Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

Identifieur interne : 000425 ( Pmc/Corpus ); précédent : 000424; suivant : 000426

Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

Auteurs : M. Sazzad Hossain ; Karl-Josef Dietz

Source :

RBID : PMC:4861717

Abstract

Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.


Url:
DOI: 10.3389/fpls.2016.00548
PubMed: 27242807
PubMed Central: 4861717

Links to Exploration step

PMC:4861717

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress</title>
<author>
<name sortKey="Hossain, M Sazzad" sort="Hossain, M Sazzad" uniqKey="Hossain M" first="M. Sazzad" last="Hossain">M. Sazzad Hossain</name>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27242807</idno>
<idno type="pmc">4861717</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861717</idno>
<idno type="RBID">PMC:4861717</idno>
<idno type="doi">10.3389/fpls.2016.00548</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress</title>
<author>
<name sortKey="Hossain, M Sazzad" sort="Hossain, M Sazzad" uniqKey="Hossain M" first="M. Sazzad" last="Hossain">M. Sazzad Hossain</name>
</author>
<author>
<name sortKey="Dietz, Karl Josef" sort="Dietz, Karl Josef" uniqKey="Dietz K" first="Karl-Josef" last="Dietz">Karl-Josef Dietz</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in Plant Science</title>
<idno type="eISSN">1664-462X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abogadallah, G M" uniqKey="Abogadallah G">G. M. Abogadallah</name>
</author>
<author>
<name sortKey="Serag, M M" uniqKey="Serag M">M. M. Serag</name>
</author>
<author>
<name sortKey="Quick, W P" uniqKey="Quick W">W. P. Quick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Acosta Motos, J R" uniqKey="Acosta Motos J">J. R. Acosta-Motos</name>
</author>
<author>
<name sortKey="Diaz Vivancos, P" uniqKey="Diaz Vivancos P">P. Diaz-Vivancos</name>
</author>
<author>
<name sortKey="Alvarez, S" uniqKey="Alvarez S">S. Àlvarez</name>
</author>
<author>
<name sortKey="Fernandez Garcia, N" uniqKey="Fernandez Garcia N">N. Fernández-García</name>
</author>
<author>
<name sortKey="Sanchez Blanco, M J" uniqKey="Sanchez Blanco M">M. J. Sanchez-Blanco</name>
</author>
<author>
<name sortKey="Hernandez, J A" uniqKey="Hernandez J">J. A. Hernández</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreyev, A Y" uniqKey="Andreyev A">A. Y. Andreyev</name>
</author>
<author>
<name sortKey="Kushnareva, Y E" uniqKey="Kushnareva Y">Y. E. Kushnareva</name>
</author>
<author>
<name sortKey="Starkov, A A" uniqKey="Starkov A">A. A. Starkov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aono, M" uniqKey="Aono M">M. Aono</name>
</author>
<author>
<name sortKey="Kubo, A" uniqKey="Kubo A">A. Kubo</name>
</author>
<author>
<name sortKey="Saji, H" uniqKey="Saji H">H. Saji</name>
</author>
<author>
<name sortKey="Tanaka, K" uniqKey="Tanaka K">K. Tanaka</name>
</author>
<author>
<name sortKey="Kondo, N" uniqKey="Kondo N">N. Kondo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asada, K" uniqKey="Asada K">K. Asada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashraf, M" uniqKey="Ashraf M">M. Ashraf</name>
</author>
<author>
<name sortKey="Foolad, M R" uniqKey="Foolad M">M. R. Foolad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azevedo Neto, A D" uniqKey="Azevedo Neto A">A. D. Azevedo Neto</name>
</author>
<author>
<name sortKey="Gomes Filho, E" uniqKey="Gomes Filho E">E. Gomes Filho</name>
</author>
<author>
<name sortKey="Prisco, J T" uniqKey="Prisco J">J. T. Prisco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badawi, G H" uniqKey="Badawi G">G. H. Badawi</name>
</author>
<author>
<name sortKey="Kawano, N" uniqKey="Kawano N">N. Kawano</name>
</author>
<author>
<name sortKey="Yamauchi, Y" uniqKey="Yamauchi Y">Y. Yamauchi</name>
</author>
<author>
<name sortKey="Shimada, E" uniqKey="Shimada E">E. Shimada</name>
</author>
<author>
<name sortKey="Sasaki, R" uniqKey="Sasaki R">R. Sasaki</name>
</author>
<author>
<name sortKey="Kubo, A" uniqKey="Kubo A">A. Kubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baker, A" uniqKey="Baker A">A. Baker</name>
</author>
<author>
<name sortKey="Graham, A I" uniqKey="Graham A">A. I. Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Banu, N A" uniqKey="Banu N">N. A. Banu</name>
</author>
<author>
<name sortKey="Hoque, A" uniqKey="Hoque A">A. Hoque</name>
</author>
<author>
<name sortKey="Watanabe Sugimoto, M" uniqKey="Watanabe Sugimoto M">M. Watanabe-Sugimoto</name>
</author>
<author>
<name sortKey="Matsuoka, K" uniqKey="Matsuoka K">K. Matsuoka</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Shimoishi, Y" uniqKey="Shimoishi Y">Y. Shimoishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baxter, A" uniqKey="Baxter A">A. Baxter</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N. Suzuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennoun, P" uniqKey="Bennoun P">P. Bennoun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borzouei, A" uniqKey="Borzouei A">A. Borzouei</name>
</author>
<author>
<name sortKey="Kafi, M" uniqKey="Kafi M">M. Kafi</name>
</author>
<author>
<name sortKey="Akbari Ghogdi, E" uniqKey="Akbari Ghogdi E">E. Akbari-Ghogdi</name>
</author>
<author>
<name sortKey="Mousavi Shalmani" uniqKey="Mousavi Shalmani">Mousavi-Shalmani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campos, M D" uniqKey="Campos M">M. D. Campos</name>
</author>
<author>
<name sortKey="Campos, C" uniqKey="Campos C">C. Campos</name>
</author>
<author>
<name sortKey="Cardoso, H G" uniqKey="Cardoso H">H. G. Cardoso</name>
</author>
<author>
<name sortKey="Simon, P W" uniqKey="Simon P">P. W. Simon</name>
</author>
<author>
<name sortKey="Oliveira, M" uniqKey="Oliveira M">M. Oliveira</name>
</author>
<author>
<name sortKey="Nogales, A" uniqKey="Nogales A">A. Nogales</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carol, P" uniqKey="Carol P">P. Carol</name>
</author>
<author>
<name sortKey="Stevenson, D" uniqKey="Stevenson D">D. Stevenson</name>
</author>
<author>
<name sortKey="Bisanza, C" uniqKey="Bisanza C">C. Bisanza</name>
</author>
<author>
<name sortKey="Breitenbachc, J" uniqKey="Breitenbachc J">J. Breitenbachc</name>
</author>
<author>
<name sortKey="Sandmannc, G" uniqKey="Sandmannc G">G. Sandmannc</name>
</author>
<author>
<name sortKey="Machea, R" uniqKey="Machea R">R. Machea</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavalcanti, F R" uniqKey="Cavalcanti F">F. R. Cavalcanti</name>
</author>
<author>
<name sortKey="Oliveira, J T A" uniqKey="Oliveira J">J. T. A. Oliveira</name>
</author>
<author>
<name sortKey="Martins Miranda, A S" uniqKey="Martins Miranda A">A. S. Martins-Miranda</name>
</author>
<author>
<name sortKey="Viegas, R A" uniqKey="Viegas R">R. A. Viégas</name>
</author>
<author>
<name sortKey="Silveira, J A G" uniqKey="Silveira J">J. A. G. Silveira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, T H" uniqKey="Chen T">T. H. Chen</name>
</author>
<author>
<name sortKey="Murata, N" uniqKey="Murata N">N. Murata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cleland, R E" uniqKey="Cleland R">R. E. Cleland</name>
</author>
<author>
<name sortKey="Grace, S C" uniqKey="Grace S">S. C. Grace</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cona, A" uniqKey="Cona A">A. Cona</name>
</author>
<author>
<name sortKey="Rea, G" uniqKey="Rea G">G. Rea</name>
</author>
<author>
<name sortKey="Angelini, R" uniqKey="Angelini R">R. Angelini</name>
</author>
<author>
<name sortKey="Federico, R" uniqKey="Federico R">R. Federico</name>
</author>
<author>
<name sortKey="Tavladoraki, P" uniqKey="Tavladoraki P">P. Tavladoraki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Considine, M J" uniqKey="Considine M">M. J. Considine</name>
</author>
<author>
<name sortKey="Holtzapffel, R C" uniqKey="Holtzapffel R">R. C. Holtzapffel</name>
</author>
<author>
<name sortKey="Day, D A" uniqKey="Day D">D. A. Day</name>
</author>
<author>
<name sortKey="Whelan, J" uniqKey="Whelan J">J. Whelan</name>
</author>
<author>
<name sortKey="Millar, A H" uniqKey="Millar A">A. H. Millar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cushman, J C" uniqKey="Cushman J">J. C. Cushman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cushman, J C" uniqKey="Cushman J">J. C. Cushman</name>
</author>
<author>
<name sortKey="Bohnert, H J" uniqKey="Bohnert H">H. J. Bohnert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cvetkovska, M" uniqKey="Cvetkovska M">M. Cvetkovska</name>
</author>
<author>
<name sortKey="Dahal, K" uniqKey="Dahal K">K. Dahal</name>
</author>
<author>
<name sortKey="Alber, N A" uniqKey="Alber N">N. A. Alber</name>
</author>
<author>
<name sortKey="Jin, C" uniqKey="Jin C">C. Jin</name>
</author>
<author>
<name sortKey="Cheung, M" uniqKey="Cheung M">M. Cheung</name>
</author>
<author>
<name sortKey="Vanlerberghe, G C" uniqKey="Vanlerberghe G">G. C. Vanlerberghe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, Z" uniqKey="Dai Z">Z. Dai</name>
</author>
<author>
<name sortKey="Ku, M S B" uniqKey="Ku M">M. S. B. Ku</name>
</author>
<author>
<name sortKey="Edwards, G E" uniqKey="Edwards G">G. E. Edwards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danquah, A" uniqKey="Danquah A">A. Danquah</name>
</author>
<author>
<name sortKey="De Zelicourt, A" uniqKey="De Zelicourt A">A. de Zelicourt</name>
</author>
<author>
<name sortKey="Colcombet, J" uniqKey="Colcombet J">J. Colcombet</name>
</author>
<author>
<name sortKey="Hirt, H" uniqKey="Hirt H">H. Hirt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Devi, M T" uniqKey="Devi M">M. T. Devi</name>
</author>
<author>
<name sortKey="Raghavendra, A S" uniqKey="Raghavendra A">A. S. Raghavendra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dietz, K J" uniqKey="Dietz K">K. J. Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dietz, K J" uniqKey="Dietz K">K. J. Dietz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dietz, K J" uniqKey="Dietz K">K. J. Dietz</name>
</author>
<author>
<name sortKey="Jacob, S" uniqKey="Jacob S">S. Jacob</name>
</author>
<author>
<name sortKey="Oelze, M L" uniqKey="Oelze M">M. L. Oelze</name>
</author>
<author>
<name sortKey="Laxa, M" uniqKey="Laxa M">M. Laxa</name>
</author>
<author>
<name sortKey="Tognetti, V" uniqKey="Tognetti V">V. Tognetti</name>
</author>
<author>
<name sortKey="De Miranda, S M" uniqKey="De Miranda S">S. M. De Miranda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Martino, C" uniqKey="Di Martino C">C. Di Martino</name>
</author>
<author>
<name sortKey="Delene, S" uniqKey="Delene S">S. Delene</name>
</author>
<author>
<name sortKey="Alvino, A" uniqKey="Alvino A">A. Alvino</name>
</author>
<author>
<name sortKey="Loreto, F" uniqKey="Loreto F">F. Loreto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellouzi, H" uniqKey="Ellouzi H">H. Ellouzi</name>
</author>
<author>
<name sortKey="Ben Hamed, K" uniqKey="Ben Hamed K">K. Ben Hamed</name>
</author>
<author>
<name sortKey="Cela, J" uniqKey="Cela J">J. Cela</name>
</author>
<author>
<name sortKey="Munne Bosch, S" uniqKey="Munne Bosch S">S. Munne-Bosch</name>
</author>
<author>
<name sortKey="Abdelly, C" uniqKey="Abdelly C">C. Abdelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elstner, E F" uniqKey="Elstner E">E. F. Elstner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eltayeb, A E" uniqKey="Eltayeb A">A. E. Eltayeb</name>
</author>
<author>
<name sortKey="Kawano, N" uniqKey="Kawano N">N. Kawano</name>
</author>
<author>
<name sortKey="Badawi, G H" uniqKey="Badawi G">G. H. Badawi</name>
</author>
<author>
<name sortKey="Kaminaka, H" uniqKey="Kaminaka H">H. Kaminaka</name>
</author>
<author>
<name sortKey="Sanekata, T" uniqKey="Sanekata T">T. Sanekata</name>
</author>
<author>
<name sortKey="Shibahara, T" uniqKey="Shibahara T">T. Shibahara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feilke, K" uniqKey="Feilke K">K. Feilke</name>
</author>
<author>
<name sortKey="Streb, P" uniqKey="Streb P">P. Streb</name>
</author>
<author>
<name sortKey="Cornic, G" uniqKey="Cornic G">G. Cornic</name>
</author>
<author>
<name sortKey="Perreau, F" uniqKey="Perreau F">F. Perreau</name>
</author>
<author>
<name sortKey="Kruk, J" uniqKey="Kruk J">J. Kruk</name>
</author>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feilke, K" uniqKey="Feilke K">K. Feilke</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Beyer, P" uniqKey="Beyer P">P. Beyer</name>
</author>
<author>
<name sortKey="Setif, P" uniqKey="Setif P">P. Setif</name>
</author>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferreira, A L" uniqKey="Ferreira A">A. L. Ferreira</name>
</author>
<author>
<name sortKey="Arrabaca, J D" uniqKey="Arrabaca J">J. D. Arrabaca</name>
</author>
<author>
<name sortKey="Vaz Pinto, V" uniqKey="Vaz Pinto V">V. Vaz-Pinto</name>
</author>
<author>
<name sortKey="Lima Costa, M E" uniqKey="Lima Costa M">M. E. Lima-Costa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flowers, T J" uniqKey="Flowers T">T. J. Flowers</name>
</author>
<author>
<name sortKey="Colmer, T D" uniqKey="Colmer T">T. D. Colmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foyer, C H" uniqKey="Foyer C">C. H. Foyer</name>
</author>
<author>
<name sortKey="Souriau, N" uniqKey="Souriau N">N. Souriau</name>
</author>
<author>
<name sortKey="Perret, S" uniqKey="Perret S">S. Perret</name>
</author>
<author>
<name sortKey="Lelandais, M" uniqKey="Lelandais M">M. Lelandais</name>
</author>
<author>
<name sortKey="Kunert, K J" uniqKey="Kunert K">K. J. Kunert</name>
</author>
<author>
<name sortKey="Pruvost, C" uniqKey="Pruvost C">C. Pruvost</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fry, I V" uniqKey="Fry I">I. V. Fry</name>
</author>
<author>
<name sortKey="Huflejt, M" uniqKey="Huflejt M">M. Huflejt</name>
</author>
<author>
<name sortKey="Erber, W W A" uniqKey="Erber W">W. W. A. Erber</name>
</author>
<author>
<name sortKey="Peschek, G A" uniqKey="Peschek G">G. A. Peschek</name>
</author>
<author>
<name sortKey="Packer, L" uniqKey="Packer L">L. Packer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gawronska, K" uniqKey="Gawronska K">K. Gawronska</name>
</author>
<author>
<name sortKey="Romanowska, E" uniqKey="Romanowska E">E. Romanowska</name>
</author>
<author>
<name sortKey="Miszalski, Z" uniqKey="Miszalski Z">Z. Miszalski</name>
</author>
<author>
<name sortKey="Niewiadomska, E" uniqKey="Niewiadomska E">E. Niewiadomska</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geilfus, C M" uniqKey="Geilfus C">C. M. Geilfus</name>
</author>
<author>
<name sortKey="Mithofer, A" uniqKey="Mithofer A">A. Mithöfer</name>
</author>
<author>
<name sortKey="Ludwig Muller, J" uniqKey="Ludwig Muller J">J. Ludwig-Müller</name>
</author>
<author>
<name sortKey="Zorb, C" uniqKey="Zorb C">C. Zörb</name>
</author>
<author>
<name sortKey="Muehling, K H" uniqKey="Muehling K">K. H. Muehling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghannoum, O" uniqKey="Ghannoum O">O. Ghannoum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gill, S S" uniqKey="Gill S">S. S. Gill</name>
</author>
<author>
<name sortKey="Tuteja, N" uniqKey="Tuteja N">N. Tuteja</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilroy, S" uniqKey="Gilroy S">S. Gilroy</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N. Suzuki</name>
</author>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G. Miller</name>
</author>
<author>
<name sortKey="Choi, W G" uniqKey="Choi W">W. G. Choi</name>
</author>
<author>
<name sortKey="Toyota, M" uniqKey="Toyota M">M. Toyota</name>
</author>
<author>
<name sortKey="Devireddy, A R" uniqKey="Devireddy A">A. R. Devireddy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gross, G G" uniqKey="Gross G">G. G. Gross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, A S" uniqKey="Gupta A">A. S. Gupta</name>
</author>
<author>
<name sortKey="Heinen, J L" uniqKey="Heinen J">J. L. Heinen</name>
</author>
<author>
<name sortKey="Holaday, A S" uniqKey="Holaday A">A. S. Holaday</name>
</author>
<author>
<name sortKey="Burke, J J" uniqKey="Burke J">J. J. Burke</name>
</author>
<author>
<name sortKey="Allen, R D" uniqKey="Allen R">R. D. Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Habib, S H" uniqKey="Habib S">S. H. Habib</name>
</author>
<author>
<name sortKey="Kausar, H" uniqKey="Kausar H">H. Kausar</name>
</author>
<author>
<name sortKey="Saud, H M" uniqKey="Saud H">H. M. Saud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hao, H" uniqKey="Hao H">H. Hao</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L. Fan</name>
</author>
<author>
<name sortKey="Chen, T" uniqKey="Chen T">T. Chen</name>
</author>
<author>
<name sortKey="Li, R" uniqKey="Li R">R. Li</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="He, Q" uniqKey="He Q">Q. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hara, S" uniqKey="Hara S">S. Hara</name>
</author>
<author>
<name sortKey="Motohashi, K" uniqKey="Motohashi K">K. Motohashi</name>
</author>
<author>
<name sortKey="Arisaka, F" uniqKey="Arisaka F">F. Arisaka</name>
</author>
<author>
<name sortKey="Romano, P G" uniqKey="Romano P">P. G. Romano</name>
</author>
<author>
<name sortKey="Arisaka, F" uniqKey="Arisaka F">F. Arisaka</name>
</author>
<author>
<name sortKey="Romano, P G N" uniqKey="Romano P">P. G. N. Romano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hare, P D" uniqKey="Hare P">P. D. Hare</name>
</author>
<author>
<name sortKey="Cress, W A" uniqKey="Cress W">W. A. Cress</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hebbelmann, I" uniqKey="Hebbelmann I">I. Hebbelmann</name>
</author>
<author>
<name sortKey="Selinski, J" uniqKey="Selinski J">J. Selinski</name>
</author>
<author>
<name sortKey="Wehmeyer, C" uniqKey="Wehmeyer C">C. Wehmeyer</name>
</author>
<author>
<name sortKey="Goss, T" uniqKey="Goss T">T. Goss</name>
</author>
<author>
<name sortKey="Voss, I" uniqKey="Voss I">I. Voss</name>
</author>
<author>
<name sortKey="Mulo, P" uniqKey="Mulo P">P. Mulo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heber, U" uniqKey="Heber U">U. Heber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hernandez, J A" uniqKey="Hernandez J">J. A. Hernández</name>
</author>
<author>
<name sortKey="Ferrer, M A" uniqKey="Ferrer M">M. A. Ferrer</name>
</author>
<author>
<name sortKey="Jimenez, A" uniqKey="Jimenez A">A. Jimenez</name>
</author>
<author>
<name sortKey="Barcelo, A R" uniqKey="Barcelo A">A. R. Barcelo</name>
</author>
<author>
<name sortKey="Sevilla, F" uniqKey="Sevilla F">F. Sevilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heyno, E" uniqKey="Heyno E">E. Heyno</name>
</author>
<author>
<name sortKey="Gross, C M" uniqKey="Gross C">C. M. Gross</name>
</author>
<author>
<name sortKey="Laureau, C" uniqKey="Laureau C">C. Laureau</name>
</author>
<author>
<name sortKey="Culcasi, M" uniqKey="Culcasi M">M. Culcasi</name>
</author>
<author>
<name sortKey="Pietri, S" uniqKey="Pietri S">S. Pietri</name>
</author>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heyno, E" uniqKey="Heyno E">E. Heyno</name>
</author>
<author>
<name sortKey="Mary, V" uniqKey="Mary V">V. Mary</name>
</author>
<author>
<name sortKey="Schopfer, P" uniqKey="Schopfer P">P. Schopfer</name>
</author>
<author>
<name sortKey="Krieger Liszkay" uniqKey="Krieger Liszkay">Krieger-Liszkay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hilal, M" uniqKey="Hilal M">M. Hilal</name>
</author>
<author>
<name sortKey="Zenoff, A M" uniqKey="Zenoff A">A. M. Zenoff</name>
</author>
<author>
<name sortKey="Ponessa, G" uniqKey="Ponessa G">G. Ponessa</name>
</author>
<author>
<name sortKey="Moreno, H" uniqKey="Moreno H">H. Moreno</name>
</author>
<author>
<name sortKey="Massa, E M" uniqKey="Massa E">E. M. Massa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoque, M A" uniqKey="Hoque M">M. A. Hoque</name>
</author>
<author>
<name sortKey="Banu, M N" uniqKey="Banu M">M. N. Banu</name>
</author>
<author>
<name sortKey="Okuma, E" uniqKey="Okuma E">E. Okuma</name>
</author>
<author>
<name sortKey="Amako, K" uniqKey="Amako K">K. Amako</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y. Nakamura</name>
</author>
<author>
<name sortKey="Shimoishi, Y" uniqKey="Shimoishi Y">Y. Shimoishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horie, T" uniqKey="Horie T">T. Horie</name>
</author>
<author>
<name sortKey="Schroeder, J I" uniqKey="Schroeder J">J. I. Schroeder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hossain, M A" uniqKey="Hossain M">M. A. Hossain</name>
</author>
<author>
<name sortKey="Ismail, M R" uniqKey="Ismail M">M. R. Ismail</name>
</author>
<author>
<name sortKey="Uddin, M K" uniqKey="Uddin M">M. K. Uddin</name>
</author>
<author>
<name sortKey="Islam, M Z" uniqKey="Islam M">M. Z. Islam</name>
</author>
<author>
<name sortKey="Ashrafuzzaman, M" uniqKey="Ashrafuzzaman M">M. Ashrafuzzaman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Igamberdiev, A U" uniqKey="Igamberdiev A">A. U. Igamberdiev</name>
</author>
<author>
<name sortKey="Ratcliffe, R G" uniqKey="Ratcliffe R">R. G. Ratcliffe</name>
</author>
<author>
<name sortKey="Gupta, K J" uniqKey="Gupta K">K. J. Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inan, G" uniqKey="Inan G">G. Inan</name>
</author>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P. Li</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
</author>
<author>
<name sortKey="Cao, Z" uniqKey="Cao Z">Z. Cao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ivanov, A G" uniqKey="Ivanov A">A. G. Ivanov</name>
</author>
<author>
<name sortKey="Rosso, D" uniqKey="Rosso D">D. Rosso</name>
</author>
<author>
<name sortKey="Savitch, L V" uniqKey="Savitch L">L. V. Savitch</name>
</author>
<author>
<name sortKey="Stachula, P" uniqKey="Stachula P">P. Stachula</name>
</author>
<author>
<name sortKey="Rosembert, M" uniqKey="Rosembert M">M. Rosembert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jaleel, C A" uniqKey="Jaleel C">C. A. Jaleel</name>
</author>
<author>
<name sortKey="Riadh, K" uniqKey="Riadh K">K. Riadh</name>
</author>
<author>
<name sortKey="Gopi, R" uniqKey="Gopi R">R. Gopi</name>
</author>
<author>
<name sortKey="Manivannan, P" uniqKey="Manivannan P">P. Manivannan</name>
</author>
<author>
<name sortKey="Ines, J" uniqKey="Ines J">J. Inès</name>
</author>
<author>
<name sortKey="Al Juburi, H J" uniqKey="Al Juburi H">H. J. Al-Juburi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, C" uniqKey="Jiang C">C. Jiang</name>
</author>
<author>
<name sortKey="Belfield, E J" uniqKey="Belfield E">E. J. Belfield</name>
</author>
<author>
<name sortKey="Mithani, A" uniqKey="Mithani A">A. Mithani</name>
</author>
<author>
<name sortKey="Visscher, A" uniqKey="Visscher A">A. Visscher</name>
</author>
<author>
<name sortKey="Ragoussis, J" uniqKey="Ragoussis J">J. Ragoussis</name>
</author>
<author>
<name sortKey="Mott, R" uniqKey="Mott R">R. Mott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimenez, A" uniqKey="Jimenez A">A. Jiménez</name>
</author>
<author>
<name sortKey="Hernandez, J A" uniqKey="Hernandez J">J. A. Hernández</name>
</author>
<author>
<name sortKey="Del Rio, L A" uniqKey="Del Rio L">L. A. del Río</name>
</author>
<author>
<name sortKey="Sevilla, F" uniqKey="Sevilla F">F. Sevilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joet, T" uniqKey="Joet T">T. Joët</name>
</author>
<author>
<name sortKey="Genty, B" uniqKey="Genty B">B. Genty</name>
</author>
<author>
<name sortKey="Josse, E M" uniqKey="Josse E">E. M. Josse</name>
</author>
<author>
<name sortKey="Kuntz, M" uniqKey="Kuntz M">M. Kuntz</name>
</author>
<author>
<name sortKey="Cournac, L" uniqKey="Cournac L">L. Cournac</name>
</author>
<author>
<name sortKey="Peltier, G" uniqKey="Peltier G">G. Peltier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jolivet, Y" uniqKey="Jolivet Y">Y. Jolivet</name>
</author>
<author>
<name sortKey="Pireaux, J C" uniqKey="Pireaux J">J. C. Pireaux</name>
</author>
<author>
<name sortKey="Dizengremel, P" uniqKey="Dizengremel P">P. Dizengremel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Josse, E M" uniqKey="Josse E">E. M. Josse</name>
</author>
<author>
<name sortKey="Alcaraz, J P" uniqKey="Alcaraz J">J. P. Alcaraz</name>
</author>
<author>
<name sortKey="Laboure, A M" uniqKey="Laboure A">A. M. Laboure</name>
</author>
<author>
<name sortKey="Kuntz, M" uniqKey="Kuntz M">M. Kuntz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, T" uniqKey="Keller T">T. Keller</name>
</author>
<author>
<name sortKey="Damude, H G" uniqKey="Damude H">H. G. Damude</name>
</author>
<author>
<name sortKey="Werner, D" uniqKey="Werner D">D. Werner</name>
</author>
<author>
<name sortKey="Doerner, P" uniqKey="Doerner P">P. Doerner</name>
</author>
<author>
<name sortKey="Dixon, R A" uniqKey="Dixon R">R. A. Dixon</name>
</author>
<author>
<name sortKey="Lamb, C" uniqKey="Lamb C">C. Lamb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, S" uniqKey="Kimura S">S. Kimura</name>
</author>
<author>
<name sortKey="Kaya, H" uniqKey="Kaya H">H. Kaya</name>
</author>
<author>
<name sortKey="Kawarazaki, T" uniqKey="Kawarazaki T">T. Kawarazaki</name>
</author>
<author>
<name sortKey="Hiraoka, G" uniqKey="Hiraoka G">G. Hiraoka</name>
</author>
<author>
<name sortKey="Senzaki, E" uniqKey="Senzaki E">E. Senzaki</name>
</author>
<author>
<name sortKey="Michikawa, M" uniqKey="Michikawa M">M. Michikawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, J" uniqKey="Kong J">J. Kong</name>
</author>
<author>
<name sortKey="Gong, J" uniqKey="Gong J">J. Gong</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
<author>
<name sortKey="Feilke, K" uniqKey="Feilke K">K. Feilke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krinsky, N I" uniqKey="Krinsky N">N. I. Krinsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kumar, R G" uniqKey="Kumar R">R. G. Kumar</name>
</author>
<author>
<name sortKey="Shah, K" uniqKey="Shah K">K. Shah</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuntz, M" uniqKey="Kuntz M">M. Kuntz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurusu, T" uniqKey="Kurusu T">T. Kurusu</name>
</author>
<author>
<name sortKey="Kuchitsu, K" uniqKey="Kuchitsu K">K. Kuchitsu</name>
</author>
<author>
<name sortKey="Tada, Y" uniqKey="Tada Y">Y. Tada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwak, J M" uniqKey="Kwak J">J. M. Kwak</name>
</author>
<author>
<name sortKey="Mori, I C" uniqKey="Mori I">I. C. Mori</name>
</author>
<author>
<name sortKey="Pei, Z M" uniqKey="Pei Z">Z. M. Pei</name>
</author>
<author>
<name sortKey="Leonhardt, N" uniqKey="Leonhardt N">N. Leonhardt</name>
</author>
<author>
<name sortKey="Torres, M A" uniqKey="Torres M">M. A. Torres</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambeth, J D" uniqKey="Lambeth J">J. D. Lambeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lazaro, J J" uniqKey="Lazaro J">J. J. Lázaro</name>
</author>
<author>
<name sortKey="Jimenez, A" uniqKey="Jimenez A">A. Jiménez</name>
</author>
<author>
<name sortKey="Camejo, D" uniqKey="Camejo D">D. Camejo</name>
</author>
<author>
<name sortKey="Iglesias Baena, I" uniqKey="Iglesias Baena I">I. Iglesias-Baena</name>
</author>
<author>
<name sortKey="Marti, M C" uniqKey="Marti M">M. C. Martí</name>
</author>
<author>
<name sortKey="Lazaro Payo, A" uniqKey="Lazaro Payo A">A. Lázaro-Payo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y P" uniqKey="Lee Y">Y. P. Lee</name>
</author>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S. H. Kim</name>
</author>
<author>
<name sortKey="Bang, J W" uniqKey="Bang J">J. W. Bang</name>
</author>
<author>
<name sortKey="Lee, H S" uniqKey="Lee H">H. S. Lee</name>
</author>
<author>
<name sortKey="Kwak, S S" uniqKey="Kwak S">S. S. Kwak</name>
</author>
<author>
<name sortKey="Kwon, S Y" uniqKey="Kwon S">S. Y. Kwon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leshem, Y" uniqKey="Leshem Y">Y. Leshem</name>
</author>
<author>
<name sortKey="Seri, L" uniqKey="Seri L">L. Seri</name>
</author>
<author>
<name sortKey="Levine, A" uniqKey="Levine A">A. Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, C R" uniqKey="Li C">C. R. Li</name>
</author>
<author>
<name sortKey="Liang, D D" uniqKey="Liang D">D. D. Liang</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Duan, Y B" uniqKey="Duan Y">Y. B. Duan</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Yang, Y C" uniqKey="Yang Y">Y. C. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y J" uniqKey="Li Y">Y. J. Li</name>
</author>
<author>
<name sortKey="Hai, R L" uniqKey="Hai R">R. L. Hai</name>
</author>
<author>
<name sortKey="Du, X H" uniqKey="Du X">X. H. Du</name>
</author>
<author>
<name sortKey="Jiang, X N" uniqKey="Jiang X">X. N. Jiang</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Sommerfeld, M" uniqKey="Sommerfeld M">M. Sommerfeld</name>
</author>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F. Chen</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, K H" uniqKey="Lin K">K. H. Lin</name>
</author>
<author>
<name sortKey="Pu, S F" uniqKey="Pu S">S. F. Pu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Xin, Z" uniqKey="Xin Z">Z. Xin</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="L Pez Huertas, E" uniqKey="L Pez Huertas E">E. López-Huertas</name>
</author>
<author>
<name sortKey="Corpas, F J" uniqKey="Corpas F">F. J. Corpas</name>
</author>
<author>
<name sortKey="Sandalio, L M" uniqKey="Sandalio L">L. M. Sandalio</name>
</author>
<author>
<name sortKey="Del Rio, L A" uniqKey="Del Rio L">L. A. Del Rio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, Z" uniqKey="Lu Z">Z. Lu</name>
</author>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, X" uniqKey="Luo X">X. Luo</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Nan, Z" uniqKey="Nan Z">Z. Nan</name>
</author>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, L" uniqKey="Ma L">L. Ma</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L. Sun</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y. Jiao</name>
</author>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Miao, C" uniqKey="Miao C">C. Miao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marino, D" uniqKey="Marino D">D. Marino</name>
</author>
<author>
<name sortKey="Dunand, C" uniqKey="Dunand C">C. Dunand</name>
</author>
<author>
<name sortKey="Puppo, A" uniqKey="Puppo A">A. Puppo</name>
</author>
<author>
<name sortKey="Pauly, N" uniqKey="Pauly N">N. Pauly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marti, M C" uniqKey="Marti M">M. C. Marti</name>
</author>
<author>
<name sortKey="Florez Sarasa, I" uniqKey="Florez Sarasa I">I. Florez-Sarasa</name>
</author>
<author>
<name sortKey="Camejo, D" uniqKey="Camejo D">D. Camejo</name>
</author>
<author>
<name sortKey="Miquel Ribas Carbo, M" uniqKey="Miquel Ribas Carbo M">M. Miquel Ribas-Carbo</name>
</author>
<author>
<name sortKey="Lazaro, J J" uniqKey="Lazaro J">J. J. Lazaro</name>
</author>
<author>
<name sortKey="Sevilla, F" uniqKey="Sevilla F">F. Sevilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, C" uniqKey="Martinez C">C. Martinez</name>
</author>
<author>
<name sortKey="Montillet, J L" uniqKey="Montillet J">J. L. Montillet</name>
</author>
<author>
<name sortKey="Bresson, E" uniqKey="Bresson E">E. Bresson</name>
</author>
<author>
<name sortKey="Agnel, J P" uniqKey="Agnel J">J. P. Agnel</name>
</author>
<author>
<name sortKey="Dai, G H" uniqKey="Dai G">G. H. Dai</name>
</author>
<author>
<name sortKey="Daniel, J F" uniqKey="Daniel J">J. F. Daniel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matysik, J" uniqKey="Matysik J">J. Matysik</name>
</author>
<author>
<name sortKey="Bhalu, B A" uniqKey="Bhalu B">B. A. Bhalu</name>
</author>
<author>
<name sortKey="Mohanty, P" uniqKey="Mohanty P">P. Mohanty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehler, A H" uniqKey="Mehler A">A. H. Mehler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G. Miller</name>
</author>
<author>
<name sortKey="Schlauch, K" uniqKey="Schlauch K">K. Schlauch</name>
</author>
<author>
<name sortKey="Tam, R" uniqKey="Tam R">R. Tam</name>
</author>
<author>
<name sortKey="Cortes, D" uniqKey="Cortes D">D. Cortes</name>
</author>
<author>
<name sortKey="Torres, M A" uniqKey="Torres M">M. A. Torres</name>
</author>
<author>
<name sortKey="Shulaev, V" uniqKey="Shulaev V">V. Shulaev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G. Miller</name>
</author>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N. Suzuki</name>
</author>
<author>
<name sortKey="Ciftci Yilmaz, S" uniqKey="Ciftci Yilmaz S">S. Ciftci-Yilmaz</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, P" uniqKey="Mishra P">P. Mishra</name>
</author>
<author>
<name sortKey="Kumari, B" uniqKey="Kumari B">B. Kumari</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, S" uniqKey="Mishra S">S. Mishra</name>
</author>
<author>
<name sortKey="Jha, A B" uniqKey="Jha A">A. B. Jha</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittal, R" uniqKey="Mittal R">R. Mittal</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
<author>
<name sortKey="Vanderauwera, S" uniqKey="Vanderauwera S">S. Vanderauwera</name>
</author>
<author>
<name sortKey="Gollery, M" uniqKey="Gollery M">M. Gollery</name>
</author>
<author>
<name sortKey="Van Breusegem, F" uniqKey="Van Breusegem F">F. Van Breusegem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ller, I M" uniqKey="M Ller I">I. M. Møller</name>
</author>
<author>
<name sortKey="Jensen, P E" uniqKey="Jensen P">P. E. Jensen</name>
</author>
<author>
<name sortKey="Hansson, A" uniqKey="Hansson A">A. Hansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monshausen, G B" uniqKey="Monshausen G">G. B. Monshausen</name>
</author>
<author>
<name sortKey="Bibikova, T N" uniqKey="Bibikova T">T. N. Bibikova</name>
</author>
<author>
<name sortKey="Weisenseel, M H" uniqKey="Weisenseel M">M. H. Weisenseel</name>
</author>
<author>
<name sortKey="Gilroy, S" uniqKey="Gilroy S">S. Gilroy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monson, R K" uniqKey="Monson R">R. K. Monson</name>
</author>
<author>
<name sortKey="Edwards, G E" uniqKey="Edwards G">G. E. Edwards</name>
</author>
<author>
<name sortKey="Ku, M S B" uniqKey="Ku M">M. S. B. Ku</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moser, D" uniqKey="Moser D">D. Moser</name>
</author>
<author>
<name sortKey="Nicholls, P" uniqKey="Nicholls P">P. Nicholls</name>
</author>
<author>
<name sortKey="Wastyn, M" uniqKey="Wastyn M">M. Wastyn</name>
</author>
<author>
<name sortKey="Peschek, G A" uniqKey="Peschek G">G. A. Peschek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munns, R" uniqKey="Munns R">R. Munns</name>
</author>
<author>
<name sortKey="Tester, M" uniqKey="Tester M">M. Tester</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nawrocki, W J" uniqKey="Nawrocki W">W. J. Nawrocki</name>
</author>
<author>
<name sortKey="Tourasse, N J" uniqKey="Tourasse N">N. J. Tourasse</name>
</author>
<author>
<name sortKey="Taly, A" uniqKey="Taly A">A. Taly</name>
</author>
<author>
<name sortKey="Rappaport, F" uniqKey="Rappaport F">F. Rappaport</name>
</author>
<author>
<name sortKey="Wollman, F A" uniqKey="Wollman F">F. A. Wollman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niyogi, K K" uniqKey="Niyogi K">K. K. Niyogi</name>
</author>
<author>
<name sortKey="Grossman, A R" uniqKey="Grossman A">A. R. Grossman</name>
</author>
<author>
<name sortKey="Bjorkman, O" uniqKey="Bjorkman O">O. Björkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noctor, G" uniqKey="Noctor G">G. Noctor</name>
</author>
<author>
<name sortKey="Mhamdi, A" uniqKey="Mhamdi A">A. Mhamdi</name>
</author>
<author>
<name sortKey="Foyer, C H" uniqKey="Foyer C">C. H. Foyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noctor, G" uniqKey="Noctor G">G. Noctor</name>
</author>
<author>
<name sortKey="Veljovic Jovanovic, S" uniqKey="Veljovic Jovanovic S">S. Veljovic-Jovanovic</name>
</author>
<author>
<name sortKey="Driscoll, S" uniqKey="Driscoll S">S. Driscoll</name>
</author>
<author>
<name sortKey="Novitskaya, L" uniqKey="Novitskaya L">L. Novitskaya</name>
</author>
<author>
<name sortKey="Foyer, C" uniqKey="Foyer C">C. Foyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parida, A K" uniqKey="Parida A">A. K. Parida</name>
</author>
<author>
<name sortKey="Das, A B" uniqKey="Das A">A. B. Das</name>
</author>
<author>
<name sortKey="Mittra, B" uniqKey="Mittra B">B. Mittra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peltier, G" uniqKey="Peltier G">G. Peltier</name>
</author>
<author>
<name sortKey="Cournac, L" uniqKey="Cournac L">L. Cournac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pogany, M" uniqKey="Pogany M">M. Pogány</name>
</author>
<author>
<name sortKey="Von Rad, U" uniqKey="Von Rad U">U. von Rad</name>
</author>
<author>
<name sortKey="Grun, S" uniqKey="Grun S">S. Grün</name>
</author>
<author>
<name sortKey="Dong, A" uniqKey="Dong A">A. Dongó</name>
</author>
<author>
<name sortKey="Pintye, A" uniqKey="Pintye A">A. Pintye</name>
</author>
<author>
<name sortKey="Simoneau, P" uniqKey="Simoneau P">P. Simoneau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prashanth, S R" uniqKey="Prashanth S">S. R. Prashanth</name>
</author>
<author>
<name sortKey="Sadhasivam, V" uniqKey="Sadhasivam V">V. Sadhasivam</name>
</author>
<author>
<name sortKey="Parida, A" uniqKey="Parida A">A. Parida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rasmusson, A G" uniqKey="Rasmusson A">A. G. Rasmusson</name>
</author>
<author>
<name sortKey="Geisler, D A" uniqKey="Geisler D">D. A. Geisler</name>
</author>
<author>
<name sortKey="M Ller, I M" uniqKey="M Ller I">I. M. Møller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reguera, M" uniqKey="Reguera M">M. Reguera</name>
</author>
<author>
<name sortKey="Bassil, E" uniqKey="Bassil E">E. Bassil</name>
</author>
<author>
<name sortKey="Blumwald, E" uniqKey="Blumwald E">E. Blumwald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rejeb, K B" uniqKey="Rejeb K">K. B. Rejeb</name>
</author>
<author>
<name sortKey="Abdelly, C" uniqKey="Abdelly C">C. Abdelly</name>
</author>
<author>
<name sortKey="Savoure, A" uniqKey="Savoure A">A. Savouré</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rejeb, K B" uniqKey="Rejeb K">K. B. Rejeb</name>
</author>
<author>
<name sortKey="Benzarti, M" uniqKey="Benzarti M">M. Benzarti</name>
</author>
<author>
<name sortKey="Debez, A" uniqKey="Debez A">A. Debez</name>
</author>
<author>
<name sortKey="Bailly, C" uniqKey="Bailly C">C. Bailly</name>
</author>
<author>
<name sortKey="Savoure, A" uniqKey="Savoure A">A. Savoure</name>
</author>
<author>
<name sortKey="Abdelly, C" uniqKey="Abdelly C">C. Abdelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rejeb, K B" uniqKey="Rejeb K">K. B. Rejeb</name>
</author>
<author>
<name sortKey="Vos, D L D" uniqKey="Vos D">D. L. D. Vos</name>
</author>
<author>
<name sortKey="Disquet, I L" uniqKey="Disquet I">I. L. Disquet</name>
</author>
<author>
<name sortKey="Leprince, A S" uniqKey="Leprince A">A. S. Leprince</name>
</author>
<author>
<name sortKey="Bordenave, M" uniqKey="Bordenave M">M. Bordenave</name>
</author>
<author>
<name sortKey="Maldiney, R" uniqKey="Maldiney R">R. Maldiney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rengasamy, P" uniqKey="Rengasamy P">P. Rengasamy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rios Gonzalez, K" uniqKey="Rios Gonzalez K">K. Rios-Gonzalez</name>
</author>
<author>
<name sortKey="Erdei, L" uniqKey="Erdei L">L. Erdei</name>
</author>
<author>
<name sortKey="Lips, S H" uniqKey="Lips S">S. H. Lips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, A A" uniqKey="Rodriguez A">A. A. Rodríguez</name>
</author>
<author>
<name sortKey="Maiale, S J" uniqKey="Maiale S">S. J. Maiale</name>
</author>
<author>
<name sortKey="Menendez, A B" uniqKey="Menendez A">A. B. Menéndez</name>
</author>
<author>
<name sortKey="Ruiz, O A" uniqKey="Ruiz O">O. A. Ruiz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogov, A G" uniqKey="Rogov A">A. G. Rogov</name>
</author>
<author>
<name sortKey="Sukhanova, E I" uniqKey="Sukhanova E">E. I. Sukhanova</name>
</author>
<author>
<name sortKey="Uralskaya, L A" uniqKey="Uralskaya L">L. A. Uralskaya</name>
</author>
<author>
<name sortKey="Aliverdieva, D A" uniqKey="Aliverdieva D">D. A. Aliverdieva</name>
</author>
<author>
<name sortKey="Zvyagilskaya, R A" uniqKey="Zvyagilskaya R">R. A. Zvyagilskaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosso, D" uniqKey="Rosso D">D. Rosso</name>
</author>
<author>
<name sortKey="Ivanov, A G" uniqKey="Ivanov A">A. G. Ivanov</name>
</author>
<author>
<name sortKey="Fu, A" uniqKey="Fu A">A. Fu</name>
</author>
<author>
<name sortKey="Geisler Lee, J" uniqKey="Geisler Lee J">J. Geisler-Lee</name>
</author>
<author>
<name sortKey="Hendrickson, L" uniqKey="Hendrickson L">L. Hendrickson</name>
</author>
<author>
<name sortKey="Geisler, M" uniqKey="Geisler M">M. Geisler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubio, M C" uniqKey="Rubio M">M. C. Rubio</name>
</author>
<author>
<name sortKey="Bustos Sanmamed, P" uniqKey="Bustos Sanmamed P">P. Bustos-Sanmamed</name>
</author>
<author>
<name sortKey="Clemente, M R" uniqKey="Clemente M">M. R. Clemente</name>
</author>
<author>
<name sortKey="Becana, M" uniqKey="Becana M">M. Becana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sagi, M" uniqKey="Sagi M">M. Sagi</name>
</author>
<author>
<name sortKey="Fluhr, R" uniqKey="Fluhr R">R. Fluhr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sairam, R K" uniqKey="Sairam R">R. K. Sairam</name>
</author>
<author>
<name sortKey="Tyagi, A" uniqKey="Tyagi A">A. Tyagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakamoto, A" uniqKey="Sakamoto A">A. Sakamoto</name>
</author>
<author>
<name sortKey="Murata, N" uniqKey="Murata N">N. Murata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakamoto, H" uniqKey="Sakamoto H">H. Sakamoto</name>
</author>
<author>
<name sortKey="Matsuda, O" uniqKey="Matsuda O">O. Matsuda</name>
</author>
<author>
<name sortKey="Iba, K" uniqKey="Iba K">K. Iba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheibe, R" uniqKey="Scheibe R">R. Scheibe</name>
</author>
<author>
<name sortKey="Backhausen, J E" uniqKey="Backhausen J">J. E. Backhausen</name>
</author>
<author>
<name sortKey="Emmerlich, V" uniqKey="Emmerlich V">V. Emmerlich</name>
</author>
<author>
<name sortKey="Holtgrefe, S" uniqKey="Holtgrefe S">S. Holtgrefe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalata, A" uniqKey="Shalata A">A. Shalata</name>
</author>
<author>
<name sortKey="Mittova, V" uniqKey="Mittova V">V. Mittova</name>
</author>
<author>
<name sortKey="Volokita, M" uniqKey="Volokita M">M. Volokita</name>
</author>
<author>
<name sortKey="Guy, M" uniqKey="Guy M">M. Guy</name>
</author>
<author>
<name sortKey="Tal, M" uniqKey="Tal M">M. Tal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, P" uniqKey="Sharma P">P. Sharma</name>
</author>
<author>
<name sortKey="Jha, A B" uniqKey="Jha A">A. B. Jha</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
<author>
<name sortKey="Pessarakl, M" uniqKey="Pessarakl M">M. Pessarakl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, P K" uniqKey="Sharma P">P. K. Sharma</name>
</author>
<author>
<name sortKey="Hall, D O" uniqKey="Hall D">D. O. Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shi, W M" uniqKey="Shi W">W. M. Shi</name>
</author>
<author>
<name sortKey="Muramoto, Y" uniqKey="Muramoto Y">Y. Muramoto</name>
</author>
<author>
<name sortKey="Ueda, A" uniqKey="Ueda A">A. Ueda</name>
</author>
<author>
<name sortKey="Takabe, T" uniqKey="Takabe T">T. Takabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, C A" uniqKey="Smith C">C. A. Smith</name>
</author>
<author>
<name sortKey="Melino, V J" uniqKey="Melino V">V. J. Melino</name>
</author>
<author>
<name sortKey="Sweetman, C" uniqKey="Sweetman C">C. Sweetman</name>
</author>
<author>
<name sortKey="Soole, K L" uniqKey="Soole K">K. L. Soole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y. Song</name>
</author>
<author>
<name sortKey="Ji, D" uniqKey="Ji D">D. Ji</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q. Li</name>
</author>
<author>
<name sortKey="Xiang, F" uniqKey="Xiang F">F. Xiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, A K" uniqKey="Srivastava A">A. K. Srivastava</name>
</author>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S. Srivastava</name>
</author>
<author>
<name sortKey="Lokhande, V H" uniqKey="Lokhande V">V. H. Lokhande</name>
</author>
<author>
<name sortKey="D Souza, S F" uniqKey="D Souza S">S. F. D'souza</name>
</author>
<author>
<name sortKey="Suprasanna, P" uniqKey="Suprasanna P">P. Suprasanna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S. Srivastava</name>
</author>
<author>
<name sortKey="Dubey, R S" uniqKey="Dubey R">R. S. Dubey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stepien, P" uniqKey="Stepien P">P. Stepien</name>
</author>
<author>
<name sortKey="Johnson, G N" uniqKey="Johnson G">G. N. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stepien, P" uniqKey="Stepien P">P. Stepien</name>
</author>
<author>
<name sortKey="Klobus, G" uniqKey="Klobus G">G. Klobus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strand, D D" uniqKey="Strand D">D. D. Strand</name>
</author>
<author>
<name sortKey="Livingston, A K" uniqKey="Livingston A">A. K. Livingston</name>
</author>
<author>
<name sortKey="Satoh Cruz, M" uniqKey="Satoh Cruz M">M. Satoh-Cruz</name>
</author>
<author>
<name sortKey="Froehlich, J E" uniqKey="Froehlich J">J. E. Froehlich</name>
</author>
<author>
<name sortKey="Maurino, V G" uniqKey="Maurino V">V. G. Maurino</name>
</author>
<author>
<name sortKey="Kramer, D M" uniqKey="Kramer D">D. M. Kramer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, W H" uniqKey="Sun W">W. H. Sun</name>
</author>
<author>
<name sortKey="Duan, M" uniqKey="Duan M">M. Duan</name>
</author>
<author>
<name sortKey="Shu, D F" uniqKey="Shu D">D. F. Shu</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Meng, Q W" uniqKey="Meng Q">Q. W. Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N. Suzuki</name>
</author>
<author>
<name sortKey="Koussevitzky, S" uniqKey="Koussevitzky S">S. Koussevitzky</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suzuki, N" uniqKey="Suzuki N">N. Suzuki</name>
</author>
<author>
<name sortKey="Miller, G" uniqKey="Miller G">G. Miller</name>
</author>
<author>
<name sortKey="Morales, J" uniqKey="Morales J">J. Morales</name>
</author>
<author>
<name sortKey="Shulaev, V" uniqKey="Shulaev V">V. Shulaev</name>
</author>
<author>
<name sortKey="Torres, M A" uniqKey="Torres M">M. A. Torres</name>
</author>
<author>
<name sortKey="Mittler, R" uniqKey="Mittler R">R. Mittler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szekely, G" uniqKey="Szekely G">G. Szekely</name>
</author>
<author>
<name sortKey="Abraham, E" uniqKey="Abraham E">E. Abraham</name>
</author>
<author>
<name sortKey="Cselo, A" uniqKey="Cselo A">A. Cselo</name>
</author>
<author>
<name sortKey="Rigo, G" uniqKey="Rigo G">G. Rigo</name>
</author>
<author>
<name sortKey="Zsigmond, L" uniqKey="Zsigmond L">L. Zsigmond</name>
</author>
<author>
<name sortKey="Csiszar, J" uniqKey="Csiszar J">J. Csiszar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taji, T" uniqKey="Taji T">T. Taji</name>
</author>
<author>
<name sortKey="Seki, M" uniqKey="Seki M">M. Seki</name>
</author>
<author>
<name sortKey="Satou, M" uniqKey="Satou M">M. Satou</name>
</author>
<author>
<name sortKey="Sakurai, T" uniqKey="Sakurai T">T. Sakurai</name>
</author>
<author>
<name sortKey="Kobayashi, M" uniqKey="Kobayashi M">M. Kobayashi</name>
</author>
<author>
<name sortKey="Ishiyama, K" uniqKey="Ishiyama K">K. Ishiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y. Tanaka</name>
</author>
<author>
<name sortKey="Hibino, T" uniqKey="Hibino T">T. Hibino</name>
</author>
<author>
<name sortKey="Hayashi, Y" uniqKey="Hayashi Y">Y. Hayashi</name>
</author>
<author>
<name sortKey="Tanaka, A" uniqKey="Tanaka A">A. Tanaka</name>
</author>
<author>
<name sortKey="Kishitani, S" uniqKey="Kishitani S">S. Kishitani</name>
</author>
<author>
<name sortKey="Takabe, T" uniqKey="Takabe T">T. Takabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taniguchi, M" uniqKey="Taniguchi M">M. Taniguchi</name>
</author>
<author>
<name sortKey="Miyake, H" uniqKey="Miyake H">H. Miyake</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Torres, M A" uniqKey="Torres M">M. A. Torres</name>
</author>
<author>
<name sortKey="Dangl, J L" uniqKey="Dangl J">J. L. Dangl</name>
</author>
<author>
<name sortKey="Jones, J D G" uniqKey="Jones J">J. D. G. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trouillard, M" uniqKey="Trouillard M">M. Trouillard</name>
</author>
<author>
<name sortKey="Shahbazi, M" uniqKey="Shahbazi M">M. Shahbazi</name>
</author>
<author>
<name sortKey="Moyet, L" uniqKey="Moyet L">L. Moyet</name>
</author>
<author>
<name sortKey="Rappaport, F" uniqKey="Rappaport F">F. Rappaport</name>
</author>
<author>
<name sortKey="Joliot, P" uniqKey="Joliot P">P. Joliot</name>
</author>
<author>
<name sortKey="Kuntz, M" uniqKey="Kuntz M">M. Kuntz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, Y C" uniqKey="Tsai Y">Y. C. Tsai</name>
</author>
<author>
<name sortKey="Hong, C Y" uniqKey="Hong C">C. Y. Hong</name>
</author>
<author>
<name sortKey="Liu, L F" uniqKey="Liu L">L. F. Liu</name>
</author>
<author>
<name sortKey="Kao, C H" uniqKey="Kao C">C. H. Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuna, A L" uniqKey="Tuna A">A. L. Tuna</name>
</author>
<author>
<name sortKey="Kaya, C" uniqKey="Kaya C">C. Kaya</name>
</author>
<author>
<name sortKey="Dikilitas, M" uniqKey="Dikilitas M">M. Dikilitas</name>
</author>
<author>
<name sortKey="Higgs, D" uniqKey="Higgs D">D. Higgs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uzilday, B" uniqKey="Uzilday B">B. Uzilday</name>
</author>
<author>
<name sortKey="Turkan, I" uniqKey="Turkan I">I. Turkan</name>
</author>
<author>
<name sortKey="Ozgur, R" uniqKey="Ozgur R">R. Ozgur</name>
</author>
<author>
<name sortKey="Sekmen, A H" uniqKey="Sekmen A">A. H. Sekmen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaidyanathan, H" uniqKey="Vaidyanathan H">H. Vaidyanathan</name>
</author>
<author>
<name sortKey="Sivakumar, P" uniqKey="Sivakumar P">P. Sivakumar</name>
</author>
<author>
<name sortKey="Chakrabarty, R" uniqKey="Chakrabarty R">R. Chakrabarty</name>
</author>
<author>
<name sortKey="Thomas, G" uniqKey="Thomas G">G. Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valderrama, R" uniqKey="Valderrama R">R. Valderrama</name>
</author>
<author>
<name sortKey="Corpas, F J" uniqKey="Corpas F">F. J. Corpas</name>
</author>
<author>
<name sortKey="Carreras, A" uniqKey="Carreras A">A. Carreras</name>
</author>
<author>
<name sortKey="G Mez Rodriguez, M V" uniqKey="G Mez Rodriguez M">M. V. Gómez-Rodríguez</name>
</author>
<author>
<name sortKey="Chaki, M" uniqKey="Chaki M">M. Chaki</name>
</author>
<author>
<name sortKey="Pedrajas, J R" uniqKey="Pedrajas J">J. R. Pedrajas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Aken, O V" uniqKey="Van Aken O">O. V. Van Aken</name>
</author>
<author>
<name sortKey="Giraud, E" uniqKey="Giraud E">E. Giraud</name>
</author>
<author>
<name sortKey="Clifton, R" uniqKey="Clifton R">R. Clifton</name>
</author>
<author>
<name sortKey="Whelan, J" uniqKey="Whelan J">J. Whelan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Camp, W" uniqKey="Van Camp W">W. Van Camp</name>
</author>
<author>
<name sortKey="Capiau, K" uniqKey="Capiau K">K. Capiau</name>
</author>
<author>
<name sortKey="Van Montagu, M" uniqKey="Van Montagu M">M. Van Montagu</name>
</author>
<author>
<name sortKey="Inze, D" uniqKey="Inze D">D. Inze</name>
</author>
<author>
<name sortKey="Slooten, L" uniqKey="Slooten L">L. Slooten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verslues, P E" uniqKey="Verslues P">P. E. Verslues</name>
</author>
<author>
<name sortKey="Agarwal, M" uniqKey="Agarwal M">M. Agarwal</name>
</author>
<author>
<name sortKey="Katiyar Agarwal, S" uniqKey="Katiyar Agarwal S">S. Katiyar-Agarwal</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
<author>
<name sortKey="Zhu, J" uniqKey="Zhu J">J. Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voss, I" uniqKey="Voss I">I. Voss</name>
</author>
<author>
<name sortKey="Sunil, B" uniqKey="Sunil B">B. Sunil</name>
</author>
<author>
<name sortKey="Scheibe, R" uniqKey="Scheibe R">R. Scheibe</name>
</author>
<author>
<name sortKey="Raghavendra, A S" uniqKey="Raghavendra A">A. S. Raghavendra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waie, B" uniqKey="Waie B">B. Waie</name>
</author>
<author>
<name sortKey="Rajam, M V" uniqKey="Rajam M">M. V. Rajam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Liang, X" uniqKey="Liang X">X. Liang</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Sommerfeld, M" uniqKey="Sommerfeld M">M. Sommerfeld</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wisniewski, M" uniqKey="Wisniewski M">M. Wisniewski</name>
</author>
<author>
<name sortKey="Meilan, R" uniqKey="Meilan R">R. Meilan</name>
</author>
<author>
<name sortKey="Cui, M" uniqKey="Cui M">M. Cui</name>
</author>
<author>
<name sortKey="Webb, R" uniqKey="Webb R">R. Webb</name>
</author>
<author>
<name sortKey="Fuchigami, L" uniqKey="Fuchigami L">L. Fuchigami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiciarza, M" uniqKey="Wiciarza M">M. Wiciarza</name>
</author>
<author>
<name sortKey="Gubernatorb, B" uniqKey="Gubernatorb B">B. Gubernatorb</name>
</author>
<author>
<name sortKey="Jerzy Kruka, J" uniqKey="Jerzy Kruka J">J. Jerzy Kruka</name>
</author>
<author>
<name sortKey="Niewiadomskac, E" uniqKey="Niewiadomskac E">E. Niewiadomskac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winger, A M" uniqKey="Winger A">A. M. Winger</name>
</author>
<author>
<name sortKey="Taylor, N L" uniqKey="Taylor N">N. L. Taylor</name>
</author>
<author>
<name sortKey="Heazlewood, J L" uniqKey="Heazlewood J">J. L. Heazlewood</name>
</author>
<author>
<name sortKey="Day, D A" uniqKey="Day D">D. A. Day</name>
</author>
<author>
<name sortKey="Millar, A H" uniqKey="Millar A">A. H. Millar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wingler, A" uniqKey="Wingler A">A. Wingler</name>
</author>
<author>
<name sortKey="Lea, P J" uniqKey="Lea P">P. J. Lea</name>
</author>
<author>
<name sortKey="Quick, W P" uniqKey="Quick W">W. P. Quick</name>
</author>
<author>
<name sortKey="Leegood, R C" uniqKey="Leegood R">R. C. Leegood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wojtaszek, P" uniqKey="Wojtaszek P">P. Wojtaszek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Y J" uniqKey="Xie Y">Y. J. Xie</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S. Xu</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
<author>
<name sortKey="Wu, M Z" uniqKey="Wu M">M. Z. Wu</name>
</author>
<author>
<name sortKey="Yuan, X X" uniqKey="Yuan X">X. X. Yuan</name>
</author>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, K" uniqKey="Yoshida K">K. Yoshida</name>
</author>
<author>
<name sortKey="Watanabe, C K" uniqKey="Watanabe C">C. K. Watanabe</name>
</author>
<author>
<name sortKey="Hachiya, T" uniqKey="Hachiya T">T. Hachiya</name>
</author>
<author>
<name sortKey="Tholen, D" uniqKey="Tholen D">D. Tholen</name>
</author>
<author>
<name sortKey="Shibata, M" uniqKey="Shibata M">M. Shibata</name>
</author>
<author>
<name sortKey="Terashima, I" uniqKey="Terashima I">I. Terashima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Feilke, K" uniqKey="Feilke K">K. Feilke</name>
</author>
<author>
<name sortKey="Krieger Liszkay, A" uniqKey="Krieger Liszkay A">A. Krieger-Liszkay</name>
</author>
<author>
<name sortKey="Beyer, P" uniqKey="Beyer P">P. Beyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, L" uniqKey="Zeng L">L. Zeng</name>
</author>
<author>
<name sortKey="Lesch, S M" uniqKey="Lesch S">S. M. Lesch</name>
</author>
<author>
<name sortKey="Grieve, C M" uniqKey="Grieve C">C. M. Grieve</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, D W" uniqKey="Zhang D">D. W. Zhang</name>
</author>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S. Yuan</name>
</author>
<author>
<name sortKey="Xu, F" uniqKey="Xu F">F. Xu</name>
</author>
<author>
<name sortKey="Zhu, F" uniqKey="Zhu F">F. Zhu</name>
</author>
<author>
<name sortKey="Yuan, M" uniqKey="Yuan M">M. Yuan</name>
</author>
<author>
<name sortKey="Ye, H X" uniqKey="Ye H">H. X. Ye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Lai, J" uniqKey="Lai J">J. Lai</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S. Sun</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Liang, L" uniqKey="Liang L">L. Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, J K" uniqKey="Zhu J">J. K. Zhu</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Plant Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Plant Sci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Plant Sci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Plant Science</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-462X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27242807</article-id>
<article-id pub-id-type="pmc">4861717</article-id>
<article-id pub-id-type="doi">10.3389/fpls.2016.00548</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Plant Science</subject>
<subj-group>
<subject>Review</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Hossain</surname>
<given-names>M. Sazzad</given-names>
</name>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/297881/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dietz</surname>
<given-names>Karl-Josef</given-names>
</name>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/13416/overview"></uri>
</contrib>
</contrib-group>
<aff>
<institution>Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld</institution>
<country>Bielefeld, Germany</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Francisco Javier Corpas, Spanish National Research Council, Spain</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Peter Jahns, Heinrich Heine University Düsseldorf, Germany; José A. Hernández, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Spain</p>
</fn>
<corresp id="fn001">*Correspondence: Karl-Josef Dietz
<email xlink:type="simple">karl-josef.dietz@uni-bielefeld.de</email>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>10</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>548</elocation-id>
<history>
<date date-type="received">
<day>28</day>
<month>2</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>08</day>
<month>4</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Hossain and Dietz.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Hossain and Dietz</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.</p>
</abstract>
<kwd-group>
<kwd>alternative oxidase</kwd>
<kwd>antioxidant enzymes</kwd>
<kwd>hydrogen peroxide</kwd>
<kwd>NADPH oxidase</kwd>
<kwd>salinity stress</kwd>
</kwd-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="2"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="176"></ref-count>
<page-count count="15"></page-count>
<word-count count="12408"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Soil salinity is a major environmental stress that strongly impairs crop productivity and harvest quality in the world (Horie and Schroeder,
<xref rid="B58" ref-type="bibr">2004</xref>
). Significant areas of the cultivated land in more than 100 countries are affected by salinity (Rengasamy,
<xref rid="B122" ref-type="bibr">2006</xref>
). The quality of approximately 20% of the world's cultivated area and about 50% of the world's irrigated lands is affected by salinization (Sairam and Tyagi,
<xref rid="B129" ref-type="bibr">2004</xref>
). Hence, soil salinity poses a serious threat to crop yield and future food production. Plant responses and tolerance mechanisms to salt stress are a major topic of plant research (Munns and Tester,
<xref rid="B108" ref-type="bibr">2008</xref>
). In general, high salt concentrations induce ionic imbalances, osmotic stress and oxidative damage (Zhu,
<xref rid="B176" ref-type="bibr">2001</xref>
). Glycophytic plants under salt stress conditions exhibit slow growth, wilting and eventually death (Parida et al.,
<xref rid="B113" ref-type="bibr">2004</xref>
). To survive under stress condition, plants respond and adapt with complex mechanisms that include developmental, morphological, physiological and biochemical strategies (Taji et al.,
<xref rid="B148" ref-type="bibr">2004</xref>
; Acosta-Motos et al.,
<xref rid="B2" ref-type="bibr">2015</xref>
) addressing ion homeostasis, osmolyte biosynthesis, compartmentation of toxic ions, and reactive oxygen species (ROS) scavenging systems (Stepien and Klobus,
<xref rid="B142" ref-type="bibr">2005</xref>
; Flowers and Colmer,
<xref rid="B37" ref-type="bibr">2008</xref>
). Many genes involved in membrane transport, signal transduction, redox reactions and other processes have been identified and characterized (Inan et al.,
<xref rid="B61" ref-type="bibr">2004</xref>
; Zhang et al.,
<xref rid="B175" ref-type="bibr">2008</xref>
). However, the quantitative contribution of the various molecular mechanisms, their qualitative interactions and the integrated functional network underlying plant tolerance to salt stress remain to be determined.</p>
<p>Cell metabolism generates reactive oxygen species (ROS) at low rates as normal side product. Salinity stress often enhances the generation of reactive oxygen species (ROS). This may lead to metabolic disorders, cellular damage, and premature senescence or necrosis (Møller et al.,
<xref rid="B104" ref-type="bibr">2007</xref>
; Jaleel et al.,
<xref rid="B63" ref-type="bibr">2009</xref>
; Miller et al.,
<xref rid="B98" ref-type="bibr">2010</xref>
; Habib et al.,
<xref rid="B47" ref-type="bibr">2016</xref>
). Excessively accumulating ROS may react with suitable targets such as nucleic acids, proteins, lipids and chlorophyll. The main ROS include non-radical molecules like singlet oxygen (
<sup>1</sup>
O
<sub>2</sub>
) and hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), as well as free radicals such as superoxide (
<inline-formula>
<mml:math id="M1">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
) and hydroxyl radicals (
<sup></sup>
OH) (Azevedo Neto et al.,
<xref rid="B7" ref-type="bibr">2008</xref>
). Besides their harmful effects ROS act as signaling molecules that regulate plant development, biotic and abiotic stress responses (Mittler et al.,
<xref rid="B103" ref-type="bibr">2004</xref>
). Recent research and considerations have focused on ROS metabolism (Noctor et al.,
<xref rid="B111" ref-type="bibr">2014</xref>
), sensory and signaling networks (Dietz,
<xref rid="B27" ref-type="bibr">2008</xref>
; Miller et al.,
<xref rid="B98" ref-type="bibr">2010</xref>
; Suzuki et al.,
<xref rid="B145" ref-type="bibr">2012</xref>
; Baxter et al.,
<xref rid="B11" ref-type="bibr">2014</xref>
), as well as the cross-talk with other signaling pathways (Suzuki et al.,
<xref rid="B145" ref-type="bibr">2012</xref>
; Noctor et al.,
<xref rid="B111" ref-type="bibr">2014</xref>
).</p>
<p>The seemingly negative consequences of excess ROS accumulation like lipid peroxidation, oxidation of proteins, damage of nucleic acids, enzyme inhibition, and activation of programmed cell death (PCD) are also linked to signaling since the reaction products transmit information to downstream events (Figure
<xref ref-type="fig" rid="F1">1</xref>
; Mishra et al.,
<xref rid="B100" ref-type="bibr">2011</xref>
; Srivastava and Dubey,
<xref rid="B140" ref-type="bibr">2011</xref>
). The steady state ROS levels depend on the rates of generation and decomposition (Figure
<xref ref-type="fig" rid="F1">1</xref>
). Three levels of specificity need to be considered at the level of ROS, their chemical reactivity, as well as their temporal and spatial accumulation pattern. A network of low molecular mass antioxidants and antioxidant enzymes, redox input elements, redox transmitters, redox target proteins and redox sensors orchestrate the readjustment of redox homeostasis and redox-dependent response (Azevedo Neto et al.,
<xref rid="B7" ref-type="bibr">2008</xref>
; Dietz,
<xref rid="B27" ref-type="bibr">2008</xref>
; Gill and Tuteja,
<xref rid="B43" ref-type="bibr">2010</xref>
). To understand the redox and ROS balance under salinity we have to consider (i) the ROS generator systems, (ii) the antioxidant defense system, and (iii) the redox regulatory network.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Overview of salinity-induced stress effects</bold>
. The primary stress effects are osmotic and ionic imbalances which affect the ROS generator and antioxidant systems. This effect may be positive or negative as indicated and discussed. Their relative activities determine the ROS levels, as well as the subsequent redox reactions which are used in signaling
<bold>(right hand side)</bold>
or, if excessive, cause oxidative damage which enhances the stress effects
<bold>(left hand side)</bold>
.</p>
</caption>
<graphic xlink:href="fpls-07-00548-g0001"></graphic>
</fig>
<p>The best studied component is the antioxidant system which includes gene families encoding superoxide dismutases (SOD), catalases (CAT), guaiacol peroxidases (POX), the ascorbate-glutathione (ASC-GSH) cycle enzymes [ascorbate peroxidases (APX), monodehydroascorbate reductases (MDHAR), dehydroascorbate reductases (DHAR), glutathione reductases (GR)], glutathione peroxidases (GPX), peroxiredoxins (PRX) and glutathione S-transferases (GST) (Mittler et al.,
<xref rid="B103" ref-type="bibr">2004</xref>
; Azevedo Neto et al.,
<xref rid="B7" ref-type="bibr">2008</xref>
; Munns and Tester,
<xref rid="B108" ref-type="bibr">2008</xref>
). These antioxidant enzymes are targeted to specific subcellular compartments and reveal stress-specific modulation of their expression as compiled e.g., by Mittler et al. (
<xref rid="B103" ref-type="bibr">2004</xref>
) for
<italic>A. thaliana</italic>
.</p>
<p>Intensive research on salinity has addressed the ROS generator systems which in a regulated or conditional, but partly less targeted manner control the release of ROS. Metabolic pathways like photorespiration and membrane-associated enzymes determine the rate of ROS generation in plant cells; the NADPH oxidase (respiratory burst oxidase homolog: RBOH) (Keller et al.,
<xref rid="B69" ref-type="bibr">1998</xref>
), mitochondrial alternative oxidase (AOX) (Considine et al.,
<xref rid="B20" ref-type="bibr">2002</xref>
) and plastid terminal oxidase (PTOX) (Stepien and Johnson,
<xref rid="B141" ref-type="bibr">2009</xref>
). Additional layers of defense and regulation modulate the redox state of the cell and control the subcellular redox balance. Malic acid and oxaloacetic acid represent a redox pair of metabolites linked by malate dehydrogenases (MDH), e.g., the NADP-MDH in the chloroplast. Exchange of malic acid and oxaloacetic acid by membrane transport among compartments allows for indirect transfer of reducing equivalents. This process is known as malate valve (Scheibe et al.,
<xref rid="B132" ref-type="bibr">2005</xref>
). The tightly regulated plastid NADP-MDH controls the export of excess reducing power from the photosynthesizing chloroplast and thereby relieves overreduction of the photosynthetic electron transport chain and thus generation of ROS.</p>
<p>The significance of these enzymes and mechanisms in salt tolerance is still a matter of controversy. Often, regulatory patterns are difficult to interpret; e.g., upregulation of antioxidant enzymes may represent the response to manifested oxidative stress. On the other hand, upregulation of antioxidant enzymes may be considered as proactive acclimation response which results in lower ROS levels and higher tolerance to oxidative stress. Consequentially high antioxidant enzyme activities have been associated with salt tolerance as well as salt sensitivity. With that said, this review aims to provide a critical update on redox regulation, oxidative stress and their implications in salt stress acclimation and damage development.</p>
</sec>
<sec id="s2">
<title>Generation of ROS under salinity stress in plant</title>
<p>Salt stress interferes with carbon metabolism and thereby fosters ROS generation. Stomatal conductance decreases during salt stress and lowers transpiration. The stomatal movement is linked to ion redistribution, alkalization and ABA accumulation (Geilfus et al.,
<xref rid="B41" ref-type="bibr">2015</xref>
). Restricted gas exchange limits CO
<sub>2</sub>
uptake, lowers intercellular CO
<sub>2</sub>
concentration and CO
<sub>2</sub>
availability for the Calvin cycle. As a consequences the pool of oxidized NADP
<sup>+</sup>
(as final electron acceptor at PSI) is depleted and electrons are transferred to O
<sub>2</sub>
to generate
<inline-formula>
<mml:math id="M2">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
(Mehler,
<xref rid="B96" ref-type="bibr">1951</xref>
). Following non-enzymatic or enzymatic dismutation by superoxide dismutase (SOD), H
<sub>2</sub>
O
<sub>2</sub>
can be converted to the extremely reactive hydroxyl radicals (
<sup></sup>
OH) in the Fenton-/Haber-Weiss-reaction. Insufficient energy dissipation in photosynthesis causes formation of
<sup>1</sup>
O
<sub>2</sub>
from triplet chlorophyll (Chl) especially in the reaction center of photosystem II (Krieger-Liszkay,
<xref rid="B72" ref-type="bibr">2005</xref>
). The decrease in the CO
<sub>2</sub>
/O
<sub>2</sub>
-ratio in the mesophyll enhances photorespiration in C3-plants and stimulates H
<sub>2</sub>
O
<sub>2</sub>
generation in the peroxisome (Wingler et al.,
<xref rid="B168" ref-type="bibr">2000</xref>
; Ghannoum,
<xref rid="B42" ref-type="bibr">2009</xref>
). Photorespiration accounts for over 70% of the H
<sub>2</sub>
O
<sub>2</sub>
production under osmotic stress (Noctor et al.,
<xref rid="B112" ref-type="bibr">2002</xref>
). Early studies on respiratory electron transport (RET) reported increased rates of electron transfer to O
<sub>2</sub>
and thus of respiratory O
<sub>2</sub>
consumption under salt stress (Fry et al.,
<xref rid="B39" ref-type="bibr">1986</xref>
; Moser et al.,
<xref rid="B107" ref-type="bibr">1991</xref>
).
<inline-formula>
<mml:math id="M3">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
is generated when RET is overreduced. The generated
<inline-formula>
<mml:math id="M4">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
is dismutated to H
<sub>2</sub>
O
<sub>2</sub>
which is subsequently reduced to water by catalases, class I peroxidases (APXs), class III peroxidases (POXs) and thiol peroxidases. Salinity stress activates the cell membrane-bound RBOH (Rejeb et al.,
<xref rid="B120" ref-type="bibr">2015a</xref>
; Tsai et al.,
<xref rid="B153" ref-type="bibr">2005</xref>
) and the apoplastic diamine oxidase (Waie and Rajam,
<xref rid="B162" ref-type="bibr">2003</xref>
). Both mechanisms contribute to the generation of ROS in the apoplastic space. In other cases RBOH activity was inhibited under salt stress (Rodríguez et al.,
<xref rid="B124" ref-type="bibr">2009</xref>
). In salt-stressed maize leaves (150 mM NaCl in hydroponics), levels of apoplastic spermidine and spermine increased several times and the apoplastic polyamine oxidase allowed for converting the polyamines to 1,3-diaminopropane and H
<sub>2</sub>
O
<sub>2</sub>
(Rodríguez et al.,
<xref rid="B124" ref-type="bibr">2009</xref>
). This mechanism enables cell wall loosening by generation of
<sup></sup>
OH and sustains leaf blade growth even if RBOH is inhibited (Rodríguez et al.,
<xref rid="B124" ref-type="bibr">2009</xref>
). Other ROS-generating enzymes include oxalate oxidase and amine oxidase. In context of salinity much work has focused on RBOH-like enzymes, the major enzymatic route of ROS synthesis in plant cells (Sharma et al.,
<xref rid="B134" ref-type="bibr">2012</xref>
), which will be discussed below in more detail.</p>
<p>Under salinity stress each type of organelle employs different mechanisms of ROS production. The subcellular and cellular sites of ROS production decisively determine their signaling action. Thus, ROS are produced in particular in the PET of chloroplasts, the RET in mitochondria, various oxidases in peroxisome and the NADPH oxidase (RBOH) in the plasma membrane (Figure
<xref ref-type="fig" rid="F2">2</xref>
). In addition reactions in the endomembrane system and the apoplast/cell wall also contribute to ROS generation (Table
<xref ref-type="table" rid="T1">1</xref>
). Localized production in specific micro-compartments and the buffering action of multiple antioxidant mechanisms fine-tune the concentrations of ROS at particular sites of the cell under salt stress. Such mechanisms could delimit the response to localized “hot-spots.”</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Simplified scheme illustrating the predominant ROS generation sites in plant cell under salinity stress</bold>
. These sites are photosynthesis in chloroplasts, respiration in mitochondria, photorespiration in peroxisomes and NADH oxidation at the plasma membrane. AOX, alternative oxidase; GO, glycolate oxidase; PET, photosynthetic electron transport; PTOX, plastid terminal oxidase; RBOH, respiratory burst oxidase homolog; RET, respiratory electron transport; SOD, superoxide dismutase; XOD, xanthine oxidase.</p>
</caption>
<graphic xlink:href="fpls-07-00548-g0002"></graphic>
</fig>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Generation sites and origin of reactive oxygen species (ROS) in plants</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Location</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Key sources of ROS in cell</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Chloroplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">PET (PSI, PQ, and PSII) Chlorophyll pigments</td>
<td valign="top" align="left" rowspan="1" colspan="1">Elstner,
<xref rid="B32" ref-type="bibr">1991</xref>
; Cleland and Grace,
<xref rid="B18" ref-type="bibr">1999</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Mitochondrion</td>
<td valign="top" align="left" rowspan="1" colspan="1">Complexes of RET Enzymes, e.g., aconitase, 1-galactono-γ lactone dehydrogenase (GAL)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Andreyev et al.,
<xref rid="B3" ref-type="bibr">2005</xref>
; Rasmusson et al.,
<xref rid="B117" ref-type="bibr">2008</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Peroxisome</td>
<td valign="top" align="left" rowspan="1" colspan="1">Glycolate oxidase (GO), fatty acid β-oxidation, flavine oxidases, xanthine oxidase (XOD), peroxisomal NADPH: cytochrome P450 reductase and ETC composed of a flavoprotein, NADH and Cyt b</td>
<td valign="top" align="left" rowspan="1" colspan="1">López-Huertas et al.,
<xref rid="B88" ref-type="bibr">1999</xref>
; Baker and Graham,
<xref rid="B9" ref-type="bibr">2002</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Plasma membrane</td>
<td valign="top" align="left" rowspan="1" colspan="1">NADPH oxidase and menadione (quinone reductase)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Heyno et al.,
<xref rid="B55" ref-type="bibr">2011</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Apoplast</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cell wall-associated oxalate oxidase (germine) and amine oxidase-like enzymes</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wojtaszek,
<xref rid="B169" ref-type="bibr">1997</xref>
; Cona et al.,
<xref rid="B19" ref-type="bibr">2006</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Cell wall</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cell-wall-associated peroxidase in the presence of NADH and diamine oxidases</td>
<td valign="top" align="left" rowspan="1" colspan="1">Gross,
<xref rid="B45" ref-type="bibr">1977</xref>
; Martinez et al.,
<xref rid="B94" ref-type="bibr">1998</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Endoplasmatic reticulum</td>
<td valign="top" align="left" rowspan="1" colspan="1">NAD(P)H-dependent electron transport involving Cyt P450</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mittler,
<xref rid="B102" ref-type="bibr">2002</xref>
</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="s3">
<title>Scavenging of ROS under salinity stress in plant</title>
<p>Superoxide dismutase (SOD) belongs to the group of metalloenzymes and functions as an important enzyme in the first line of antioxidant defense. MnSOD, Cu/ZnSOD and FeSOD dismutate
<inline-formula>
<mml:math id="M5">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
into H
<sub>2</sub>
O
<sub>2</sub>
and O
<sub>2</sub>
(Rios-Gonzalez et al.,
<xref rid="B123" ref-type="bibr">2002</xref>
; Tuna et al.,
<xref rid="B154" ref-type="bibr">2008</xref>
). Elevated SOD activity often appears to enhance plant tolerance to oxidative stress (Gupta et al.,
<xref rid="B46" ref-type="bibr">1993</xref>
).
<sup>1</sup>
O
<sub>2</sub>
can be quenched by β-carotene or α-tocopherol, but also can react with the D1 protein of photosystem II as a sensitive protein target (Krieger-Liszkay,
<xref rid="B72" ref-type="bibr">2005</xref>
). Among the antioxidant enzymes, catalase (CAT) was discovered first and dismutates two molecules of H
<sub>2</sub>
O
<sub>2</sub>
into water and oxygen. Peroxidases are classified as heme or thiol (or selenol) peroxidases and reduce H
<sub>2</sub>
O
<sub>2</sub>
at the expense of an alternative electron donor (Dietz,
<xref rid="B28" ref-type="bibr">2016</xref>
). Thiol peroxidases use thiol electron donors such as thioredoxin (TRX), glutaredoxin (GRX), glutathione or in rare cases ascorbate to convert H
<sub>2</sub>
O
<sub>2</sub>
to H
<sub>2</sub>
O
<sub>.</sub>
Ascorbate peroxidase (APX) catalyzes the primary step in the classical water-water cycle (Asada,
<xref rid="B5" ref-type="bibr">1992</xref>
) where DHAR and GR, a flavoenzyme which contains an essential disulfide group, catalyze the regeneration of ascorbate from dehydroascorbate using glutathione and finally NADPH as reductants. The regeneration of ascorbate from monodehydroascorbate is also carried out by MDHAR using NADH as reducing power. GPX, some GST and PRX reduce H
<sub>2</sub>
O
<sub>2</sub>
and organic hydroperoxides through ascorbate-independent thiol-mediated pathways using nucleophiles such as GSH, thioredoxin (TRX) or glutaredoxins (GRX) (Asada,
<xref rid="B5" ref-type="bibr">1992</xref>
; Dietz et al.,
<xref rid="B29" ref-type="bibr">2006</xref>
; Noctor et al.,
<xref rid="B111" ref-type="bibr">2014</xref>
). Transcript levels of TRX, Mn-SOD, AOX, and PRXIIF increased under short-term salinity conditions (Marti et al.,
<xref rid="B93" ref-type="bibr">2011</xref>
). The mitochondrial PsTRXo1 increases in pea leaves in response to long-term salinity (Marti et al.,
<xref rid="B93" ref-type="bibr">2011</xref>
). PsTRXo1 and PRXIIF provide the cell with a mechanism to protect mitochondria from oxidative stress together with Mn-SOD and AOX. Mitochondrial TRX-o1, PRXIIF and sulfiredoxins participate in the establishment of salt tolerance through a fine-regulated mechanism involving the post-translational modifications of
<italic>S</italic>
-glutathionylation and
<italic>S</italic>
-nitrosylation (Lázaro et al.,
<xref rid="B80" ref-type="bibr">2013</xref>
).</p>
<p>The link between salt tolerance and increased activities of antioxidant enzymes has frequently been established (Zeng et al.,
<xref rid="B173" ref-type="bibr">2003</xref>
; Liu et al.,
<xref rid="B87" ref-type="bibr">2011</xref>
; Table
<xref ref-type="table" rid="T2">2</xref>
). Stepien and Klobus (
<xref rid="B142" ref-type="bibr">2005</xref>
) compared oxidative stress in salt-stressed wheat and maize by assessing lipid peroxidation and activities of antioxidant enzymes. Maize suffered less oxidative stress than wheat. The constitutive and salt stress-inducible activities of SOD, APX and GR were higher in maize than in wheat. The authors suggested that the higher tolerance of maize is based on two mechanisms, namely lower ROS production in C4-photosynthesis and higher activities of the antioxidant enzymes. Photorespiration is strongly induced by salt stress in C3 but not in C4 and CAM plant (Cushman and Bohnert,
<xref rid="B22" ref-type="bibr">1997</xref>
).
<italic>Flaveria, Alternanthera, Parthenium, Panicum</italic>
and
<italic>Moricandia</italic>
species are some species with C3-C4 intermediate photosynthesis which are able to efficiently recycle photorespired CO
<sub>2</sub>
which lowers the rate of photorespiration (Monson et al.,
<xref rid="B106" ref-type="bibr">1984</xref>
; Devi and Raghavendra,
<xref rid="B26" ref-type="bibr">1993</xref>
). C3 species examined had high intrinsic levels of photorespiration whereas the C3-C4 intermediate species (primarily by refixing photorespired CO
<sub>2</sub>
), C4-like and C4 species (via selective localization of ribulose-1,5-bisphosphate carboxylase in bundle sheath cells and operation of a CO
<sub>2</sub>
pump via the C4 pathway) maintained low apparent rates of photorespiration (Dai et al.,
<xref rid="B24" ref-type="bibr">1996</xref>
). In another study, Rios-Gonzalez et al. (
<xref rid="B123" ref-type="bibr">2002</xref>
) reported higher activities of GR, SOD, POD and CAT in sunflower leaves than in maize under salt stress. C4-like
<italic>Flaveria brownie</italic>
and C4
<italic>Flaveria bidentis</italic>
are able to prevent oxidative damage by stress by increased enzymatic and non-enzymatic antioxidants, as compared to C3 (
<italic>Flaveria robusta</italic>
) and C3–C4 intermediate (
<italic>Flaveria anomala</italic>
) (Uzilday et al.,
<xref rid="B155" ref-type="bibr">2014</xref>
). Higher water use efficiency of C4 plants should support growth on saline soil. However, it appears too early to generalize on a possible advantage that C4 plants possibly have since many other traits participate in salinity tolerance a priori.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Antioxidant enzymes reported to be regulated in plants under salinity stress</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Antioxidant enzymes
<xref ref-type="table-fn" rid="TN1">
<sup>*</sup>
</xref>
</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>Plant species</bold>
</th>
<th valign="top" align="left" rowspan="1" colspan="1">
<bold>References</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
,
<bold>CAT</bold>
,
<bold>GPX</bold>
,
<bold>APX</bold>
,
<bold>GR</bold>
,
<bold>MDHAR, DHAR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mishra et al.,
<xref rid="B99" ref-type="bibr">2013</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>CAT</bold>
,
<bold>SOD, GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Olea europaea</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Valderrama et al.,
<xref rid="B157" ref-type="bibr">2006</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>GPX</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Mittal and Dubey,
<xref rid="B101" ref-type="bibr">1991</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>APX, MDHAR, DHAR, GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hossain et al.,
<xref rid="B59" ref-type="bibr">2013</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Triticum aestivum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Borzouei et al.,
<xref rid="B13" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa, Avicennia marina</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Prashanth et al.,
<xref rid="B116" ref-type="bibr">2008</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Nicotiana tabacum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Van Camp et al.,
<xref rid="B159" ref-type="bibr">1996</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tanaka et al.,
<xref rid="B149" ref-type="bibr">1999</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Cakile maritime</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ellouzi et al.,
<xref rid="B31" ref-type="bibr">2011</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>GR</bold>
,
<bold>SOD</bold>
,
<bold>POX, CAT</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Helianthus annuus, Zea mays</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Rios-Gonzalez et al.,
<xref rid="B123" ref-type="bibr">2002</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
,
<bold>APX, DHAR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Nicotiana tabacum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lee et al.,
<xref rid="B81" ref-type="bibr">2007</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>APX, GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Tsai et al.,
<xref rid="B153" ref-type="bibr">2005</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">SOD, APX, GR</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Triticum aestivum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Stepien and Klobus,
<xref rid="B142" ref-type="bibr">2005</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
,
<bold>APX, GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Zea mays</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Stepien and Klobus,
<xref rid="B142" ref-type="bibr">2005</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>CAT</bold>
,
<bold>APX, GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Rejeb et al.,
<xref rid="B120" ref-type="bibr">2015a</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>APX</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Nicotiana tabacum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Badawi et al.,
<xref rid="B8" ref-type="bibr">2004</xref>
; Li et al.,
<xref rid="B84" ref-type="bibr">2009</xref>
; Sun et al.,
<xref rid="B144" ref-type="bibr">2010</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pisum sativum, Lycopersicon esculentum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wang et al.,
<xref rid="B165" ref-type="bibr">2005</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Hordeum vulgare</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Shi et al.,
<xref rid="B136" ref-type="bibr">2001</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lu et al.,
<xref rid="B89" ref-type="bibr">2007</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Ipomoea batatas</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Lin and Pu,
<xref rid="B86" ref-type="bibr">2010</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>DHAR, GR</bold>
,
<underline>MDHAR, APX</underline>
, SOD</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Pisum sativum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hernández et al.,
<xref rid="B53" ref-type="bibr">2001</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>CAT</bold>
,
<bold>POX</bold>
,
<bold>APX, GR</bold>
, SOD</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Echinochloa crusgalli</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Abogadallah et al.,
<xref rid="B1" ref-type="bibr">2009</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>MDHAR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Nicotiana tabacum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Eltayeb et al.,
<xref rid="B33" ref-type="bibr">2007</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>DHAR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Lotus japonicas</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Rubio et al.,
<xref rid="B127" ref-type="bibr">2009</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>GR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Nicotiana tabacum)</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Aono et al.,
<xref rid="B4" ref-type="bibr">1993</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Populus species</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Foyer et al.,
<xref rid="B38" ref-type="bibr">1995</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
,
<bold>CAT</bold>
,
<bold>APX, MDHAR</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Lycopersicon esculentum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Shalata et al.,
<xref rid="B133" ref-type="bibr">2001</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>SOD</bold>
,
<bold>CAT, APX</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Gossypium hirsutum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Luo et al.,
<xref rid="B90" ref-type="bibr">2013</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>POX</bold>
,
<underline>CAT, SOD</underline>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Vigna unguiculata</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cavalcanti et al.,
<xref rid="B16" ref-type="bibr">2004</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>NOX/RBOH</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Sakamoto et al.,
<xref rid="B131" ref-type="bibr">2008</xref>
; Ma et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<underline>NOX/RBOH</underline>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Song et al.,
<xref rid="B138" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<underline>NOX/RBOH</underline>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Brassica juncea</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Srivastava et al.,
<xref rid="B139" ref-type="bibr">2015</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">NOX/RBOH</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Sesuvium portulacastrum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Srivastava et al.,
<xref rid="B139" ref-type="bibr">2015</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>RBOHD/F</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ma et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>RBOHF</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Jiang et al.,
<xref rid="B64" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>AOX</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Citrus sinensis (cvs. Carvalhal tangor)</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Ferreira et al.,
<xref rid="B36" ref-type="bibr">2008</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Glycine max</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hilal et al.,
<xref rid="B56" ref-type="bibr">1998</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Smith et al.,
<xref rid="B137" ref-type="bibr">2009</xref>
; Wang et al.,
<xref rid="B163" ref-type="bibr">2010</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Hordeum vulgare</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Jolivet et al.,
<xref rid="B67" ref-type="bibr">1990</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>OsAOX1a</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Li et al.,
<xref rid="B83" ref-type="bibr">2013</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>OsAOX1b</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Li et al.,
<xref rid="B83" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td valign="top" align="left" rowspan="1" colspan="1">
<underline>OsAOX1c</underline>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Li et al.,
<xref rid="B83" ref-type="bibr">2013</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>NADH-MDH</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Kumar et al.,
<xref rid="B75" ref-type="bibr">2000</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Mesembryanthemum crystallinum</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Cushman,
<xref rid="B21" ref-type="bibr">1993</xref>
; Gawronska et al.,
<xref rid="B40" ref-type="bibr">2013</xref>
</td>
</tr>
<tr style="border-bottom: thin solid #000000;">
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Hebbelmann et al.,
<xref rid="B51" ref-type="bibr">2012</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<bold>PTOX</bold>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Thellungiella halophila</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Stepien and Johnson,
<xref rid="B141" ref-type="bibr">2009</xref>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">
<underline>PTOX</underline>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Arabidopsis thaliana</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Josse et al.,
<xref rid="B68" ref-type="bibr">2003</xref>
; Stepien and Johnson,
<xref rid="B141" ref-type="bibr">2009</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Oryza sativa</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Kong et al.,
<xref rid="B71" ref-type="bibr">2003</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Haematococcus pluvialis</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wang et al.,
<xref rid="B164" ref-type="bibr">2009</xref>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td valign="top" align="left" rowspan="1" colspan="1">
<italic>Thellungiella salsuginea</italic>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Wiciarza et al.,
<xref rid="B166" ref-type="bibr">2015</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="TN1">
<label>*</label>
<p>
<italic>Bold: upregulated under salt stress, underlined: down-regulated, normal: unchanged</italic>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>A higher redox status of antioxidants and the coordinated increase in SOD, CAT, GPX, APX, and GR activities was suggested by Mishra et al. (
<xref rid="B99" ref-type="bibr">2013</xref>
) to serve as the major determinants of salt tolerance in Indica rice seedlings. In this study, the activity of CuZn-SOD, APX, GPX, CAT, MDHAR, DHAR, and GR increased in the salt tolerant cultivar like in salt-sensitive seedlings at moderate salinity of 7 dS m
<sup>−1</sup>
NaCl. In contrast, the activity of GPX, CAT, MDHAR, DHAR, and GR decreased with higher salinity of 14 dS m
<sup>−1</sup>
NaCl in the sensitive genotype. Cultivars with distinct salt sensitivity allow exploring involved mechanisms. Pusa Basmati-1 is highly salt sensitive, while Pokkali displays moderate salt tolerance. In parallel the activity of the ROS scavenging CAT and the levels of antioxidants like ASA and GSH are increased and concomitantly the membrane damage as judged from lipid peroxidation and H
<sub>2</sub>
O
<sub>2</sub>
levels are lower in Pokkali compared to Pusa Basmati-1 (Vaidyanathan et al.,
<xref rid="B156" ref-type="bibr">2003</xref>
). Transcript regulation of peroxisomal APX (HvAPX1) correlates with salt stress (Shi et al.,
<xref rid="B136" ref-type="bibr">2001</xref>
). Lin and Pu (
<xref rid="B86" ref-type="bibr">2010</xref>
) studied the involvement of ROS scavenging enzymes in tolerant and sensitive sweet potato under salinity. The activity increase of cAPX, mAPX and chlAPX 24 and 48 h after exposure to 450 mM NaCl was higher in the salt stress-tolerant genotype than in the sensitive ones. Overall induction and maintenance of a strong antioxidant defense frequently correlates with enhanced salt tolerance.</p>
<p>Likewise genetic fortification of antioxidant levels has been shown to enhance salinity tolerance by decreasing the oxidative stress. Transgenic tobacco overexpressing cytosolic AtMDAR1 exhibited up to 2.1-fold higher MDAR activity and 2.2-fold higher levels of reduced AsA than non-transformed control plants and concomitantly the tolerance to salt stress was enhanced (Eltayeb et al.,
<xref rid="B33" ref-type="bibr">2007</xref>
). Likewise, transgenic Arabidopsis over-expressing rice cytosolic OsAPXa/b exhibited increased salt tolerance compared to wild-type (Lu et al.,
<xref rid="B89" ref-type="bibr">2007</xref>
). A similar improvement in salt stress tolerance was observed in transgenic tobacco expressing the AtcAPX gene (Badawi et al.,
<xref rid="B8" ref-type="bibr">2004</xref>
) or the
<italic>Solanum lycopersicum</italic>
tAPX (SltAPX) (Sun et al.,
<xref rid="B144" ref-type="bibr">2010</xref>
). Transgenic tobacco simultaneously expressing CuZnSOD, APX, and DHAR in the chloroplast tolerated 100 mM NaCI without developing salt-induced injury observed in wild type (Lee et al.,
<xref rid="B81" ref-type="bibr">2007</xref>
). Prashanth et al. (
<xref rid="B116" ref-type="bibr">2008</xref>
) applied salt stress to indica rice var Pusa Basmati-1 overexpressing cytosolic Cu/ZnSOD from the mangrove
<italic>Avicennia marina</italic>
. The heterologous expression conferred salinity stress tolerance in hydroponics and pot experiments. GhSOD1-, GhAPX1-, and GhCAT1-overexpressing cotton showed higher tolerance to salinity than WT, and the synergistic effects of GhSOD1 and GhCAT1 were suggested to provide a new strategy for enhancing salt stress tolerance (Luo et al.,
<xref rid="B90" ref-type="bibr">2013</xref>
). Overall the results from transgenic approaches are complementary to the correlative evidence at the level of regulation of enzyme activity and of transcripts amounts and support the conclusion that enhanced antioxidant activity fosters salt acclimation. Figure
<xref ref-type="fig" rid="F3">3</xref>
summarizes the various antioxidant systems in chloroplast, mitochondrion and peroxisome. It also indicates the sites of the safety valves and generator systems which will be discussed next, the alternative oxidase (AOX), the plastid terminal oxidase (PTOX), the respiratory burst oxidase homolog (RBOH) and the malate valve.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Overview of the antioxidant systems and the malate valve</bold>
. This figure shows the distribution of the various antioxidant defense systems and the function of the malate valve as mechanism to equilibrate reductive power between organelles.</p>
</caption>
<graphic xlink:href="fpls-07-00548-g0003"></graphic>
</fig>
</sec>
<sec id="s4">
<title>Alternative oxidase (AOX)</title>
<p>Redox and ROS metabolism are tightly linked. Overreduction of electron transport chains enhances ROS production as discussed above. In higher plants, the respiratory electron transport chain (RET) feeds electrons to two terminal oxidases, namely cytochrome c oxidase (complex IV) for ATP synthesis and the cyanide-insensitive AOX for energy dissipation (Rogov et al.,
<xref rid="B125" ref-type="bibr">2014</xref>
). The conditional bifurcation to both pathways maintains the energy balance as well as redox homeostasis in dependence on the cellular energy demand. Drainage of electrons into the AOX pathway increases under stress (Zhang et al.,
<xref rid="B174" ref-type="bibr">2016</xref>
). Earlier the AOX capacity was demonstrated to respond to salinity in plants such as barley (Jolivet et al.,
<xref rid="B67" ref-type="bibr">1990</xref>
), soybean (Hilal et al.,
<xref rid="B56" ref-type="bibr">1998</xref>
) and carrot (Ferreira et al.,
<xref rid="B36" ref-type="bibr">2008</xref>
). Activation of AOX1a occurs via a thiol switch mechanism (Winger et al.,
<xref rid="B167" ref-type="bibr">2007</xref>
) and stimulates alternative respiration, decreases electron pressure and prevents over-reduction of the ubiquinone (UQ) pool which dampens excessive
<inline-formula>
<mml:math id="M6">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
and H
<sub>2</sub>
O
<sub>2</sub>
generation and lowers ROS damage to plant cells under salt stress (Wang et al.,
<xref rid="B163" ref-type="bibr">2010</xref>
; Yoshida et al.,
<xref rid="B171" ref-type="bibr">2011</xref>
). In addition, AOX is involved in defining the threshold for the induction of programmed cell death (PCD) by signaling mechanism (Van Aken et al.,
<xref rid="B158" ref-type="bibr">2009</xref>
) and modulating the release of reactive nitrogen species (RNS). Release of nitric oxide (NO) in mitochondria is induced by accumulating reducing equivalents (Cvetkovska et al.,
<xref rid="B23" ref-type="bibr">2014</xref>
; Igamberdiev et al.,
<xref rid="B60" ref-type="bibr">2014</xref>
). In rice, expression of AOX1A and AOX1B in the nucleus is stimulated during saline conditions through mitochondrial retrograde regulation mediated by oxygen radicals (Li et al.,
<xref rid="B83" ref-type="bibr">2013</xref>
; Voss et al.,
<xref rid="B161" ref-type="bibr">2013</xref>
). Smith et al. (
<xref rid="B137" ref-type="bibr">2009</xref>
) reported AOX activation and stimulation of alternative electron transport in response to salinity stress. This mechanism allowed for suppressing ROS generation and increased the growth rates. Lower Na
<sup>+</sup>
accumulation in shoots suggests a link between long distance Na
<sup>+</sup>
transport and tissue ROS levels. This tentative dependency offers a mechanistic framework to exploit AOX and redox homeostasis to improve the acclimation ability to salt stress.</p>
</sec>
<sec id="s5">
<title>Respiratory burst oxidase homologs (RBOH)</title>
<p>Homologs of NADPH oxidase in plants and animals contain cytosolic FAD- and NADPH-binding domains and six membrane-spanning helices. Two heme groups participate in the transfer of electrons from cytosolic NADPH or NADH to oxygen on the apoplastic side. This transfer produces
<inline-formula>
<mml:math id="M7">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
radicals in the extracellular matrix (Lambeth,
<xref rid="B79" ref-type="bibr">2004</xref>
; Sagi and Fluhr,
<xref rid="B128" ref-type="bibr">2006</xref>
). In plants, these enzymes are named RBOH and function in a plethora of processes, such as hyersensitive response to pathogens, abiotic stress tolerance, and local and systemic signaling (Torres et al.,
<xref rid="B151" ref-type="bibr">2002</xref>
; Monshausen et al.,
<xref rid="B105" ref-type="bibr">2009</xref>
). ROS released by RBOH act in several hormone-signaling pathways (Sagi and Fluhr,
<xref rid="B128" ref-type="bibr">2006</xref>
).</p>
<p>RBOHA activity is induced by salt stress in the root elongation zone in Arabidopsis (Sagi and Fluhr,
<xref rid="B128" ref-type="bibr">2006</xref>
). In Arabidopsis AtRBOHD and AtRBOHF are expressed in all plant organs and are the main isoforms involved in ROS-dependent regulation of Na
<sup>+</sup>
/K
<sup>+</sup>
homeostasis under salt stress (Ma et al.,
<xref rid="B91" ref-type="bibr">2012</xref>
). AtRBOHD has also been demonstrated to mediate rapid systemic signaling triggered by multiple abiotic stresses (Miller et al.,
<xref rid="B97" ref-type="bibr">2009</xref>
) and to be required for salt acclimation signaling mediated by heme oxygenase HY1 in Arabidopsis (Xie et al.,
<xref rid="B170" ref-type="bibr">2011</xref>
). RBOHD shows the highest expression among the ten AtRBOH genes in
<italic>A. thaliana</italic>
(Suzuki et al.,
<xref rid="B146" ref-type="bibr">2011</xref>
) and functions in abscisic acid-dependent stomatal closure, flagellin-induced immune responses, and salt acclimation via ROS production (Torres et al.,
<xref rid="B151" ref-type="bibr">2002</xref>
; Pogány et al.,
<xref rid="B115" ref-type="bibr">2009</xref>
; Xie et al.,
<xref rid="B170" ref-type="bibr">2011</xref>
). Under salt stress RBOHD are clustered in the plasmamembrane and subjected to endocytosis and their activation facilitates the activation of redox signaling pathways and plays an important role in salt acclimation of Arabidopsis (Leshem et al.,
<xref rid="B82" ref-type="bibr">2007</xref>
; Xie et al.,
<xref rid="B170" ref-type="bibr">2011</xref>
; Hao et al.,
<xref rid="B48" ref-type="bibr">2014</xref>
).</p>
<p>Mild salt stress causes a rapid and transient accumulation of ROS in Arabidopsis peaking after 1 h followed by a second oxidative burst after about 6 h (Xie et al.,
<xref rid="B170" ref-type="bibr">2011</xref>
). The interpretation was that HY1 plays an important role in salt stress-signaling and that this pathway requires the participation of AtRBOHD-derived ROS from peak II. More recently, AtRBOHF was implicated in protecting shoot cells from transpiration-dependent accumulation of excess Na
<sup>+</sup>
(Jiang et al.,
<xref rid="B64" ref-type="bibr">2012</xref>
). ROS generated by AtRBOHF have a specific role in regulating Na
<sup>+</sup>
accumulation and soil-salinity tolerance (Jiang et al.,
<xref rid="B64" ref-type="bibr">2012</xref>
). Sakamoto et al. (
<xref rid="B131" ref-type="bibr">2008</xref>
) found that the expression of RBOHC/D/F genes is induced in response to salt stress in wild-type plants. The salt-responsive induction of
<italic>RBOH</italic>
accumulation was markedly suppressed in the
<italic>itn1-1</italic>
mutant. This mutant revealed increased tolerance to NaCl by affecting the ABA-mediated ROS production (Sakamoto et al.,
<xref rid="B131" ref-type="bibr">2008</xref>
). This suggest that the
<italic>itn1-1</italic>
, an ankyrin-repeat containing membrane protein, suppresses induction of the NADPH oxidase genes in response to salt stress, resulting in lower levels of H
<sub>2</sub>
O
<sub>2</sub>
, and that this may cause the salt-tolerant phenotype. The comparison of the salinity response of Arabidopsis wild type and
<italic>AtrbohD/F</italic>
double mutant indicates that the early H
<sub>2</sub>
O
<sub>2</sub>
generation by NADPH oxidase triggers the antioxidant response in
<italic>A. thaliana</italic>
. The fortified antioxidant defense counteracts the subsequent ROS production and thereby mitigates the salt stress-derived injuries (Rejeb et al.,
<xref rid="B119" ref-type="bibr">2014</xref>
). According to Leshem et al. (
<xref rid="B82" ref-type="bibr">2007</xref>
), the salt-induced ROS production by NADPH oxidase in endosomes was suppressed in the phosphatidylinositol 3 kinase mutant (
<italic>pi3k</italic>
) and this mechanism causes a reduction in oxidative stress. In this experiment RBOH produces
<inline-formula>
<mml:math id="M8">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
which is coordinated by the phospholipid-regulated signaling pathway and takes part in signal transduction in response to salt stress (Leshem et al.,
<xref rid="B82" ref-type="bibr">2007</xref>
). RBOHs also contribute to proline accumulation in response to salt or mannitol stress (Rejeb et al.,
<xref rid="B121" ref-type="bibr">2015b</xref>
). The timing and the magnitude of RBOH-dependent
<inline-formula>
<mml:math id="M9">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
-generation participate in inducing the salinity acclimation response on the one hand, but also in accelerating the deleterious effect of excessive ROS accumulation leading to salinity toxicity on the other hand.</p>
<p>RBOH-dependent ROS triggers signal transduction pathways and mediates local and systemic signaling (Miller et al.,
<xref rid="B97" ref-type="bibr">2009</xref>
; Marino et al.,
<xref rid="B92" ref-type="bibr">2012</xref>
). The initial Ca
<sup>2+</sup>
-influx through plasma membrane ion channels and the RBOH-mediated production of ROS are synergistically activated by the binding of Ca
<sup>2+</sup>
to EF-hand motifs as well as Ca
<sup>2+</sup>
-dependent phosphorylation. Both mechanisms participate in regulating acclimation to salinity in plants including halophytes (Kurusu et al.,
<xref rid="B77" ref-type="bibr">2015</xref>
). RBOHs are central players in the Ca
<sup>2+</sup>
-ROS signaling network triggered by their phosphorylation during stress adaptation (Kimura et al.,
<xref rid="B70" ref-type="bibr">2012</xref>
; Gilroy et al.,
<xref rid="B44" ref-type="bibr">2014</xref>
). This Ca
<sup>2+</sup>
- and ROS-dependent signaling network regulates downstream events such as the Ca
<sup>2+</sup>
-dependent activation of the Na
<sup>+</sup>
/H
<sup>+</sup>
-exchangers SOS1 and NHX1, Na
<sup>+</sup>
efflux from the cytosol, xylem loading of Na
<sup>+</sup>
, Na
<sup>+</sup>
exclusion from leaves, induction of osmolyte synthesis and osmo-protective proteins, and overall the maintenance of cytosolic ion balance (Reguera et al.,
<xref rid="B118" ref-type="bibr">2014</xref>
). Work with
<italic>atrbohD/F</italic>
double mutants revealed that ROS are rate-limiting second messengers in ABA signaling. AtRBOHD/F function in ABA signal transduction in guard cell (Kwak et al.,
<xref rid="B78" ref-type="bibr">2003</xref>
). Following ABA perception in guard cells, active SnRK2 kinases such as OST1 (OPEN STOMATA 1) phosphorylate RBOHF and thereby stimulate ROS accumulation which in turn activates two MAPKs and regulates ABA-mediated stomatal closure (Danquah et al.,
<xref rid="B25" ref-type="bibr">2014</xref>
). RBOH-dependent ROS have been detected in vesicles in response to salt stress or during abscisic acid (ABA)-induced stomatal closure (Leshem et al.,
<xref rid="B82" ref-type="bibr">2007</xref>
). The different signaling mechanisms in RBOH activity control and the direct and indirect involvement in multiple downstream, processes characterize RBOH as a signaling hub for salinity acclimation.</p>
</sec>
<sec id="s6">
<title>NADP-dependent malate dehydrogenase (NADP-MDH) and the malate valve</title>
<p>
<inline-formula>
<mml:math id="M10">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
is generated in the PET by transfer of electrons from ferredoxin or reduced plastoquinone to O
<sub>2</sub>
, particularly if NADP
<sup>+</sup>
or other terminal electron acceptors are unavailable. Likewise strong NADH feeding into the respiratory chain eases
<inline-formula>
<mml:math id="M11">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
generation as long as AOS is not activated. Thus, reoxidation of NADPH to NADP
<sup>+</sup>
is important for balancing the ATP/NAD(P)H ratio and maintaining redox homeostasis. The photosynthesizing chloroplast employs diverse mechanisms to balance the rates of ATP and NADPH generation, e.g., by activating cyclic electron flow (CEF) which is under control of redox stimuli (Strand et al.,
<xref rid="B143" ref-type="bibr">2015</xref>
). Naturally such mechanisms do not allow for drainage of excess electrons if metabolic consumption is inhibited. Under such conditions activation of the malate-oxaloacetate (OAA) shuttle allows for transfer of reducing equivalents between cell compartments, e.g., under stress condition of plant (Heber,
<xref rid="B52" ref-type="bibr">1974</xref>
; Taniguchi and Miyake,
<xref rid="B150" ref-type="bibr">2012</xref>
; Figure
<xref ref-type="fig" rid="F3">3</xref>
). Another NADP
<sup>+</sup>
-generating mechanism is chloroplastic GR which reduces GSSG released in the water-water cycle. Excess electrons from photosynthetic electron transport are used by TRX-regulated NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP
<sup>+</sup>
(Scheibe et al.,
<xref rid="B132" ref-type="bibr">2005</xref>
). The resulting malate is subsequently translocated to the cytosol via the malate-OAA shuttle, where the interconversion of malate to OAA with concomitant reduction of NAD
<sup>+</sup>
to NADH is catalyzed by the cytosolic NAD-MDH (Hara et al.,
<xref rid="B49" ref-type="bibr">2006</xref>
). The NADH is fed into the RET. This allows for maintenance of chloroplast redox homeostasis and plays an important role in the short-term adjustment of the NADP(H) redox state also in response to salinity stress (Scheibe et al.,
<xref rid="B132" ref-type="bibr">2005</xref>
). In line with this scenario, Cushman (
<xref rid="B21" ref-type="bibr">1993</xref>
) measured a more than twofold increase of chloroplast NADP-MDH transcript level in leaves of
<italic>Mesembryanthemum crystallinum</italic>
under salt stress. In a recent study, Gawronska et al. (
<xref rid="B40" ref-type="bibr">2013</xref>
) described a set of protective strategies which accompany acclimation to salinity in the halophytic species
<italic>M. crystallinum</italic>
. The malate valve appears to be of prime importance. Salinity stress increases activities of NAD-MDH in whole tissue extract, and specifically mitochondrial NAD-MDH and chloroplast NADP-MDH in salt tolerant rice cv CSR-1 and CSR-3 whereas the activities were inhibited in salt sensitive cultivars (Kumar et al.,
<xref rid="B75" ref-type="bibr">2000</xref>
). Apparently the malate valve-dependent redox balance constitutes an important mechanism in salt acclimation.</p>
</sec>
<sec id="s7">
<title>Plastid terminal oxidase (PTOX)</title>
<p>The plastid terminal oxidase (PTOX) is a nucleus-encoded plastid-located plastoquinone (PQ)-O
<sub>2</sub>
oxidoreductase (plastoquinol oxidase) which transfers electrons from PQ to O
<sub>2</sub>
and forms H
<sub>2</sub>
O (Carol et al.,
<xref rid="B15" ref-type="bibr">1999</xref>
). It represents the key component of an alternative electron pathway which involves the reduction of PQ by NAD(P)H dehydrogenase (NDH) and the oxidation of reduced PQ by PTOX (Peltier and Cournac,
<xref rid="B114" ref-type="bibr">2002</xref>
). PTOX is involved in chloroplast development and is suggested to act as safety valve to prevent the over-reduction of the photosynthetic machinery under stress conditions (Carol et al.,
<xref rid="B15" ref-type="bibr">1999</xref>
). However, additional features of PTOX have questioned the safety valve function owing to its ability to produce ROS under stress (Heyno et al.,
<xref rid="B54" ref-type="bibr">2009</xref>
; Feilke et al.,
<xref rid="B35" ref-type="bibr">2014</xref>
; Yu et al.,
<xref rid="B172" ref-type="bibr">2014</xref>
). When the PQ pool is highly reduced, PTOX itself produces superoxide (
<inline-formula>
<mml:math id="M12">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
) in a side reaction, triggering retrograde signaling to the cytosol and altering expression of response genes needed for acclimation to the environment (Yu et al.,
<xref rid="B172" ref-type="bibr">2014</xref>
; Krieger-Liszkay and Feilke,
<xref rid="B73" ref-type="bibr">2016</xref>
). Overexpression of PTOX in
<italic>A. thaliana</italic>
did not protect against light-induced photodamage (Rosso et al.,
<xref rid="B126" ref-type="bibr">2006</xref>
) which appears contradictory to a protective function of PTOX. Under excess light PTOX overexpressors generate
<inline-formula>
<mml:math id="M13">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
. If this
<inline-formula>
<mml:math id="M14">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
is efficiently detoxified by the antioxidant system, then even this mechanism may act as a safety valve (Heyno et al.,
<xref rid="B54" ref-type="bibr">2009</xref>
). If the antioxidant system is overwhelmed then PTOX-generated
<inline-formula>
<mml:math id="M15">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
would enhance damage formation. Overall, the function of PTOX appears to be Janus-like. PTOX-dependent ROS may damage the photosynthetic apparatus or contribute to its protection and regulation.</p>
<p>Up to 10% of the photochemically produced O
<sub>2</sub>
in
<italic>Haematococcus pluvialis</italic>
was consumed by PTOX via the astaxanthin biosynthesis pathway. This pathway could lower the oxygen partial pressure and thereby reduce ROS release in the alga cell (Li et al.,
<xref rid="B85" ref-type="bibr">2008</xref>
). PTOX protects PSII by moving the site of ROS production from the appressed membranes with the majority of PSII to the nonappressed membranes where PTOX is located (Joët et al.,
<xref rid="B66" ref-type="bibr">2002</xref>
). In stressed plants, PTOX plays a regulatory role in carotenoid biosynthesis and in PQ oxidase activity in chlororespiration to re-oxidize reduced PQ (Bennoun,
<xref rid="B12" ref-type="bibr">1982</xref>
; Kuntz,
<xref rid="B76" ref-type="bibr">2004</xref>
; Campos et al.,
<xref rid="B14" ref-type="bibr">2015</xref>
). PTOX also controls the stromal redox poise (Trouillard et al.,
<xref rid="B152" ref-type="bibr">2012</xref>
). The abundance of PTOX is positively correlated with the intensity of salinity stress (Ivanov et al.,
<xref rid="B62" ref-type="bibr">2012</xref>
; Nawrocki et al.,
<xref rid="B109" ref-type="bibr">2015</xref>
). PTOX levels increase in salt stressed plants. PTOX-dependent electron drainage accounted for up to 30% of total PSII electron flow which provides strong evidence for its role as safety valve relative to photorespiration (Stepien and Johnson,
<xref rid="B141" ref-type="bibr">2009</xref>
). Intensive H
<sub>2</sub>
O
<sub>2</sub>
generation in photorespiration stimulated the activity of PTOX. This regulation seems to anticipate and subsequently counteract the effects of aggravating salinity stress. In a converse manner, inhibition of PTOX stimulated the H
<sub>2</sub>
O
<sub>2</sub>
formation which might be important as signaling cue to initiate acclimation of halophytic
<italic>Thellungiella</italic>
plants (Wiciarza et al.,
<xref rid="B166" ref-type="bibr">2015</xref>
). PTOX attaches to the thylakoids at alkaline pH. This led to the suggestion that PTOX senses excessive alkalization of the stroma, subsequently attaches to the thylakoids and facilitates reoxidation of the PQ pool. By this mechanism overreduction of the photosynthetic electron transport is avoided and ROS generation decreased (Feilke et al.,
<xref rid="B34" ref-type="bibr">2016</xref>
).</p>
</sec>
<sec id="s8">
<title>Other mechanisms of electron drainage under salinity</title>
<p>The accumulation of organic osmolytes, such as proline, glycine betaine, sugar alcohols, polyamines, and proteins e.g., from the late embryogenesis abundant (LEA) superfamily, in plasmatic compartments balances the osmotic potentials and maintains the low intracellular water potential of plants. Due to their compatible nature, these osmolytes counteract the harmful effects of ionic and osmotic stress (Verslues et al.,
<xref rid="B160" ref-type="bibr">2006</xref>
). Proline plays a crucial role in osmotic adjustment and acts as ROS scavenger, redox buffer, molecular chaperone which stabilizes proteins and membrane structures under stress (Matysik et al.,
<xref rid="B95" ref-type="bibr">2002</xref>
; Ashraf and Foolad,
<xref rid="B6" ref-type="bibr">2007</xref>
). Proline synthesis via the glutamate pathway consumes 2 mol NADPH per mol proline and thus drains electrons from the chloroplast and buffers the cell reduction state (Hare and Cress,
<xref rid="B50" ref-type="bibr">1997</xref>
). Accumulation of proline in leaves upon salt stress allows for continued carbon reduction and counteracts photoinhibition and excess ROS production. In the mitochondria proline is catabolized and the reducing power can be dissipated by RET coupled to AOX bypassing complex III and IV. Analyses of transcriptional regulation and knockout mutants indicate that the Arabidopsis Δ1-pyrroline-5-carboxylate synthetase1 (
<italic>P5CS1</italic>
) genes, the controlling step of proline synthesis, have clearly distinct functions.
<italic>P5CS1</italic>
is strongly induced under high salinity (Szekely et al.,
<xref rid="B147" ref-type="bibr">2008</xref>
). Consistent with the upregulation of
<italic>AtP5CS1, p5cs1</italic>
knockout mutants have greatly reduced proline levels during salt stress, resulting in reduced growth and altered ROS levels, suggesting that they are hypersensitive to salt (Szekely et al.,
<xref rid="B147" ref-type="bibr">2008</xref>
). Similar to proline, glycine betaine is an organic osmolyte synthesized by several plant families to balance the osmotic potential of intracellular compartments (Chen and Murata,
<xref rid="B17" ref-type="bibr">2011</xref>
) under salinity. The plant pathway of synthesis consumes two electrons as net balance (Sakamoto and Murata,
<xref rid="B130" ref-type="bibr">2000</xref>
). Activation of antioxidant mechanisms by proline and glycine betaine during salinity has been studied using tobacco bright yellow-2 suspension cultured cells (Hoque et al.,
<xref rid="B57" ref-type="bibr">2007</xref>
; Banu et al.,
<xref rid="B10" ref-type="bibr">2009</xref>
). Salinity significantly decreased the levels of reduced ascorbic acid and GSH, and the activity of water-water-cycle enzymes, and exogenous application of proline or glycine betaine increased the activity of these enzymes (Hoque et al.,
<xref rid="B57" ref-type="bibr">2007</xref>
). These results suggest a role of proline and glycine betaine in the regulation of antioxidant enzymes during salinity.</p>
<p>The last example of electron drainage with major significance for salinity is the pathway of photorespiration. Salinity-induced stomatal closure in moderately salt-stressed leaves leads to a drop in intercellular CO
<sub>2</sub>
concentration, increased oxygenation reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase, enhanced formation of photorespiratory metabolites such as phosphoglycolate, glycine and serine, and concomitant increase in H
<sub>2</sub>
O
<sub>2</sub>
release in the peroxisomes, and CO
<sub>2</sub>
and NADH in the mitochondrion (Di Martino et al.,
<xref rid="B30" ref-type="bibr">1999</xref>
). The maintenance of electron transport by photorespiration in CO
<sub>2</sub>
-free air corroborates the significance of photorespiration in salt-stressed leaves (Di Martino et al.,
<xref rid="B30" ref-type="bibr">1999</xref>
). Sustained rates of electron transport due to photorespiration and the formation of zeaxanthin during salt stress probably mitigate photoinhibitory damage (Sharma and Hall,
<xref rid="B135" ref-type="bibr">1992</xref>
). The xanthophyll cycle is known as dynamic photoinhibition process that prevents overexcitation of the photosynthetic apparatus by dissipation of excess excitation energy (Krinsky,
<xref rid="B74" ref-type="bibr">1989</xref>
; Niyogi et al.,
<xref rid="B110" ref-type="bibr">1998</xref>
). But, photorespiration also releases H
<sub>2</sub>
O
<sub>2</sub>
in the peroxisomes as outlined above. The antioxidant system in the peroxisome efficiently detoxifies the photorespiratory H
<sub>2</sub>
O
<sub>2</sub>
. Jiménez et al. (
<xref rid="B65" ref-type="bibr">1997</xref>
) reported the presence of APX and MDHAR in peroxisomal membranes and argued that the membrane-bound antioxidant enzymes protect against H
<sub>2</sub>
O
<sub>2</sub>
leaking out of peroxisomes. The photorespiratory NADH can be used in complex IV dependent RET for ATP synthesis or dissipated by AOX. This section on alternative drainage mechanisms only provides examples of involved pathways and cannot provide a comprehensive view.</p>
</sec>
<sec id="s9">
<title>Conclusions and outlook</title>
<p>Maintenance of redox homeostasis is central to plant survival under salinity stress. Successful acclimation to saline growth conditions involves control of generation systems and tuning of antioxidant mechanisms. Under normal growth conditions generation and scavenging of ROS, and repair of damage are balanced. Salinity interferes with metabolism by ionic and osmotic effects and alters the redox and ROS state of the cell (Figure
<xref ref-type="fig" rid="F4">4</xref>
). This review demonstrates the flexible adjustment of each of the steps in response to salinity. It is striking that the described redox and ROS-related mechanisms of defense under salinity fit to the defense repertoire under other stresses such as photooxidative conditions. The specificity comes from the qualitative and quantitative use of stress-specific isoforms as discussed above. The principle differences between salt-sensitive and -tolerant genotypes includes specific symptomatic differences in redox and ROS generation. The central mechanisms realizing salt acclimation within the given tolerance range is selective short and long distance ion transport, safe ion compartmentation, synthesis of compatible solutes, and adjustment of osmotic homeostasis. As long as these mechanisms realize effective ion detoxification, deregulation of redox and ROS homeostasis is a minor component in stress acclimation. This changes if the salinity stress approaches the tolerance limits or during transition periods. Then the ultimate reason for decreased growth, reduced fitness and finally cell death are alteration in metabolism and excessive ROS accumulation (Figure
<xref ref-type="fig" rid="F4">4</xref>
). Some environmental conditions enhance salinity stress like periodical flooding with sea water, drought in saline environment or irrigation with saline water. The various mechanisms of dissipation of excess reducing power are mutually dependent.
<italic>A. thaliana</italic>
lacking chloroplast malate dehydrogenase are phenotypically inconspicuous (Hebbelmann et al.,
<xref rid="B51" ref-type="bibr">2012</xref>
). Proline synthesis, increased photorespiration and activation of thiol peroxidase appear to compensate for the deficiency in NADP-MDH in high light treated
<italic>nadph-mdh</italic>
plants. This example shows the flexibility and partial redundancy of processes to control ROS release due to excessively accumulating reducing power and control of antioxidant defense which also contributes to salt stress acclimation. As long as the homeostasis mechanisms are functional and control the metabolic imbalances and keep ROS and redox deviations under control, small changes in redox- and ROS signatures are used to control gene expression, protein synthesis, metabolic activities and enable acclimation.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Circuitry of redox and ROS-related events in salinity stress response</bold>
. Salinity stress causes metabolic imbalances and activates signaling pathways. The metabolic imbalances increase the ROS generation e.g., by enhanced photorespiration or cause overreduction of PET and RET as described in the review. The latter is modulated by AOX, PTOX and malate valve. Signaling activates RBOH. Accumulating ROS either cause excessive oxidation reactions leading to damage or via redox- and ROS-dependent signaling and regulation allow for proper acclimation.</p>
</caption>
<graphic xlink:href="fpls-07-00548-g0004"></graphic>
</fig>
</sec>
<sec id="s10">
<title>Author contributions</title>
<p>All authors listed, have made substantial, direct and intellectual contribution to the work, and approved it for publication.</p>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>MH acknowledges support by the German Academic Exchange Service (DAAD). The own work was funded by the Deutsche Forschungsgemeinschaft.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abogadallah</surname>
<given-names>G. M.</given-names>
</name>
<name>
<surname>Serag</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Quick</surname>
<given-names>W. P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wildtype parents under salt stress</article-title>
.
<source>Physiol. Plant.</source>
<volume>138</volume>
,
<fpage>60</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2009.01297.x</pub-id>
<pub-id pub-id-type="pmid">20070844</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Acosta-Motos</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Diaz-Vivancos</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Àlvarez</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fernández-García</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sanchez-Blanco</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Hernández</surname>
<given-names>J. A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Physiological and biochemical mechanisms of the ornamental
<italic>Eugenia myrtifolia L</italic>
. plants for coping with NaCl stress and recovery</article-title>
.
<source>Planta</source>
<volume>242</volume>
,
<fpage>829</fpage>
<lpage>846</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-015-2315-3</pub-id>
<pub-id pub-id-type="pmid">25976265</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andreyev</surname>
<given-names>A. Y.</given-names>
</name>
<name>
<surname>Kushnareva</surname>
<given-names>Y. E.</given-names>
</name>
<name>
<surname>Starkov</surname>
<given-names>A. A.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Mitochondrial metabolism of reactive oxygen species</article-title>
.
<source>Biochemistry</source>
<volume>70</volume>
,
<fpage>200</fpage>
<lpage>214</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10541-005-0102-7</pub-id>
<pub-id pub-id-type="pmid">15807660</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aono</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Saji</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kondo</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Enhanced tolerance to photooxidative stress of transgenic
<italic>Nicotiana tabacum</italic>
with high chloroplastic glutathione reductase activity</article-title>
.
<source>Plant Cell Physiol.</source>
<volume>34</volume>
,
<fpage>129</fpage>
<lpage>135</lpage>
.</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asada</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Ascorbate peroxidase - a hydrogen scavenging enzyme in plants</article-title>
.
<source>Physiol. Plant.</source>
<volume>85</volume>
,
<fpage>235</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.1992.tb04728.x</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashraf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Foolad</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Roles of glycine betaine and proline in improving plant abiotic stress resistance</article-title>
.
<source>Environ. Exp. Bot.</source>
<volume>59</volume>
,
<fpage>206</fpage>
<lpage>216</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2005.12.006</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Azevedo Neto</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Gomes Filho</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Prisco</surname>
<given-names>J. T.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Salinity and oxidative Stress</article-title>
, in
<source>Abiotic stress and Plant Responses</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Khan</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<publisher-loc>New Delhi</publisher-loc>
:
<publisher-name>IK International</publisher-name>
),
<fpage>58</fpage>
<lpage>82</lpage>
.</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badawi</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Kawano</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yamauchi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shimada</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kubo</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit</article-title>
.
<source>Physiol. Plant.</source>
<volume>121</volume>
,
<fpage>231</fpage>
<lpage>238</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.0031-9317.2004.00308.x</pub-id>
<pub-id pub-id-type="pmid">15153190</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Baker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>A. I.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<source>Plant Peroxisomes: Biochemistry, Cell Biology and Biotechnological Applications</source>
.
<publisher-loc>Dordrecht</publisher-loc>
:
<publisher-name>Kluwer Academic</publisher-name>
Publishers.
<pub-id pub-id-type="doi">10.1007/978-94-015-9858-3</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banu</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Hoque</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Watanabe-Sugimoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shimoishi</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress</article-title>
.
<source>J. Plant Physiol.</source>
<volume>166</volume>
,
<fpage>146</fpage>
<lpage>156</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2008.03.002</pub-id>
<pub-id pub-id-type="pmid">18471929</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baxter</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>ROS as key players in plant stress signalling</article-title>
.
<source>J. Exp. Bot.</source>
<volume>65</volume>
,
<fpage>1229</fpage>
<lpage>1240</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/ert375</pub-id>
<pub-id pub-id-type="pmid">24253197</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennoun</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>1982</year>
).
<article-title>Evidence for a respiratory chain in the chloroplast</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>79</volume>
,
<fpage>4352</fpage>
<lpage>4356</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.79.14.4352</pub-id>
<pub-id pub-id-type="pmid">16593210</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borzouei</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kafi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Akbari-Ghogdi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mousavi-Shalmani</surname>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>M. Long term salinity stress in relation to lipid peroxidation, super oxide dismutase activity and proline content of saltsensitive and salt-tolerant wheat cultivars</article-title>
.
<source>Chilean J. Agril. Res.</source>
<volume>72</volume>
,
<fpage>476</fpage>
<lpage>482</lpage>
.
<pub-id pub-id-type="doi">10.4067/S0718-58392012000400003</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campos</surname>
<given-names>M. D.</given-names>
</name>
<name>
<surname>Campos</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cardoso</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>P. W.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nogales</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation</article-title>
.
<source>Plant Gene</source>
<volume>5</volume>
,
<fpage>13</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plgene.2015.10.005</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carol</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Stevenson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bisanza</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Breitenbachc</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sandmannc</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Machea</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>1999</year>
).
<article-title>Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation</article-title>
.
<source>Plant Cell</source>
<volume>11</volume>
,
<fpage>57</fpage>
<lpage>68</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.11.1.57</pub-id>
<pub-id pub-id-type="pmid">9878632</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavalcanti</surname>
<given-names>F. R.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>J. T. A.</given-names>
</name>
<name>
<surname>Martins-Miranda</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Viégas</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Silveira</surname>
<given-names>J. A. G.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves</article-title>
.
<source>New Phytol.</source>
<volume>163</volume>
,
<fpage>563</fpage>
<lpage>571</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2004.01139.x</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>T. H.</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications</article-title>
.
<source>Plant Cell Environ.</source>
<volume>34</volume>
,
<fpage>1</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2010.02232.x</pub-id>
<pub-id pub-id-type="pmid">20946588</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cleland</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Grace</surname>
<given-names>S. C.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Voltammetric detection of superoxide production by photosystem II</article-title>
.
<source>FEBS Lett.</source>
<volume>457</volume>
,
<fpage>348</fpage>
<lpage>352</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0014-5793(99)01067-4</pub-id>
<pub-id pub-id-type="pmid">10471806</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cona</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rea</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Angelini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Federico</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tavladoraki</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Functions of amine oxidases in plant development and defence</article-title>
.
<source>Trend. Plant Sci.</source>
<volume>11</volume>
,
<fpage>80</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2005.12.009</pub-id>
<pub-id pub-id-type="pmid">16406305</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Considine</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Holtzapffel</surname>
<given-names>R. C.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Whelan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>A. H.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Molecular distinction between alternative oxidase from monocots and dicots</article-title>
.
<source>Plant Physiol.</source>
<volume>129</volume>
,
<fpage>949</fpage>
<lpage>953</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.004150</pub-id>
<pub-id pub-id-type="pmid">12114550</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cushman</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress</article-title>
.
<source>Photosynth. Res.</source>
<volume>35</volume>
,
<fpage>15</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF02185408</pub-id>
<pub-id pub-id-type="pmid">24318617</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cushman</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Bohnert</surname>
<given-names>H. J.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Molecular genetics of Crassulacean acid metabolism</article-title>
.
<source>Plant Physiol.</source>
<volume>113</volume>
,
<fpage>667</fpage>
<lpage>676</lpage>
.
<pub-id pub-id-type="pmid">12223634</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cvetkovska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dahal</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Alber</surname>
<given-names>N. A.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Vanlerberghe</surname>
<given-names>G. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Knockdown of mitochondrial alternative oxidase induces the ‘stress state’ of signaling molecule pools in
<italic>Nicotiana tabacum</italic>
, with implications for stomatal function</article-title>
.
<source>New Phytol.</source>
<volume>203</volume>
,
<fpage>449</fpage>
<lpage>461</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.12773</pub-id>
<pub-id pub-id-type="pmid">24635054</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>M. S. B.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Oxygen sensitivity of photosynthesis and photorespiration in different photosynthetic types in the genus
<italic>Flaveria</italic>
</article-title>
.
<source>Planta</source>
<volume>198</volume>
,
<fpage>563</fpage>
<lpage>571</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00262643</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danquah</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>de Zelicourt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Colcombet</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hirt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The role of ABA and MAPK signaling pathways in plant abiotic stress responses.
<italic>Biotech</italic>
</article-title>
.
<source>Adv.</source>
<volume>32</volume>
,
<fpage>40</fpage>
<lpage>52</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.biotechadv.2013.09.006</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Devi</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Raghavendra</surname>
<given-names>A. S.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Photorespiration in C3-C4 intermediate species of Alternanthera and Parthenium: reduced ammonia production and increased capacity of CO2 refixation in the light</article-title>
.
<source>Photosynth. Res.</source>
<volume>38</volume>
,
<fpage>177</fpage>
<lpage>184</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00146417</pub-id>
<pub-id pub-id-type="pmid">24317914</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Redox signal integration: From stimulus to networks and genes</article-title>
.
<source>Physiol. Plant.</source>
<volume>133</volume>
,
<fpage>459</fpage>
<lpage>468</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2008.01120.x</pub-id>
<pub-id pub-id-type="pmid">18429942</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?</article-title>
<source>Mol Cells</source>
<volume>39</volume>
,
<fpage>20</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.14348/molcells.2016.2324</pub-id>
<pub-id pub-id-type="pmid">26810073</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dietz</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Jacob</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Oelze</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Laxa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tognetti</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>De Miranda</surname>
<given-names>S. M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>The function of peroxiredoxins in plant organelle redox metabolism</article-title>
.
<source>J. Exp. Bot.</source>
<volume>57</volume>
,
<fpage>1697</fpage>
<lpage>1709</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erj160</pub-id>
<pub-id pub-id-type="pmid">16606633</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Martino</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Delene</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Alvino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Loreto</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Photorespiration rate in spinach leaves under moderate NaCl stress</article-title>
.
<source>Photosynthesis</source>
<volume>36</volume>
,
<fpage>233</fpage>
<lpage>242</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1007099627285</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellouzi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ben Hamed</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Cela</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Munne-Bosch</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Abdelly</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Early effects of salt stress on the physiological and oxidative status of
<italic>Cakile maritima</italic>
(halophyte) and
<italic>Arabidopsis thaliana</italic>
(glycophyte)</article-title>
.
<source>Physiol. Plant.</source>
<volume>142</volume>
,
<fpage>128</fpage>
<lpage>143</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2011.01450.x</pub-id>
<pub-id pub-id-type="pmid">21288246</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Elstner</surname>
<given-names>E. F.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Mechanisms of oxygen activation in different compartments of plant cells</article-title>
, in
<source>Active Oxygen/Oxidative Stress and Plant Metabolism</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Pell</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Steffen</surname>
<given-names>K. L.</given-names>
</name>
</person-group>
(
<publisher-loc>Rockville, MD</publisher-loc>
:
<publisher-name>American Society of Plant Physiologists</publisher-name>
),
<fpage>13</fpage>
<lpage>25</lpage>
.</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eltayeb</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Kawano</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Badawi</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Kaminaka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sanekata</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shibahara</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses</article-title>
.
<source>Planta</source>
<volume>225</volume>
,
<fpage>1255</fpage>
<lpage>1264</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-006-0417-7</pub-id>
<pub-id pub-id-type="pmid">17043889</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feilke</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Streb</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cornic</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Perreau</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kruk</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer</article-title>
.
<source>Plant J.</source>
<volume>85</volume>
,
<fpage>219</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1111/tpj.13101</pub-id>
<pub-id pub-id-type="pmid">26663146</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feilke</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Beyer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Setif</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>
<italic>In vitro</italic>
analysis of the plastid terminal oxidase in photosynthetic electron transport</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1837</volume>
,
<fpage>1</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbabio.2014.07.016</pub-id>
<pub-id pub-id-type="pmid">23933283</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferreira</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Arrabaca</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Vaz-Pinto</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Lima-Costa</surname>
<given-names>M. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Induction of alternative oxidase chain under salt stress conditions</article-title>
.
<source>Biol. Plant.</source>
<volume>52</volume>
,
<fpage>66</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10535-008-0009-4</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flowers</surname>
<given-names>T. J.</given-names>
</name>
<name>
<surname>Colmer</surname>
<given-names>T. D.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Salinity tolerance in halophytes</article-title>
.
<source>New Phytol.</source>
<volume>179</volume>
,
<fpage>945</fpage>
<lpage>963</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2008.02531.x</pub-id>
<pub-id pub-id-type="pmid">18565144</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Foyer</surname>
<given-names>C. H.</given-names>
</name>
<name>
<surname>Souriau</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Perret</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lelandais</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kunert</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Pruvost</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>1995</year>
).
<article-title>Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees</article-title>
.
<source>Plant Physiol.</source>
<volume>109</volume>
,
<fpage>1047</fpage>
<lpage>1057</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.109.3.1047</pub-id>
<pub-id pub-id-type="pmid">8552710</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fry</surname>
<given-names>I. V.</given-names>
</name>
<name>
<surname>Huflejt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Erber</surname>
<given-names>W. W. A.</given-names>
</name>
<name>
<surname>Peschek</surname>
<given-names>G. A.</given-names>
</name>
<name>
<surname>Packer</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity</article-title>
.
<source>Arch. Biochem. Biophys.</source>
<volume>244</volume>
,
<fpage>686</fpage>
<lpage>691</lpage>
.
<pub-id pub-id-type="doi">10.1016/0003-9861(86)90637-5</pub-id>
<pub-id pub-id-type="pmid">3004347</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gawronska</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Romanowska</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Miszalski</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Niewiadomska</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Limitation of C3-CAM shift in the common ice plant under high irradiance</article-title>
.
<source>J. Plant Physiol.</source>
<volume>170</volume>
,
<fpage>129</fpage>
<lpage>135</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2012.09.019</pub-id>
<pub-id pub-id-type="pmid">23253482</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geilfus</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Mithöfer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ludwig-Müller</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zörb</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Muehling</surname>
<given-names>K. H.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed
<italic>Vicia faba</italic>
</article-title>
.
<source>New Phytol.</source>
<volume>208</volume>
,
<fpage>803</fpage>
<lpage>816</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.13507</pub-id>
<pub-id pub-id-type="pmid">26096890</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ghannoum</surname>
<given-names>O.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>C4 photosynthesis and water stress</article-title>
.
<source>Ann. Bot.</source>
<volume>103</volume>
,
<fpage>635</fpage>
<lpage>644</lpage>
.
<pub-id pub-id-type="doi">10.1093/aob/mcn093</pub-id>
<pub-id pub-id-type="pmid">18552367</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gill</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Tuteja</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants</article-title>
.
<source>Plant Physiol. Biochem.</source>
<volume>48</volume>
,
<fpage>909</fpage>
<lpage>930</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plaphy.2010.08.016</pub-id>
<pub-id pub-id-type="pmid">20870416</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gilroy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>W. G.</given-names>
</name>
<name>
<surname>Toyota</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Devireddy</surname>
<given-names>A. R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling</article-title>
.
<source>Trends Plant Sci.</source>
<volume>19</volume>
,
<fpage>623</fpage>
<lpage>630</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2014.06.013</pub-id>
<pub-id pub-id-type="pmid">25088679</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gross</surname>
<given-names>G. G.</given-names>
</name>
</person-group>
(
<year>1977</year>
).
<article-title>Cell wall-bound malate dehydrogenase from horseradish</article-title>
.
<source>Phytochemistry</source>
<volume>16</volume>
,
<fpage>319</fpage>
<lpage>321</lpage>
.
<pub-id pub-id-type="doi">10.1016/0031-9422(77)80055-1</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Heinen</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Holaday</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>R. D.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>90</volume>
,
<fpage>1629</fpage>
<lpage>1633</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.90.4.1629</pub-id>
<pub-id pub-id-type="pmid">8434026</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Habib</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Kausar</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Saud</surname>
<given-names>H. M.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Plant growth-promoting Rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes</article-title>
.
<source>Biomed. Res. Int.</source>
<volume>2016</volume>
,
<fpage>6284547</fpage>
.
<pub-id pub-id-type="doi">10.1155/2016/6284547</pub-id>
<pub-id pub-id-type="pmid">26951880</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hao</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Q.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2014</year>
).
<article-title>Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis</article-title>
.
<source>Plant Cell</source>
<volume>26</volume>
,
<fpage>1729</fpage>
<lpage>1745</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.113.122358</pub-id>
<pub-id pub-id-type="pmid">24755455</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hara</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Motohashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Arisaka</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>P. G.</given-names>
</name>
<name>
<surname>Arisaka</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Romano</surname>
<given-names>P. G. N.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants</article-title>
.
<source>J. Biol. Chem.</source>
<volume>281</volume>
,
<fpage>32065</fpage>
<lpage>32071</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M605784200</pub-id>
<pub-id pub-id-type="pmid">16945919</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hare</surname>
<given-names>P. D.</given-names>
</name>
<name>
<surname>Cress</surname>
<given-names>W. A.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Metabolic implications of stressinduced proline accumulation in plants</article-title>
.
<source>Plant Gro. Reg.</source>
<volume>21</volume>
,
<fpage>79</fpage>
<lpage>102</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1005703923347</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hebbelmann</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Selinski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wehmeyer</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goss</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Voss</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Mulo</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase</article-title>
.
<source>J. Exp. Bot.</source>
<volume>63</volume>
,
<fpage>1445</fpage>
<lpage>1459</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/err386</pub-id>
<pub-id pub-id-type="pmid">22140244</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heber</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>1974</year>
).
<article-title>Metabolite exchange between chloroplasts and cytoplasm</article-title>
.
<source>Annu. Rev. Plant Physiol.</source>
<volume>25</volume>
,
<fpage>393</fpage>
<lpage>421</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.pp.25.060174.002141</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hernández</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Ferrer</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Jimenez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barcelo</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Sevilla</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Antioxidant systems and
<inline-formula>
<mml:math id="M16">
<mml:msubsup>
<mml:mrow>
<mml:mtext>O</mml:mtext>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mo>-</mml:mo>
</mml:mrow>
</mml:msubsup>
</mml:math>
</inline-formula>
/H
<sub>2</sub>
O
<sub>2</sub>
production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins</article-title>
.
<source>Plant Physiol.</source>
<volume>127</volume>
,
<fpage>817</fpage>
<lpage>831</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.010188</pub-id>
<pub-id pub-id-type="pmid">11706165</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heyno</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Laureau</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Culcasi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pietri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco</article-title>
.
<source>J. Biol. Chem.</source>
<volume>284</volume>
,
<fpage>31174</fpage>
<lpage>31180</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M109.021667</pub-id>
<pub-id pub-id-type="pmid">19740740</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heyno</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mary</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Schopfer</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Krieger-Liszkay</surname>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes</article-title>
.
<source>Planta</source>
<volume>234</volume>
,
<fpage>35</fpage>
<lpage>45</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-011-1379-y</pub-id>
<pub-id pub-id-type="pmid">21359959</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hilal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zenoff</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Ponessa</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Moreno</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Massa</surname>
<given-names>E. M.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots</article-title>
.
<source>Plant Physiol.</source>
<volume>117</volume>
,
<fpage>695</fpage>
<lpage>701</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.117.2.695</pub-id>
<pub-id pub-id-type="pmid">9625723</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoque</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Banu</surname>
<given-names>M. N.</given-names>
</name>
<name>
<surname>Okuma</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Amako</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shimoishi</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2007</year>
).
<article-title>Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright yellow-2 suspension-cultured cells</article-title>
.
<source>J. Plant Physiol.</source>
<volume>164</volume>
,
<fpage>1457</fpage>
<lpage>1468</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2006.10.004</pub-id>
<pub-id pub-id-type="pmid">17223225</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horie</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>J. I.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Sodium transporters in plants. Diverse genes and physiological functions</article-title>
.
<source>Plant Physiol.</source>
<volume>136</volume>
,
<fpage>2457</fpage>
<lpage>2462</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.104.046664</pub-id>
<pub-id pub-id-type="pmid">15375202</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hossain</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Ismail</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Uddin</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Islam</surname>
<given-names>M. Z.</given-names>
</name>
<name>
<surname>Ashrafuzzaman</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress.
<italic>Aust. J</italic>
</article-title>
.
<source>Crop Sci.</source>
<volume>7</volume>
,
<fpage>1801</fpage>
<lpage>1808</lpage>
. Available online at:
<ext-link ext-link-type="uri" xlink:href="https://www.researchgate.net/publication/281711260">https://www.researchgate.net/publication/281711260</ext-link>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Igamberdiev</surname>
<given-names>A. U.</given-names>
</name>
<name>
<surname>Ratcliffe</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>K. J.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Plant mitochondria: source and target for nitric oxide</article-title>
.
<source>Mitochondrion</source>
<volume>19</volume>
,
<fpage>329</fpage>
<lpage>333</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mito.2014.02.003</pub-id>
<pub-id pub-id-type="pmid">24561220</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inan</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles</article-title>
.
<source>Plant Physiol.</source>
<volume>135</volume>
,
<fpage>1718</fpage>
<lpage>1737</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.104.041723</pub-id>
<pub-id pub-id-type="pmid">15247369</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivanov</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Rosso</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Savitch</surname>
<given-names>L. V.</given-names>
</name>
<name>
<surname>Stachula</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Rosembert</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold acclimated
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Photosynth. Res.</source>
<volume>113</volume>
,
<fpage>191</fpage>
<lpage>206</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11120-012-9769-y</pub-id>
<pub-id pub-id-type="pmid">22843101</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jaleel</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Riadh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gopi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Manivannan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Inès</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Al-Juburi</surname>
<given-names>H. J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2009</year>
).
<article-title>Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints</article-title>
.
<source>Acta Physiol. Planta</source>
<volume>31</volume>
,
<fpage>427</fpage>
<lpage>436</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11738-009-0275-6</pub-id>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Belfield</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Mithani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Visscher</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ragoussis</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mott</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>ROS-mediated vascular homeostatic control of root-toshoot soil Na delivery in Arabidopsis</article-title>
.
<source>EMBO J.</source>
<volume>31</volume>
,
<fpage>4359</fpage>
.
<pub-id pub-id-type="doi">10.1038/emboj.2012.273</pub-id>
<pub-id pub-id-type="pmid">23064146</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiménez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hernández</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>del Río</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Sevilla</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Evidence for the presence of the Ascorbate-Glutathione cycle in Mitochondria and Peroxisomes of Pea leaves</article-title>
.
<source>Plant Physiol.</source>
<volume>114</volume>
,
<fpage>275</fpage>
<lpage>284</lpage>
.
<pub-id pub-id-type="pmid">12223704</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joët</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Genty</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Josse</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Kuntz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cournac</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peltier</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Involvement of a plastid terminal oxidase in plastoquinone oxidation as enhanced by expression of the
<italic>Arabidopsis thaliana</italic>
enzyme in tobacco</article-title>
.
<source>J. Biol. Chem.</source>
<volume>277</volume>
,
<fpage>31623</fpage>
<lpage>31630</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.M203538200</pub-id>
<pub-id pub-id-type="pmid">12050159</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jolivet</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pireaux</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Dizengremel</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Changes in properties of barley leaf mitochondria isolated from NaCl-treated plants</article-title>
.
<source>Plant Physiol.</source>
<volume>94</volume>
,
<fpage>641</fpage>
<lpage>646</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.94.2.641</pub-id>
<pub-id pub-id-type="pmid">16667760</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Josse</surname>
<given-names>E. M.</given-names>
</name>
<name>
<surname>Alcaraz</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Laboure</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Kuntz</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>
<italic>In vitro</italic>
characterization of a plastid terminal oxidase (PTOX)</article-title>
.
<source>Eur. J. Biochem.</source>
<volume>270</volume>
,
<fpage>3787</fpage>
<lpage>3794</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1432-1033.2003.03766.x</pub-id>
<pub-id pub-id-type="pmid">12950262</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Damude</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Doerner</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs</article-title>
.
<source>Plant Cell</source>
<volume>10</volume>
,
<fpage>255</fpage>
<lpage>266</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.10.2.255</pub-id>
<pub-id pub-id-type="pmid">9490748</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kaya</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kawarazaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hiraoka</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Senzaki</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Michikawa</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca
<sup>2+</sup>
and reactive oxygen species</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1823</volume>
,
<fpage>398</fpage>
<lpage>405</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2011.09.011</pub-id>
<pub-id pub-id-type="pmid">22001402</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>A new AOX homologous gene from rice (
<italic>Oryza sativa</italic>
L.) with an alternative splicing mechanism under salt stress</article-title>
.
<source>Theor. Appl. Genet.</source>
<volume>107</volume>
,
<fpage>326</fpage>
<lpage>331</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00122-003-1250-z</pub-id>
<pub-id pub-id-type="pmid">12669200</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Singlet oxygen production in photosynthesis</article-title>
.
<source>J. Exp. Bot.</source>
<volume>56</volume>
,
<fpage>337</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erh237</pub-id>
<pub-id pub-id-type="pmid">15310815</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Feilke</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function</article-title>
.
<source>Front. Plant Sci.</source>
<volume>6</volume>
:
<issue>1147</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2015.01147</pub-id>
<pub-id pub-id-type="pmid">26779210</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krinsky</surname>
<given-names>N. I.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>Antioxidant functions of carotenoids</article-title>
.
<source>Free Radic. Biol. Med.</source>
<volume>7</volume>
,
<fpage>617</fpage>
<lpage>635</lpage>
.
<pub-id pub-id-type="doi">10.1016/0891-5849(89)90143-3</pub-id>
<pub-id pub-id-type="pmid">2695406</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kumar</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance</article-title>
.
<source>Plant Sci.</source>
<volume>156</volume>
,
<fpage>23</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0168-9452(00)00224-7</pub-id>
<pub-id pub-id-type="pmid">10908802</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuntz</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Plastid terminal oxidase and its biological significance</article-title>
.
<source>Planta</source>
<volume>218</volume>
,
<fpage>896</fpage>
<lpage>899</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-004-1217-6</pub-id>
<pub-id pub-id-type="pmid">14986142</pub-id>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurusu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kuchitsu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tada</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Plant signaling networks involving Ca
<sup>2+</sup>
and Rboh/Nox-mediated ROS production under salinity stress</article-title>
.
<source>Front. Plant Sci.</source>
<volume>6</volume>
:
<issue>427</issue>
<pub-id pub-id-type="doi">10.3389/fpls.2015.00427</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwak</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>I. C.</given-names>
</name>
<name>
<surname>Pei</surname>
<given-names>Z. M.</given-names>
</name>
<name>
<surname>Leonhardt</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2003</year>
).
<article-title>NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis</article-title>
.
<source>EMBO J.</source>
<volume>22</volume>
,
<fpage>2623</fpage>
<lpage>2633</lpage>
.
<pub-id pub-id-type="doi">10.1093/emboj/cdg277</pub-id>
<pub-id pub-id-type="pmid">12773379</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lambeth</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Nox enzymes and the biology of reactive oxygen</article-title>
.
<source>Nat. Rev. Immunol.</source>
<volume>4</volume>
,
<fpage>181</fpage>
<lpage>189</lpage>
.
<pub-id pub-id-type="doi">10.1038/nri1312</pub-id>
<pub-id pub-id-type="pmid">15039755</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lázaro</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Jiménez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Camejo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Iglesias-Baena</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Martí</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Lázaro-Payo</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation</article-title>
.
<source>Front. Plant Sci.</source>
<volume>4</volume>
:
<issue>460</issue>
.
<pub-id pub-id-type="doi">10.3389/fpls.2013.00460</pub-id>
<pub-id pub-id-type="pmid">24348485</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y. P.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S. H.</given-names>
</name>
<name>
<surname>Bang</surname>
<given-names>J. W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Kwak</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>S. Y.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts</article-title>
.
<source>Plant Cell Rep.</source>
<volume>26</volume>
,
<fpage>591</fpage>
<lpage>598</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-006-0253-z</pub-id>
<pub-id pub-id-type="pmid">17268803</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leshem</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Seri</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance</article-title>
.
<source>Plant J.</source>
<volume>51</volume>
,
<fpage>185</fpage>
<lpage>197</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03134.x</pub-id>
<pub-id pub-id-type="pmid">17521408</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>C. R.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D. D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>Y. B.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y. C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice Alternative oxidase 1 gene</article-title>
.
<source>Plant Cell Environ.</source>
<volume>36</volume>
,
<fpage>775</fpage>
<lpage>788</lpage>
.
<pub-id pub-id-type="doi">10.1111/pce.12013</pub-id>
<pub-id pub-id-type="pmid">22994594</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Hai</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>X. H.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>X. N.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance</article-title>
.
<source>Plant Breed.</source>
<volume>128</volume>
,
<fpage>404</fpage>
<lpage>410</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1439-0523.2008.01593.x</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sommerfeld</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae)</article-title>
.
<source>J. Plant Physiol.</source>
<volume>165</volume>
,
<fpage>1783</fpage>
<lpage>1797</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2007.12.007</pub-id>
<pub-id pub-id-type="pmid">18313796</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>K. H.</given-names>
</name>
<name>
<surname>Pu</surname>
<given-names>S. F.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress</article-title>
.
<source>Biol. Planta</source>
<volume>54</volume>
,
<fpage>664</fpage>
<lpage>670</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10535-010-0118-8</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xin</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Changes in activities of antioxidant-related enzymes in leaves of resistant and susceptible wheat inoculated with
<italic>Rhizoctonia cerealis</italic>
</article-title>
.
<source>Agric. Sci. China</source>
<volume>10</volume>
,
<fpage>526</fpage>
<lpage>533</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1671-2927(11)60033-3</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>López-Huertas</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Corpas</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Sandalio</surname>
<given-names>L. M.</given-names>
</name>
<name>
<surname>Del Rio</surname>
<given-names>L. A.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation</article-title>
.
<source>Biochem. J.</source>
<volume>337</volume>
,
<fpage>531</fpage>
<lpage>536</lpage>
.
<pub-id pub-id-type="doi">10.1042/bj3370531</pub-id>
<pub-id pub-id-type="pmid">9895298</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis</article-title>
.
<source>Plant Cell Rep.</source>
<volume>26</volume>
,
<fpage>1909</fpage>
<lpage>1917</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-007-0395-7</pub-id>
<pub-id pub-id-type="pmid">17571267</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nan</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2013</year>
).
<article-title>Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to Methyl viologen and salt stresses</article-title>
.
<source>PLoS ONE</source>
<volume>8</volume>
:
<fpage>54002</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0054002</pub-id>
<pub-id pub-id-type="pmid">23335985</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Miao</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na
<sup>+</sup>
/Ka
<sup>+</sup>
homeostasis in Arabidopsis under salt stress</article-title>
.
<source>J. Exp. Bot.</source>
<volume>63</volume>
,
<fpage>305</fpage>
<lpage>317</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/err280</pub-id>
<pub-id pub-id-type="pmid">21984648</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marino</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dunand</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Puppo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pauly</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>A burst of plant NADPH oxidases</article-title>
.
<source>Trends Plant Sci</source>
.
<volume>17</volume>
,
<fpage>9</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2011.10.001</pub-id>
<pub-id pub-id-type="pmid">22037416</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marti</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Florez-Sarasa</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Camejo</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Miquel Ribas-Carbo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lazaro</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Sevilla</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (
<italic>Pisum sativum</italic>
L.) leaves</article-title>
.
<source>J. Exp. Bot.</source>
<volume>62</volume>
,
<fpage>3863</fpage>
<lpage>3874</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/err076</pub-id>
<pub-id pub-id-type="pmid">21460385</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Montillet</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Bresson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Agnel</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Daniel</surname>
<given-names>J. F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1998</year>
).
<article-title>Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum 18</article-title>
.
<source>Mol. Plant Microbe Inter.</source>
<volume>11</volume>
,
<fpage>1038</fpage>
<lpage>1047</lpage>
.
<pub-id pub-id-type="doi">10.1094/MPMI.1998.11.11.1038</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matysik</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bhalu</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Mohanty</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants</article-title>
.
<source>Curr. Sci.</source>
<volume>82</volume>
,
<fpage>525</fpage>
<lpage>532</lpage>
.
<ext-link ext-link-type="uri" xlink:href="http://www.iisc.ernet.in/currsci/mar102002/525.pdf">http://www.iisc.ernet.in/currsci/mar102002/525.pdf</ext-link>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehler</surname>
<given-names>A. H.</given-names>
</name>
</person-group>
(
<year>1951</year>
).
<article-title>Studies on reactions of illuminated chloroplasts. I. Mechanisms of the reduction of oxygen and other Hill reagents</article-title>
.
<source>Arch. Biochem. Biophys.</source>
<volume>33</volume>
,
<fpage>65</fpage>
<lpage>77</lpage>
.
<pub-id pub-id-type="doi">10.1016/0003-9861(51)90082-3</pub-id>
<pub-id pub-id-type="pmid">14857775</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Schlauch</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cortes</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Shulaev</surname>
<given-names>V.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli</article-title>
.
<source>Sci. Sign.</source>
<volume>2</volume>
,
<fpage>45</fpage>
.
<pub-id pub-id-type="doi">10.1126/scisignal.2000448</pub-id>
<pub-id pub-id-type="pmid">19690331</pub-id>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ciftci-Yilmaz</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Reactive oxygen species homeostasis and signalling during drought and salinity stresses</article-title>
.
<source>Plant Cell Environ.</source>
<volume>33</volume>
,
<fpage>453</fpage>
<lpage>467</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2009.02041.x</pub-id>
<pub-id pub-id-type="pmid">19712065</pub-id>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kumari</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (
<italic>Oryza sativa</italic>
L.) seedlings</article-title>
.
<source>Protoplasma</source>
<volume>250</volume>
,
<fpage>3</fpage>
<lpage>19</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00709-011-0365-3</pub-id>
<pub-id pub-id-type="pmid">22194018</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Jha</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings</article-title>
.
<source>Protoplasma</source>
<volume>248</volume>
,
<fpage>565</fpage>
<lpage>577</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00709-010-0210-0</pub-id>
<pub-id pub-id-type="pmid">20857150</pub-id>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittal</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Behaviour of peroxidases in rice: changes in enzymatic activity and isoforms in relation to salt tolerance</article-title>
.
<source>Plant Physiol. Biochem.</source>
<volume>29</volume>
,
<fpage>31</fpage>
<lpage>40</lpage>
.</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Oxidative stress, antioxidants and stress tolerance</article-title>
.
<source>Trends. Plant Sci.</source>
<volume>7</volume>
,
<fpage>405</fpage>
<lpage>410</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1360-1385(02)02312-9</pub-id>
<pub-id pub-id-type="pmid">12234732</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Vanderauwera</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gollery</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Van Breusegem</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Reactive oxygen gene network of plants</article-title>
.
<source>Trends. Plant Sci.</source>
<volume>9</volume>
,
<fpage>490</fpage>
<lpage>498</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tplants.2004.08.009</pub-id>
<pub-id pub-id-type="pmid">15465684</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Møller</surname>
<given-names>I. M.</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>P. E.</given-names>
</name>
<name>
<surname>Hansson</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Oxidative modifications to cellular components in plants</article-title>
.
<source>Annu. Rev. Plant Biol.</source>
<volume>58</volume>
,
<fpage>459</fpage>
<lpage>481</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.58.032806.103946</pub-id>
<pub-id pub-id-type="pmid">17288534</pub-id>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monshausen</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Bibikova</surname>
<given-names>T. N.</given-names>
</name>
<name>
<surname>Weisenseel</surname>
<given-names>M. H.</given-names>
</name>
<name>
<surname>Gilroy</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Ca
<sup>2+</sup>
regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots</article-title>
.
<source>Plant Cell</source>
<volume>21</volume>
,
<fpage>2341</fpage>
<lpage>2356</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.109.068395</pub-id>
<pub-id pub-id-type="pmid">19654264</pub-id>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monson</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>G. E.</given-names>
</name>
<name>
<surname>Ku</surname>
<given-names>M. S. B.</given-names>
</name>
</person-group>
(
<year>1984</year>
).
<article-title>C3 – C4 intermediate photosynthesis in plants</article-title>
.
<source>BioScience</source>
<volume>34</volume>
,
<fpage>563</fpage>
<lpage>574</lpage>
.
<pub-id pub-id-type="doi">10.2307/1309599</pub-id>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moser</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wastyn</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Peschek</surname>
<given-names>G. A.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Acidic cytochrome c6 of unicellular cyanobacteria is an indispensable and kinetically competent electron donor to cytochrome oxidase in plasma and thylakoid membranes</article-title>
.
<source>Biochem. Int.</source>
<volume>24</volume>
,
<fpage>757</fpage>
<lpage>768</lpage>
.
<pub-id pub-id-type="pmid">1665972</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munns</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tester</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Mechanisms of salinity tolerance</article-title>
.
<source>Annu. Rev. Plant Physiol.</source>
<volume>59</volume>
,
<fpage>651</fpage>
<lpage>681</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.59.032607.092911</pub-id>
<pub-id pub-id-type="pmid">18444910</pub-id>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nawrocki</surname>
<given-names>W. J.</given-names>
</name>
<name>
<surname>Tourasse</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Taly</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rappaport</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wollman</surname>
<given-names>F. A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology</article-title>
.
<source>Annu. Rev. Plant Biol.</source>
<volume>66</volume>
,
<fpage>49</fpage>
<lpage>74</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-arplant-043014-114744</pub-id>
<pub-id pub-id-type="pmid">25580838</pub-id>
</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niyogi</surname>
<given-names>K. K.</given-names>
</name>
<name>
<surname>Grossman</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Björkman</surname>
<given-names>O.</given-names>
</name>
</person-group>
(
<year>1998</year>
).
<article-title>Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion</article-title>
.
<source>Plant Cell</source>
<volume>10</volume>
,
<fpage>1121</fpage>
<lpage>1134</lpage>
.
<pub-id pub-id-type="doi">10.1105/tpc.10.7.1121</pub-id>
<pub-id pub-id-type="pmid">9668132</pub-id>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noctor</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mhamdi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The roles of reactive oxygen metabolism in drought: not so cut and dried</article-title>
.
<source>Plant Physiol.</source>
<volume>164</volume>
,
<fpage>1636</fpage>
<lpage>1648</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.113.233478</pub-id>
<pub-id pub-id-type="pmid">24715539</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noctor</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Veljovic-Jovanovic</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Driscoll</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Novitskaya</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Foyer</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?</article-title>
<source>Ann. Bot.</source>
<volume>89</volume>
,
<fpage>841</fpage>
<lpage>850</lpage>
.
<pub-id pub-id-type="doi">10.1093/aob/mcf096</pub-id>
<pub-id pub-id-type="pmid">12102510</pub-id>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parida</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Mittra</surname>
<given-names>B.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora</article-title>
.
<source>Trees-Struct. Funct.</source>
<volume>18</volume>
,
<fpage>167</fpage>
<lpage>174</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00468-003-0293-8</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peltier</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cournac</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Chlororespiration</article-title>
.
<source>Annu. Rev. Plant Physiol.</source>
<volume>53</volume>
,
<fpage>523</fpage>
<lpage>550</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev.arplant.53.100301.135242</pub-id>
<pub-id pub-id-type="pmid">12227339</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pogány</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>von Rad</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Grün</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dongó</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pintye</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Simoneau</surname>
<given-names>P.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2009</year>
).
<article-title>Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem</article-title>
.
<source>Plant Physiol.</source>
<volume>151</volume>
,
<fpage>1459</fpage>
<lpage>1475</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.109.141994</pub-id>
<pub-id pub-id-type="pmid">19726575</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prashanth</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Sadhasivam</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Parida</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant
<italic>Avicennia marina</italic>
in indica rice var Pusa Basmati-1 confers abiotic stress tolerance</article-title>
.
<source>Trans. Res.</source>
<volume>17</volume>
,
<fpage>281</fpage>
<lpage>291</lpage>
.
<pub-id pub-id-type="doi">10.1007/s11248-007-9099-6</pub-id>
<pub-id pub-id-type="pmid">17541718</pub-id>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rasmusson</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Geisler</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Møller</surname>
<given-names>I. M.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria</article-title>
.
<source>Mitochondrion</source>
<volume>8</volume>
,
<fpage>47</fpage>
<lpage>60</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.mito.2007.10.004</pub-id>
<pub-id pub-id-type="pmid">18033742</pub-id>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reguera</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bassil</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Blumwald</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Intracellular NHX-type cation/H+ antiporters in plants.
<italic>Mol</italic>
</article-title>
.
<source>Plant.</source>
<volume>7</volume>
,
<fpage>261</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1093/mp/sst091</pub-id>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rejeb</surname>
<given-names>K. B.</given-names>
</name>
<name>
<surname>Abdelly</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Savouré</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>How reactive oxygen species and proline face stress together</article-title>
.
<source>Plant Physiol. Biochem</source>
.
<volume>80</volume>
,
<fpage>278</fpage>
<lpage>284</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plaphy.2014.04.007</pub-id>
<pub-id pub-id-type="pmid">24813727</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rejeb</surname>
<given-names>K. B.</given-names>
</name>
<name>
<surname>Benzarti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Debez</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bailly</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Savoure</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Abdelly</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2015a</year>
).
<article-title>NADPH oxidase-dependent H
<sub>2</sub>
O
<sub>2</sub>
production is required for salt-induced antioxidant defense in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>J. Plant Physiol.</source>
<volume>174</volume>
,
<fpage>5</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2014.08.022</pub-id>
<pub-id pub-id-type="pmid">25462961</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rejeb</surname>
<given-names>K. B.</given-names>
</name>
<name>
<surname>Vos</surname>
<given-names>D. L. D.</given-names>
</name>
<name>
<surname>Disquet</surname>
<given-names>I. L.</given-names>
</name>
<name>
<surname>Leprince</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Bordenave</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Maldiney</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2015b</year>
).
<article-title>Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>New Phytol.</source>
<volume>208</volume>
,
<fpage>1138</fpage>
<lpage>1148</lpage>
.
<pub-id pub-id-type="doi">10.1111/nph.13550</pub-id>
<pub-id pub-id-type="pmid">26180024</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rengasamy</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>World salinization with emphasis on Australia</article-title>
.
<source>J. Exp. Bot.</source>
<volume>57</volume>
,
<fpage>1017</fpage>
<lpage>1023</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erj108</pub-id>
<pub-id pub-id-type="pmid">16510516</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rios-Gonzalez</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Erdei</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lips</surname>
<given-names>S. H.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources</article-title>
.
<source>Plant Sci.</source>
<volume>162</volume>
,
<fpage>923</fpage>
<lpage>930</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0168-9452(02)00040-7</pub-id>
</mixed-citation>
</ref>
<ref id="B124">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodríguez</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Maiale</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Menéndez</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>O. A.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress</article-title>
.
<source>J. Exp. Bot.</source>
<volume>60</volume>
,
<fpage>4249</fpage>
<lpage>4262</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/erp256</pub-id>
<pub-id pub-id-type="pmid">19717530</pub-id>
</mixed-citation>
</ref>
<ref id="B125">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogov</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Sukhanova</surname>
<given-names>E. I.</given-names>
</name>
<name>
<surname>Uralskaya</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Aliverdieva</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Zvyagilskaya</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Alternative oxidase: distribution, induction, properties, structure, regulation, and functions</article-title>
.
<source>Biochemistry</source>
<volume>79</volume>
,
<fpage>1615</fpage>
<lpage>1634</lpage>
.
<pub-id pub-id-type="doi">10.1134/s0006297914130112</pub-id>
<pub-id pub-id-type="pmid">25749168</pub-id>
</mixed-citation>
</ref>
<ref id="B126">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosso</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Geisler-Lee</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hendrickson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Geisler</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>
<italic>IMMUTANS</italic>
does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis</article-title>
.
<source>Plant Physiol.</source>
<volume>142</volume>
,
<fpage>574</fpage>
<lpage>585</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.106.085886</pub-id>
<pub-id pub-id-type="pmid">16891546</pub-id>
</mixed-citation>
</ref>
<ref id="B127">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubio</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Bustos-Sanmamed</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Clemente</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Becana</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicas</article-title>
.
<source>New Phytol.</source>
<volume>181</volume>
,
<fpage>851</fpage>
<lpage>859</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2008.02718.x</pub-id>
<pub-id pub-id-type="pmid">19140933</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sagi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fluhr</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Production of reactive oxygen species by plant NADPH oxidases</article-title>
.
<source>Plant Physiol.</source>
<volume>141</volume>
,
<fpage>336</fpage>
<lpage>340</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.106.078089</pub-id>
<pub-id pub-id-type="pmid">16760484</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sairam</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Tyagi</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Physiology and molecular biology of salinity stress tolerance in plants</article-title>
.
<source>Curr. Sci.</source>
<volume>86</volume>
,
<fpage>407</fpage>
<lpage>421</lpage>
. Available online at:
<ext-link ext-link-type="uri" xlink:href="http://www.iisc.ernet.in/currsci/feb102004/407.pdf">http://www.iisc.ernet.in/currsci/feb102004/407.pdf</ext-link>
</mixed-citation>
</ref>
<ref id="B130">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakamoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>N.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance</article-title>
.
<source>J. Exp. Bot.</source>
<volume>51</volume>
,
<fpage>81</fpage>
<lpage>88</lpage>
.
<pub-id pub-id-type="doi">10.1093/jexbot/51.342.81</pub-id>
<pub-id pub-id-type="pmid">10938798</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakamoto</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Iba</surname>
<given-names>K.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Plant J.</source>
<volume>56</volume>
,
<fpage>411</fpage>
<lpage>422</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2008.03614.x</pub-id>
<pub-id pub-id-type="pmid">18643991</pub-id>
</mixed-citation>
</ref>
<ref id="B132">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scheibe</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Backhausen</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Emmerlich</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Holtgrefe</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Strategies to maintain redox homeostasis during photosynthesis under changing conditions</article-title>
.
<source>J. Exp. Bot.</source>
<volume>56</volume>
,
<fpage>1481</fpage>
<lpage>1489</lpage>
.
<pub-id pub-id-type="doi">10.1093/jxb/eri181</pub-id>
<pub-id pub-id-type="pmid">15851411</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalata</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mittova</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Volokita</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tal</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system</article-title>
.
<source>Physiol. Plant.</source>
<volume>112</volume>
,
<fpage>487</fpage>
<lpage>494</lpage>
.
<pub-id pub-id-type="doi">10.1034/j.1399-3054.2001.1120405.x</pub-id>
<pub-id pub-id-type="pmid">11473708</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jha</surname>
<given-names>A. B.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Pessarakl</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Reactive oxygen species, oxidative damage, and antioxidative defensemechanism in plants under stressful conditions</article-title>
.
<source>J. Bot.</source>
<volume>2012</volume>
,
<fpage>1</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1155/2012/217037</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>P. K.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>D. O.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Changes in carotenoid composition and photosynthesis in sorghum under high light and salt stresses</article-title>
.
<source>J. Plant Physiol.</source>
<volume>140</volume>
,
<fpage>661</fpage>
<lpage>666</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0176-1617(11)81020-5</pub-id>
</mixed-citation>
</ref>
<ref id="B136">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>W. M.</given-names>
</name>
<name>
<surname>Muramoto</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Takabe</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Gene</source>
<volume>273</volume>
,
<fpage>23</fpage>
<lpage>27</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0378-1119(01)00566-2</pub-id>
<pub-id pub-id-type="pmid">11483357</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Melino</surname>
<given-names>V. J.</given-names>
</name>
<name>
<surname>Sweetman</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Soole</surname>
<given-names>K. L.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Manipulation of alternative oxidase can influence salt tolerance in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Physiol. Plant.</source>
<volume>137</volume>
,
<fpage>459</fpage>
<lpage>472</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2009.01305.x</pub-id>
<pub-id pub-id-type="pmid">19941623</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Xiang</surname>
<given-names>F.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Thedynamicchanges of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean</article-title>
.
<source>PLoS ONE</source>
<volume>7</volume>
:
<fpage>41274</fpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0041274</pub-id>
<pub-id pub-id-type="pmid">22815985</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lokhande</surname>
<given-names>V. H.</given-names>
</name>
<name>
<surname>D'souza</surname>
<given-names>S. F.</given-names>
</name>
<name>
<surname>Suprasanna</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Salt stress reveals differential antioxidant and energetics responses in glycophyte (
<italic>Brassica juncea</italic>
L.) and halophyte (
<italic>Sesuvium portulacastrum</italic>
L.)</article-title>
.
<source>Front. Environ. Sci.</source>
<volume>3</volume>
:
<issue>19</issue>
<pub-id pub-id-type="doi">10.3389/fenvs.2015.00019</pub-id>
</mixed-citation>
</ref>
<ref id="B140">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dubey</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings</article-title>
.
<source>Plant Gro. Reg.</source>
<volume>64</volume>
,
<fpage>1</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.1007/s10725-010-9526-1</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stepien</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>G. N.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink</article-title>
.
<source>Plant Physiol.</source>
<volume>149</volume>
,
<fpage>1154</fpage>
<lpage>1165</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.108.132407</pub-id>
<pub-id pub-id-type="pmid">19052149</pub-id>
</mixed-citation>
</ref>
<ref id="B142">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stepien</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Klobus</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Antioxidant defense in the leaves of C3 and C4 plants under salinity stress</article-title>
.
<source>Physiol. Plant.</source>
<volume>125</volume>
,
<fpage>31</fpage>
<lpage>40</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2005.00534.x</pub-id>
</mixed-citation>
</ref>
<ref id="B143">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strand</surname>
<given-names>D. D.</given-names>
</name>
<name>
<surname>Livingston</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Satoh-Cruz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Froehlich</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Maurino</surname>
<given-names>V. G.</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Activation of cyclic electron flow by hydrogen peroxide
<italic>in vivo</italic>
</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>112</volume>
,
<fpage>5539</fpage>
<lpage>5544</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1418223112</pub-id>
<pub-id pub-id-type="pmid">25870290</pub-id>
</mixed-citation>
</ref>
<ref id="B144">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>W. H.</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shu</surname>
<given-names>D. F.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>Q. W.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses</article-title>
.
<source>Plant Cell Rep.</source>
<volume>29</volume>
,
<fpage>917</fpage>
<lpage>926</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00299-010-0878-9</pub-id>
<pub-id pub-id-type="pmid">20524119</pub-id>
</mixed-citation>
</ref>
<ref id="B145">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Koussevitzky</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>ROS and redox signalling in the response of plants to abiotic stress</article-title>
.
<source>Plant Cell Environ.</source>
<volume>35</volume>
,
<fpage>259</fpage>
<lpage>270</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2011.02336.x</pub-id>
<pub-id pub-id-type="pmid">21486305</pub-id>
</mixed-citation>
</ref>
<ref id="B146">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suzuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Morales</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shulaev</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Mittler</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Respiratory burst oxidases: the engines of ROS signaling</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>14</volume>
,
<fpage>691</fpage>
<lpage>699</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2011.07.014</pub-id>
<pub-id pub-id-type="pmid">21862390</pub-id>
</mixed-citation>
</ref>
<ref id="B147">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szekely</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cselo</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rigo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Zsigmond</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Csiszar</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis</article-title>
.
<source>Plant J.</source>
<volume>53</volume>
,
<fpage>11</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2007.03318.x</pub-id>
<pub-id pub-id-type="pmid">17971042</pub-id>
</mixed-citation>
</ref>
<ref id="B148">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taji</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Seki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Satou</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sakurai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ishiyama</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2004</year>
).
<article-title>Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis- related halophyte salt cress using Arabidopsis microarray</article-title>
.
<source>Plant Physiol.</source>
<volume>135</volume>
,
<fpage>1697</fpage>
<lpage>1709</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.104.039909</pub-id>
<pub-id pub-id-type="pmid">15247402</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hibino</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kishitani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takabe</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1999</year>
).
<article-title>Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts</article-title>
.
<source>Plant Sci.</source>
<volume>148</volume>
,
<fpage>131</fpage>
<lpage>138</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0168-9452(99)00133-8</pub-id>
</mixed-citation>
</ref>
<ref id="B150">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taniguchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism</article-title>
.
<source>Curr. Opin. Plant Biol.</source>
<volume>15</volume>
,
<fpage>252</fpage>
<lpage>260</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.pbi.2012.01.014</pub-id>
<pub-id pub-id-type="pmid">22336038</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Torres</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Dangl</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>J. D. G.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response</article-title>
.
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<volume>99</volume>
,
<fpage>517</fpage>
<lpage>522</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.012452499</pub-id>
<pub-id pub-id-type="pmid">11756663</pub-id>
</mixed-citation>
</ref>
<ref id="B152">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trouillard</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shahbazi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moyet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Rappaport</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Joliot</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Kuntz</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2012</year>
).
<article-title>Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1817</volume>
,
<fpage>2140</fpage>
<lpage>2148</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbabio.2012.08.006</pub-id>
<pub-id pub-id-type="pmid">22982477</pub-id>
</mixed-citation>
</ref>
<ref id="B153">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsai</surname>
<given-names>Y. C.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>C. Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L. F.</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H
<sub>2</sub>
O
<sub>2</sub>
</article-title>
.
<source>J. Plant Physiol.</source>
<volume>162</volume>
,
<fpage>291</fpage>
<lpage>299</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2004.06.004</pub-id>
<pub-id pub-id-type="pmid">15832681</pub-id>
</mixed-citation>
</ref>
<ref id="B154">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuna</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Kaya</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dikilitas</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Higgs</surname>
<given-names>D.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants</article-title>
.
<source>Env. Exp. Bot.</source>
<volume>62</volume>
,
<fpage>1</fpage>
<lpage>9</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.envexpbot.2007.06.007</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uzilday</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Turkan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ozgur</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Sekmen</surname>
<given-names>A. H.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Strategies of ROS regulation and antioxidant defense during transition from C-3 to C-4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress.
<italic>J</italic>
</article-title>
.
<source>Plant Physiol.</source>
<volume>171</volume>
,
<fpage>65</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jplph.2013.06.016</pub-id>
</mixed-citation>
</ref>
<ref id="B156">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaidyanathan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sivakumar</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chakrabarty</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Scavenging of reactive oxygen species in NaCl stressed rice (
<italic>Oryza sativa</italic>
L.) - Differential response in salt tolerant and sensitive varieties</article-title>
.
<source>Plant Sci.</source>
<volume>165</volume>
,
<fpage>1411</fpage>
<lpage>1418</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.plantsci.2003.08.005</pub-id>
</mixed-citation>
</ref>
<ref id="B157">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valderrama</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Corpas</surname>
<given-names>F. J.</given-names>
</name>
<name>
<surname>Carreras</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gómez-Rodríguez</surname>
<given-names>M. V.</given-names>
</name>
<name>
<surname>Chaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pedrajas</surname>
<given-names>J. R.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2006</year>
).
<article-title>The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants</article-title>
.
<source>Plant Cell Environ.</source>
<volume>29</volume>
,
<fpage>1449</fpage>
<lpage>1459</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2006.01530.x</pub-id>
<pub-id pub-id-type="pmid">17080966</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Aken</surname>
<given-names>O. V.</given-names>
</name>
<name>
<surname>Giraud</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Clifton</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Whelan</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Alternative oxidase: a target and regulator of stress responses</article-title>
.
<source>Physiol. Plant.</source>
<volume>137</volume>
,
<fpage>354</fpage>
<lpage>361</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1399-3054.2009.01240.x</pub-id>
<pub-id pub-id-type="pmid">19470093</pub-id>
</mixed-citation>
</ref>
<ref id="B159">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van Camp</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Capiau</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Van Montagu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Inze</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Slooten</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts</article-title>
.
<source>Plant Physiol.</source>
<volume>112</volume>
,
<fpage>1703</fpage>
<lpage>1714</lpage>
.
<pub-id pub-id-type="doi">10.1104/pp.112.4.1703</pub-id>
<pub-id pub-id-type="pmid">8972606</pub-id>
</mixed-citation>
</ref>
<ref id="B160">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verslues</surname>
<given-names>P. E.</given-names>
</name>
<name>
<surname>Agarwal</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Katiyar-Agarwal</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status</article-title>
.
<source>Plant J.</source>
<volume>45</volume>
,
<fpage>523</fpage>
<lpage>539</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2005.02593.x</pub-id>
<pub-id pub-id-type="pmid">16441347</pub-id>
</mixed-citation>
</ref>
<ref id="B161">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voss</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Sunil</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Scheibe</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Raghavendra</surname>
<given-names>A. S.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Emerging concept for the role of photorespiration as an important part of abiotic stress response</article-title>
.
<source>Plant Biol.</source>
<volume>15</volume>
,
<fpage>713</fpage>
<lpage>722</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1438-8677.2012.00710.x</pub-id>
<pub-id pub-id-type="pmid">23452019</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waie</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rajam</surname>
<given-names>M. V.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene</article-title>
.
<source>Plant Sci.</source>
<volume>164</volume>
,
<fpage>727</fpage>
<lpage>734</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0168-9452(03)00030-X</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2010</year>
).
<article-title>Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses</article-title>
.
<source>Plant Cell Physiol.</source>
<volume>51</volume>
,
<fpage>1754</fpage>
<lpage>1765</lpage>
.
<pub-id pub-id-type="doi">10.1093/pcp/pcq134</pub-id>
<pub-id pub-id-type="pmid">20801923</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sommerfeld</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae)</article-title>
.
<source>Planta</source>
<volume>230</volume>
,
<fpage>191</fpage>
<lpage>203</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00425-009-0932-4</pub-id>
<pub-id pub-id-type="pmid">19408010</pub-id>
</mixed-citation>
</ref>
<ref id="B165">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wisniewski</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Meilan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Fuchigami</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress</article-title>
.
<source>J. Amer. Soc. Hort. Sci.</source>
<volume>130</volume>
,
<fpage>167</fpage>
<lpage>173</lpage>
.
<ext-link ext-link-type="uri" xlink:href="https://www.researchgate.net/publication/267968552">https://www.researchgate.net/publication/267968552</ext-link>
</mixed-citation>
</ref>
<ref id="B166">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiciarza</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gubernatorb</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Jerzy Kruka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Niewiadomskac</surname>
<given-names>E.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Enhanced chloroplastic generation of H
<sub>2</sub>
O
<sub>2</sub>
in stress-resistant Thellungiella salsuginea in comparison to
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Physiol. Plant.</source>
<volume>153</volume>
,
<fpage>467</fpage>
<lpage>476</lpage>
.
<pub-id pub-id-type="doi">10.1111/ppl.12248</pub-id>
<pub-id pub-id-type="pmid">24961163</pub-id>
</mixed-citation>
</ref>
<ref id="B167">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winger</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>N. L.</given-names>
</name>
<name>
<surname>Heazlewood</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Day</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>A. H.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis</article-title>
.
<source>Proteomics</source>
<volume>7</volume>
,
<fpage>4158</fpage>
<lpage>4170</lpage>
.
<pub-id pub-id-type="doi">10.1002/pmic.200700209</pub-id>
<pub-id pub-id-type="pmid">17994621</pub-id>
</mixed-citation>
</ref>
<ref id="B168">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wingler</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lea</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Quick</surname>
<given-names>W. P.</given-names>
</name>
<name>
<surname>Leegood</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Photorespiration: metabolic pathways and their role in stress protection</article-title>
.
<source>Philos. Trans. R. Soc. Lond. B Biol. Sci.</source>
<volume>355</volume>
,
<fpage>1517</fpage>
<lpage>1529</lpage>
.
<pub-id pub-id-type="doi">10.1098/rstb.2000.0712</pub-id>
<pub-id pub-id-type="pmid">11128005</pub-id>
</mixed-citation>
</ref>
<ref id="B169">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wojtaszek</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Oxidative burst: an early plant response to pathogen infection</article-title>
.
<source>Biochem. J.</source>
<volume>322</volume>
,
<fpage>681</fpage>
<lpage>692</lpage>
.
<pub-id pub-id-type="doi">10.1042/bj3220681</pub-id>
<pub-id pub-id-type="pmid">9148737</pub-id>
</mixed-citation>
</ref>
<ref id="B170">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>Y. J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M. Z.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>X. X.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis</article-title>
.
<source>Plant J.</source>
<volume>66</volume>
,
<fpage>280</fpage>
<lpage>292</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-313X.2011.04488.x</pub-id>
<pub-id pub-id-type="pmid">21205037</pub-id>
</mixed-citation>
</ref>
<ref id="B171">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Hachiya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tholen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Terashima</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2011</year>
).
<article-title>Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in
<italic>Arabidopsis thaliana</italic>
</article-title>
.
<source>Plant Cell Environ.</source>
<volume>34</volume>
,
<fpage>618</fpage>
<lpage>628</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-3040.2010.02267.x</pub-id>
<pub-id pub-id-type="pmid">21251020</pub-id>
</mixed-citation>
</ref>
<ref id="B172">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Feilke</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Krieger-Liszkay</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Beyer</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Functional and molecular characterization of plastid terminal oxidase from rice (
<italic>Oryza sativa</italic>
)</article-title>
.
<source>Biochim. Biophys. Acta</source>
<volume>1837</volume>
,
<fpage>1284</fpage>
<lpage>1292</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bbabio.2014.04.007</pub-id>
<pub-id pub-id-type="pmid">24780313</pub-id>
</mixed-citation>
</ref>
<ref id="B173">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lesch</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Grieve</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Rice growth and yield respond to changes in water depth and salinity stress</article-title>
.
<source>Agril. Water Manag.</source>
<volume>59</volume>
,
<fpage>67</fpage>
<lpage>75</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0378-3774(02)00088-4</pub-id>
</mixed-citation>
</ref>
<ref id="B174">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>D. W.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>H. X.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2016</year>
).
<article-title>Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis</article-title>
.
<source>Plant Cell Environ.</source>
<volume>39</volume>
,
<fpage>12</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1111/pce.12438</pub-id>
<pub-id pub-id-type="pmid">25158995</pub-id>
</mixed-citation>
</ref>
<ref id="B175">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
. (
<year>2008</year>
).
<article-title>Comparison analysis of transcripts from the halophyte
<italic>Thellungiella halophila</italic>
</article-title>
.
<source>J. Integr. Plant. Biol.</source>
<volume>50</volume>
,
<fpage>1327</fpage>
<lpage>1335</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1744-7909.2008.00740.x</pub-id>
<pub-id pub-id-type="pmid">19017120</pub-id>
</mixed-citation>
</ref>
<ref id="B176">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>J. K.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Plant salt tolerance</article-title>
.
<source>Trends Plant Sci.</source>
<volume>6</volume>
,
<fpage>66</fpage>
<lpage>71</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1360-1385(00)01838-0</pub-id>
<pub-id pub-id-type="pmid">11173290</pub-id>
</mixed-citation>
</ref>
</ref-list>
<glossary>
<def-list>
<title>Abbreviations</title>
<def-item>
<term>AOX</term>
<def>
<p>alternative oxidase</p>
</def>
</def-item>
<def-item>
<term>APX</term>
<def>
<p>ascorbate peroxidase</p>
</def>
</def-item>
<def-item>
<term>CAT</term>
<def>
<p>catalase</p>
</def>
</def-item>
<def-item>
<term>CEF</term>
<def>
<p>cyclic electron flow</p>
</def>
</def-item>
<def-item>
<term>DHAR</term>
<def>
<p>dehydroascorbate reductase</p>
</def>
</def-item>
<def-item>
<term>GPX</term>
<def>
<p>glutathione peroxidase</p>
</def>
</def-item>
<def-item>
<term>GR</term>
<def>
<p>glutathione reductase</p>
</def>
</def-item>
<def-item>
<term>GSH</term>
<def>
<p>glutathione</p>
</def>
</def-item>
<def-item>
<term>GST</term>
<def>
<p>glutathione-S-transferase</p>
</def>
</def-item>
<def-item>
<term>MDH, malate dehydrogenase</term>
<def>
<p>NADP- or NAD-dependent</p>
</def>
</def-item>
<def-item>
<term>MDHAR</term>
<def>
<p>monodehydroascorbate reductase</p>
</def>
</def-item>
<def-item>
<term>PET</term>
<def>
<p>photosynthetic electron transport</p>
</def>
</def-item>
<def-item>
<term>PRX</term>
<def>
<p>peroxiredoxin</p>
</def>
</def-item>
<def-item>
<term>POD</term>
<def>
<p>guaiacol heme peroxidase</p>
</def>
</def-item>
<def-item>
<term>PTOX</term>
<def>
<p>plastid terminal oxidase</p>
</def>
</def-item>
<def-item>
<term>RBOH</term>
<def>
<p>respiratory burst oxidase homologue</p>
</def>
</def-item>
<def-item>
<term>RET</term>
<def>
<p>respiratory electron transport</p>
</def>
</def-item>
<def-item>
<term>ROS</term>
<def>
<p>reactive oxygen species</p>
</def>
</def-item>
<def-item>
<term>SOD</term>
<def>
<p>superoxide dismutase</p>
</def>
</def-item>
<def-item>
<term>TRX</term>
<def>
<p>thioredoxin.</p>
</def>
</def-item>
</def-list>
</glossary>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000425 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000425 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4861717
   |texte=   Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:27242807" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024