname>
<given-names>IU</given-names>
</name>
</person-group>
<article-title>Production of extracellular lipases by
<italic>Rhizopus oligosporus</italic>
in a stirred fermentor</article-title>
<source>Braz J Microbiol</source>
<year>2010</year>
<volume>41</volume>
<fpage>1124</fpage>
<lpage>1132</lpage>
<pub-id pub-id-type="doi">10.1590/S1517-83822010000400034</pub-id>
<pub-id pub-id-type="pmid">24031595</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>JagadeeshBabu</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Viswanathan</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Studies on the effect of pH, temperature and metal ions on the production of pectinase from tamarind kernel powder by submerged fermentation using
<italic>Aspergillus</italic>
<italic>foetidus</italic>
(NCIM 505)</article-title>
<source>Asian-Pacific J Chem Eng</source>
<year>2010</year>
<volume>5</volume>
<fpage>396</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="doi">10.1002/apj.296</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jana</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maity</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Halder</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pati</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Mondal</surname>
<given-names>KC</given-names>
</name>
<name>
<surname>Das Mohapatra</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Structural characterization of thermostable, solvent tolerant, cytosafe tannase from
<italic>Bacillus</italic>
<italic>subtilis</italic>
PAB2</article-title>
<source>Biochem Eng J</source>
<year>2013</year>
<volume>77</volume>
<fpage>161</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1016/j.bej.2013.06.002</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jonathan</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Fasidi</surname>
<given-names>IO</given-names>
</name>
<name>
<surname>Ajayi</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Physico-chemical studies on Volvariella esculent Mass (Singer), a Nigerian edible fungus</article-title>
<source>Food Chem</source>
<year>2004</year>
<volume>85</volume>
<fpage>339</fpage>
<lpage>342</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodchem.2003.06.014</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Juarez-Garcia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Agama-Aceredo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Sayago-Ayerdi</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Rodriguez-Ambriz</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Bello-perez</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Composition, digestibility and application in bread making of banana flours</article-title>
<source>Plants Foods Hum Nutr</source>
<year>2006</year>
<volume>61</volume>
<fpage>131</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="doi">10.1007/s11130-006-0020-x</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kapoor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beg</surname>
<given-names>QK</given-names>
</name>
<name>
<surname>Bhushan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dadich</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Hoondal</surname>
<given-names>GS</given-names>
</name>
</person-group>
<article-title>Application of alkaline and thermostable polygalacturonase from
<italic>Bacillus</italic>
sp. MG-cp-2 in degumming of ramie (
<italic>Boehmeria</italic>
<italic>nivea</italic>
) and sunn hemp (
<italic>Crotolaria</italic>
<italic>juncia</italic>
) bast fibers</article-title>
<source>Proc Biochem</source>
<year>2001</year>
<volume>36</volume>
<fpage>803</fpage>
<lpage>807</lpage>
<pub-id pub-id-type="doi">10.1016/S0032-9592(00)00282-X</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kashyap</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Vohra</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Chopra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tewari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Applications of pectinases in the commercial sector: a review</article-title>
<source>Biores Technol</source>
<year>2001</year>
<volume>77</volume>
<fpage>215</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-8524(00)00118-8</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khairnar</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Vamsi</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Boraste</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Trivedi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jhadav</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mujapara</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Joshi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Study of pectinase production in submerged fermentation using different strains of
<italic>Aspergillus niger</italic>
</article-title>
<source>Int J Microbiol Res</source>
<year>2009</year>
<volume>1</volume>
<fpage>13</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.9735/0975-5276.1.2.13-17</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laemmli</surname>
<given-names>UK</given-names>
</name>
</person-group>
<article-title>Cleavage of structural proteins during the assembly of the head of bacteriophage T4</article-title>
<source>Nature</source>
<year>1970</year>
<volume>227</volume>
<fpage>680</fpage>
<lpage>685</lpage>
<pub-id pub-id-type="doi">10.1038/227680a0</pub-id>
<pub-id pub-id-type="pmid">5432063</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lowry</surname>
<given-names>OH</given-names>
</name>
<name>
<surname>Rosebrough</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Farr</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Protein measurements with the folin phenol reagent</article-title>
<source>J Biol Chem</source>
<year>1951</year>
<volume>193</volume>
<fpage>265</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">14907713</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maciel</surname>
<given-names>MDHC</given-names>
</name>
<name>
<surname>Herculano</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Porto</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Teixeira</surname>
<given-names>MFS</given-names>
</name>
<name>
<surname>Moreira</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>de Souza-Motta</surname>
<given-names>CM</given-names>
</name>
</person-group>
<article-title>Production and partial characterization of pectinases from forage palm by
<italic>Aspergillus niger</italic>
URM4645</article-title>
<source>Afr J Biotechnol</source>
<year>2011</year>
<volume>10</volume>
<fpage>2469</fpage>
<lpage>2475</lpage>
</element-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maller</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Damásio</surname>
<given-names>ARL</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Jorge</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Terenzi</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Polizeli</surname>
<given-names>MLTM</given-names>
</name>
</person-group>
<article-title>Biotechnological potential of agro-industrial wastes as a carbon source to thermostable polygalacturonase production in
<italic>Aspergillus</italic>
<italic>niveus</italic>
</article-title>
<source>Enz Res</source>
<year>2011</year>
</element-citation>
</ref>
<ref id="CR27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maller</surname>
<given-names>A</given-names>
</name>
<name>
<surname>da Silva</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Damásio</surname>
<given-names>ARL</given-names>
</name>
<name>
<surname>Hirata</surname>
<given-names>IY</given-names>
</name>
<name>
<surname>Jorge</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Terenzi</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Polizeli</surname>
<given-names>MLTM</given-names>
</name>
</person-group>
<article-title>Functional properties of a manganese-activated exo-polygalacturonase produced by a thermotolerant fungus
<italic>Aspergillus</italic>
<italic>niveus</italic>
</article-title>
<source>Folia Microbiol</source>
<year>2013</year>
<volume>58</volume>
<fpage>615</fpage>
<lpage>621</lpage>
<pub-id pub-id-type="doi">10.1007/s12223-013-0249-3</pub-id>
<pub-id pub-id-type="pmid">23613286</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martens-Uzunova</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Schaap</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Assessment of the pectin degrading enzyme network of
<italic>Aspergillus</italic>
<italic>niger</italic>
by functional genomics</article-title>
<source>Fungal Genet Biol</source>
<year>2009</year>
<volume>46</volume>
<fpage>S170</fpage>
<lpage>S179</lpage>
<pub-id pub-id-type="doi">10.1016/j.fgb.2008.07.021</pub-id>
<pub-id pub-id-type="pmid">19618506</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mrudula</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Anitharaj</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Pectinase production in solid state fermentation by
<italic>Aspergillus niger</italic>
using orange peel as substrate</article-title>
<source>Global J Biotechnol Biochem</source>
<year>2011</year>
<volume>6</volume>
<fpage>64</fpage>
<lpage>71</lpage>
</element-citation>
</ref>
<ref id="CR30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Negi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Banerjee</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Optimization of culture parameters to enhance production of amylase and protease from
<italic>Aspergillus awamori</italic>
in a single fermentation</article-title>
<source>Afr J Biochem Res</source>
<year>2010</year>
<volume>4</volume>
<fpage>73</fpage>
<lpage>80</lpage>
</element-citation>
</ref>
<ref id="CR31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oszmiański</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wojdylo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kolniak</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity and turbidity of cloudy apple juice</article-title>
<source>J Agric Food Chem</source>
<year>2009</year>
<volume>57</volume>
<fpage>7078</fpage>
<lpage>7085</lpage>
<pub-id pub-id-type="doi">10.1021/jf900806u</pub-id>
<pub-id pub-id-type="pmid">19572518</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pandey</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Benjamin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Soccol</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Nigam</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Krieger</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>The realm of microbial lipases in biotechnology</article-title>
<source>Biotechnol Appl Biochem</source>
<year>1999</year>
<volume>29</volume>
<fpage>119</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">10075908</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patil</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Dayanand</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions</article-title>
<source>Biores Technol</source>
<year>2006</year>
<volume>97</volume>
<fpage>2340</fpage>
<lpage>2344</lpage>
<pub-id pub-id-type="doi">10.1016/j.biortech.2005.10.025</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patil</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Chaudhari</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Chincholkar</surname>
<given-names>SB</given-names>
</name>
</person-group>
<article-title>Production, purification of exo-polygalacturonase from soil isolate
<italic>Paecilomyces</italic>
<italic>variotii</italic>
NFCCI 1769 and its application</article-title>
<source>Ind J Microbiol</source>
<year>2012</year>
<volume>52</volume>
<fpage>240</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="doi">10.1007/s12088-011-0162-x</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pedrolli</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Carmona</surname>
<given-names>EC</given-names>
</name>
</person-group>
<article-title>Purification and characterization of the exopolygalacturonase produced by
<italic>Aspergillus</italic>
<italic>giganteus</italic>
in submerged cultures</article-title>
<source>J Ind Microbiol Biotechnol</source>
<year>2010</year>
<volume>37</volume>
<fpage>567</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1007/s10295-010-0702-0</pub-id>
<pub-id pub-id-type="pmid">20204453</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pereira</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>de Queiroz</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Muro-Abad</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>de Araujo</surname>
<given-names>EF</given-names>
</name>
</person-group>
<article-title>Molecular characterization and evaluation of pectinase and cellulase production of
<italic>Penicillium</italic>
spp</article-title>
<source>Biotechnol Lett</source>
<year>2002</year>
<volume>24</volume>
<fpage>831</fpage>
<lpage>838</lpage>
<pub-id pub-id-type="doi">10.1023/A:1015502721909</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramadas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Holst</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Mattiasson</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Production of amyloglucosidase by
<italic>Aspergillus niger</italic>
under different cultivation regimens</article-title>
<source>World J Microbiol Biotechnol</source>
<year>1996</year>
<volume>12</volume>
<fpage>267</fpage>
<lpage>271</lpage>
<pub-id pub-id-type="doi">10.1007/BF00360926</pub-id>
<pub-id pub-id-type="pmid">24415236</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Revilla</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Jose</surname>
<given-names>GS</given-names>
</name>
</person-group>
<article-title>Addition of pectolytic enzymes: an enological practice which improves the chromaticity and stability of red wines</article-title>
<source>Int J Food Sci Technol</source>
<year>2003</year>
<volume>38</volume>
<fpage>29</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2621.2003.00628.x</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<mixed-citation publication-type="other">Salazar L, Jayasinghe U (1999) Fundamentals of purification of plant viruses. In: Techniques in plant, virology, CIP., Training Manual, J.O., Virus Purification, International Potato Centre, Peru, pp 1–10</mixed-citation>
</ref>
<ref id="CR40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sebastian</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Jorge</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Roque</surname>
<given-names>AH</given-names>
</name>
</person-group>
<article-title>Pectinase production profile of
<italic>Aspergillus foetidus</italic>
in solid-state cultures at different acidities</article-title>
<source>Biotechnol Lett</source>
<year>1996</year>
<volume>18</volume>
<fpage>251</fpage>
<lpage>256</lpage>
</element-citation>
</ref>
<ref id="CR41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sethi</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Nanda</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Sahoo</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Isolation, identification and conservation of potent hydrolase producer from different soils of Odisha, India</article-title>
<source>Int J Pharma Bio Sci</source>
<year>2013</year>
<volume>4</volume>
<fpage>89</fpage>
<lpage>100</lpage>
</element-citation>
</ref>
<ref id="CR42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sethi</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Rout</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nanda</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Sahoo</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Lipase production by
<italic>Aspergillus terreus</italic>
using mustard seed oil cake as a carbon source</article-title>
<source>Ann Microbiol</source>
<year>2013</year>
<volume>63</volume>
<fpage>241</fpage>
<lpage>252</lpage>
<pub-id pub-id-type="doi">10.1007/s13213-012-0467-y</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Saxena</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Microbial pectinolytic enzymes: a review</article-title>
<source>Proc Biochem</source>
<year>2005</year>
<volume>40</volume>
<fpage>2931</fpage>
<lpage>2944</lpage>
<pub-id pub-id-type="doi">10.1016/j.procbio.2005.03.026</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taragano</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Pilosof</surname>
<given-names>AMR</given-names>
</name>
</person-group>
<article-title>Combined effect of water activity depression and glucose addition on pectinase and protease production by
<italic>Aspergillus niger</italic>
</article-title>
<source>Biotechnol Lett</source>
<year>1997</year>
<volume>19</volume>
<fpage>233</fpage>
<lpage>236B</lpage>
<pub-id pub-id-type="doi">10.1023/A:1018301522997</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tari</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gogus</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tokatli</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Optimization of biomass, pellet size and polygalacturonase production by
<italic>Aspergillus</italic>
<italic>sojae</italic>
ATCC 20235 using response surface methodology</article-title>
<source>Enz Microbial Technol</source>
<year>2007</year>
<volume>40</volume>
<fpage>1108</fpage>
<lpage>1116</lpage>
<pub-id pub-id-type="doi">10.1016/j.enzmictec.2006.08.016</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thakur</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pahwa</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Production, purification and characterization of polygalacturonase from
<italic>Mucor</italic>
<italic>circinelloides</italic>
ITCC 6025</article-title>
<source>Enz Res</source>
<year>2010</year>
<volume>7</volume>
<fpage>1705</fpage>
<lpage>1749</lpage>
</element-citation>
</ref>
<ref id="CR47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeni</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cence</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Grando</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Tiggermann</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Colet</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lerin</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Cansian</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Toniazzo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Valduga</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Screening of pectinase-producing microorganisms with polygalacturonase activity</article-title>
<source>Appl Biochem Biotechnol</source>
<year>2011</year>
<volume>163</volume>
<fpage>383</fpage>
<lpage>392</lpage>
<pub-id pub-id-type="doi">10.1007/s12010-010-9046-5</pub-id>
<pub-id pub-id-type="pmid">20669053</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000545 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000545 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4724355
   |texte=   Enhanced production of pectinase by Aspergillusterreus NCFT 4269.10 using banana peels as substrate
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:NONE" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024