Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New Claims for Wild Carrot (Daucus carota subsp. carota) Essential Oil

Identifieur interne : 000289 ( Pmc/Corpus ); précédent : 000288; suivant : 000290

New Claims for Wild Carrot (Daucus carota subsp. carota) Essential Oil

Auteurs : Jorge M. Alves-Silva ; M Nica Zuzarte ; Maria José Gonçalves ; Carlos Cavaleiro ; Maria Teresa Cruz ; Susana M. Cardoso ; Lígia Salgueiro

Source :

RBID : PMC:4769755

Abstract

The essential oil of Daucus carota subsp. carota from Portugal, with high amounts of geranyl acetate (29.0%), α-pinene (27.2%), and 11αH-himachal-4-en-1β-ol (9.2%), was assessed for its biological potential. The antimicrobial activity was evaluated against several Gram-positive and Gram-negative bacteria, yeasts, dermatophytes, and Aspergillus strains. The minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were evaluated showing a significant activity towards Gram-positive bacteria (MIC = 0.32–0.64 μL/mL), Cryptococcus neoformans (0.16 μL/mL), and dermatophytes (0.32–0.64 μL/mL). The inhibition of the germ tube formation and the effect of the oil on Candida albicans biofilms were also unveiled. The oil inhibited more than 50% of filamentation at concentrations as low as 0.04 μL/mL (MIC/128) and decreased both biofilm mass and cell viability. The antioxidant capacity of the oil, as assessed by two in chemico methods, was not relevant. Still, it seems to exhibit some anti-inflammatory potential by decreasing nitric oxide production around 20% in LPS-stimulated macrophages, without decreasing macrophages viability. Moreover, the oils safety profile was assessed on keratinocytes, alveolar epithelial cells, macrophages, and hepatocytes. Overall, the oil demonstrated a safety profile at concentrations below 0.64 μL/mL. The present work highlights the bioactive potential of D. carota subsp. carota suggesting its industrial exploitation.


Url:
DOI: 10.1155/2016/9045196
PubMed: 26981143
PubMed Central: 4769755

Links to Exploration step

PMC:4769755

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New Claims for Wild Carrot (
<italic>Daucus carota</italic>
subsp.
<italic> carota</italic>
) Essential Oil</title>
<author>
<name sortKey="Alves Silva, Jorge M" sort="Alves Silva, Jorge M" uniqKey="Alves Silva J" first="Jorge M." last="Alves-Silva">Jorge M. Alves-Silva</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zuzarte, M Nica" sort="Zuzarte, M Nica" uniqKey="Zuzarte M" first="M Nica" last="Zuzarte">M Nica Zuzarte</name>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Faculty of Medicine, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, Maria Jose" sort="Goncalves, Maria Jose" uniqKey="Goncalves M" first="Maria José" last="Gonçalves">Maria José Gonçalves</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cavaleiro, Carlos" sort="Cavaleiro, Carlos" uniqKey="Cavaleiro C" first="Carlos" last="Cavaleiro">Carlos Cavaleiro</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cruz, Maria Teresa" sort="Cruz, Maria Teresa" uniqKey="Cruz M" first="Maria Teresa" last="Cruz">Maria Teresa Cruz</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Susana M" sort="Cardoso, Susana M" uniqKey="Cardoso S" first="Susana M." last="Cardoso">Susana M. Cardoso</name>
<affiliation>
<nlm:aff id="I4">Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salgueiro, Ligia" sort="Salgueiro, Ligia" uniqKey="Salgueiro L" first="Lígia" last="Salgueiro">Lígia Salgueiro</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26981143</idno>
<idno type="pmc">4769755</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769755</idno>
<idno type="RBID">PMC:4769755</idno>
<idno type="doi">10.1155/2016/9045196</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000289</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">New Claims for Wild Carrot (
<italic>Daucus carota</italic>
subsp.
<italic> carota</italic>
) Essential Oil</title>
<author>
<name sortKey="Alves Silva, Jorge M" sort="Alves Silva, Jorge M" uniqKey="Alves Silva J" first="Jorge M." last="Alves-Silva">Jorge M. Alves-Silva</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zuzarte, M Nica" sort="Zuzarte, M Nica" uniqKey="Zuzarte M" first="M Nica" last="Zuzarte">M Nica Zuzarte</name>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I3">Faculty of Medicine, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goncalves, Maria Jose" sort="Goncalves, Maria Jose" uniqKey="Goncalves M" first="Maria José" last="Gonçalves">Maria José Gonçalves</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cavaleiro, Carlos" sort="Cavaleiro, Carlos" uniqKey="Cavaleiro C" first="Carlos" last="Cavaleiro">Carlos Cavaleiro</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cruz, Maria Teresa" sort="Cruz, Maria Teresa" uniqKey="Cruz M" first="Maria Teresa" last="Cruz">Maria Teresa Cruz</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Susana M" sort="Cardoso, Susana M" uniqKey="Cardoso S" first="Susana M." last="Cardoso">Susana M. Cardoso</name>
<affiliation>
<nlm:aff id="I4">Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salgueiro, Ligia" sort="Salgueiro, Ligia" uniqKey="Salgueiro L" first="Lígia" last="Salgueiro">Lígia Salgueiro</name>
<affiliation>
<nlm:aff id="I1">Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Evidence-based Complementary and Alternative Medicine : eCAM</title>
<idno type="ISSN">1741-427X</idno>
<idno type="eISSN">1741-4288</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The essential oil of
<italic> Daucus carota</italic>
subsp.
<italic> carota</italic>
from Portugal, with high amounts of geranyl acetate (29.0%),
<italic>α</italic>
-pinene (27.2%), and 11
<italic>α</italic>
H-himachal-4-en-1
<italic>β</italic>
-ol (9.2%), was assessed for its biological potential. The antimicrobial activity was evaluated against several Gram-positive and Gram-negative bacteria, yeasts, dermatophytes, and
<italic> Aspergillus</italic>
strains. The minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were evaluated showing a significant activity towards Gram-positive bacteria (MIC = 0.32–0.64 
<italic>μ</italic>
L/mL),
<italic> Cryptococcus neoformans</italic>
(0.16 
<italic>μ</italic>
L/mL), and dermatophytes (0.32–0.64 
<italic>μ</italic>
L/mL). The inhibition of the germ tube formation and the effect of the oil on
<italic> Candida albicans</italic>
biofilms were also unveiled. The oil inhibited more than 50% of filamentation at concentrations as low as 0.04 
<italic>μ</italic>
L/mL (MIC/128) and decreased both biofilm mass and cell viability. The antioxidant capacity of the oil, as assessed by two
<italic> in chemico</italic>
methods, was not relevant. Still, it seems to exhibit some anti-inflammatory potential by decreasing nitric oxide production around 20% in LPS-stimulated macrophages, without decreasing macrophages viability. Moreover, the oils safety profile was assessed on keratinocytes, alveolar epithelial cells, macrophages, and hepatocytes. Overall, the oil demonstrated a safety profile at concentrations below 0.64 
<italic>μ</italic>
L/mL. The present work highlights the bioactive potential of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
suggesting its industrial exploitation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bakkali, F" uniqKey="Bakkali F">F. Bakkali</name>
</author>
<author>
<name sortKey="Averbeck, S" uniqKey="Averbeck S">S. Averbeck</name>
</author>
<author>
<name sortKey="Averbeck, D" uniqKey="Averbeck D">D. Averbeck</name>
</author>
<author>
<name sortKey="Idaomar, M" uniqKey="Idaomar M">M. Idaomar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goncalves, M J" uniqKey="Goncalves M">M. J. Gonçalves</name>
</author>
<author>
<name sortKey="Cruz, M T" uniqKey="Cruz M">M. T. Cruz</name>
</author>
<author>
<name sortKey="Tavares, A C" uniqKey="Tavares A">A. C. Tavares</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chalchat, J C" uniqKey="Chalchat J">J. C. Chalchat</name>
</author>
<author>
<name sortKey="Chiron, F" uniqKey="Chiron F">F. Chiron</name>
</author>
<author>
<name sortKey="Garry, R P" uniqKey="Garry R">R. P. Garry</name>
</author>
<author>
<name sortKey="Lacoste, J" uniqKey="Lacoste J">J. Lacoste</name>
</author>
<author>
<name sortKey="Sautou, Y" uniqKey="Sautou Y">Y. Sautou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sokovi, M" uniqKey="Sokovi M">M. Soković</name>
</author>
<author>
<name sortKey="Stojkovi, D" uniqKey="Stojkovi D">D. Stojković</name>
</author>
<author>
<name sortKey="Glamo Lija, J" uniqKey="Glamo Lija J">J. Glamočlija</name>
</author>
<author>
<name sortKey=" Iri, A" uniqKey=" Iri A">A. Ćirić</name>
</author>
<author>
<name sortKey="Risti, M" uniqKey="Risti M">M. Ristić</name>
</author>
<author>
<name sortKey="Grubisi, D" uniqKey="Grubisi D">D. Grubišić</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guinoiseau, E" uniqKey="Guinoiseau E">E. Guinoiseau</name>
</author>
<author>
<name sortKey="Luciani, A" uniqKey="Luciani A">A. Luciani</name>
</author>
<author>
<name sortKey="Casanova, J" uniqKey="Casanova J">J. Casanova</name>
</author>
<author>
<name sortKey="Tomi, F" uniqKey="Tomi F">F. Tomi</name>
</author>
<author>
<name sortKey="Bolla, J M" uniqKey="Bolla J">J. M. Bolla</name>
</author>
<author>
<name sortKey="Berti, L" uniqKey="Berti L">L. Berti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva Dias, J C" uniqKey="Da Silva Dias J">J. C. da Silva Dias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tavares, A C" uniqKey="Tavares A">A. C. Tavares</name>
</author>
<author>
<name sortKey="Goncalves, M J" uniqKey="Goncalves M">M. J. Gonçalves</name>
</author>
<author>
<name sortKey="Cavaleiro, C" uniqKey="Cavaleiro C">C. Cavaleiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chizzola, R" uniqKey="Chizzola R">R. Chizzola</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staniszewska, M" uniqKey="Staniszewska M">M. Staniszewska</name>
</author>
<author>
<name sortKey="Kula, J" uniqKey="Kula J">J. Kula</name>
</author>
<author>
<name sortKey="Wieczorkiewicz, M" uniqKey="Wieczorkiewicz M">M. Wieczorkiewicz</name>
</author>
<author>
<name sortKey="Kusewicz, D" uniqKey="Kusewicz D">D. Kusewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valente, J" uniqKey="Valente J">J. Valente</name>
</author>
<author>
<name sortKey="Zuzarte, M" uniqKey="Zuzarte M">M. Zuzarte</name>
</author>
<author>
<name sortKey="Resende, R" uniqKey="Resende R">R. Resende</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jabrane, A" uniqKey="Jabrane A">A. Jabrane</name>
</author>
<author>
<name sortKey="Jannet, H B" uniqKey="Jannet H">H. B. Jannet</name>
</author>
<author>
<name sortKey="Harzallah Skhiri, F" uniqKey="Harzallah Skhiri F">F. Harzallah-Skhiri</name>
</author>
<author>
<name sortKey="Mastouri, M" uniqKey="Mastouri M">M. Mastouri</name>
</author>
<author>
<name sortKey="Casanova, J" uniqKey="Casanova J">J. Casanova</name>
</author>
<author>
<name sortKey="Mighri, Z" uniqKey="Mighri Z">Z. Mighri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maxia, A" uniqKey="Maxia A">A. Maxia</name>
</author>
<author>
<name sortKey="Marongiu, B" uniqKey="Marongiu B">B. Marongiu</name>
</author>
<author>
<name sortKey="Piras, A" uniqKey="Piras A">A. Piras</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavaleiro, C" uniqKey="Cavaleiro C">C. Cavaleiro</name>
</author>
<author>
<name sortKey="Salgueiro, L R" uniqKey="Salgueiro L">L. R. Salgueiro</name>
</author>
<author>
<name sortKey="Miguel, M G" uniqKey="Miguel M">M. G. Miguel</name>
</author>
<author>
<name sortKey="Proenca Da Cunha, A" uniqKey="Proenca Da Cunha A">A. Proença da Cunha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, R P" uniqKey="Adams R">R. P. Adams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joulain, D" uniqKey="Joulain D">D. Joulain</name>
</author>
<author>
<name sortKey="Konig, W A" uniqKey="Konig W">W. A. König</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuzarte, M" uniqKey="Zuzarte M">M. Zuzarte</name>
</author>
<author>
<name sortKey="Goncalves, M J" uniqKey="Goncalves M">M. J. Gonçalves</name>
</author>
<author>
<name sortKey="Cruz, M T" uniqKey="Cruz M">M. T. Cruz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, E" uniqKey="Pinto E">E. Pinto</name>
</author>
<author>
<name sortKey="Goncalves, M J" uniqKey="Goncalves M">M. J. Gonçalves</name>
</author>
<author>
<name sortKey="Hrimpeng, K" uniqKey="Hrimpeng K">K. Hrimpeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taweechaisupapong, S" uniqKey="Taweechaisupapong S">S. Taweechaisupapong</name>
</author>
<author>
<name sortKey="Ngaonee, P" uniqKey="Ngaonee P">P. Ngaonee</name>
</author>
<author>
<name sortKey="Patsuk, P" uniqKey="Patsuk P">P. Patsuk</name>
</author>
<author>
<name sortKey="Pitiphat, W" uniqKey="Pitiphat W">W. Pitiphat</name>
</author>
<author>
<name sortKey="Khunkitti, W" uniqKey="Khunkitti W">W. Khunkitti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raut, J S" uniqKey="Raut J">J. S. Raut</name>
</author>
<author>
<name sortKey="Shinde, R B" uniqKey="Shinde R">R. B. Shinde</name>
</author>
<author>
<name sortKey="Chauhan, N M" uniqKey="Chauhan N">N. M. Chauhan</name>
</author>
<author>
<name sortKey="Karuppayil, S M" uniqKey="Karuppayil S">S. M. Karuppayil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saharkhiz, M J" uniqKey="Saharkhiz M">M. J. Saharkhiz</name>
</author>
<author>
<name sortKey="Motamedi, M" uniqKey="Motamedi M">M. Motamedi</name>
</author>
<author>
<name sortKey="Zomorodian, K" uniqKey="Zomorodian K">K. Zomorodian</name>
</author>
<author>
<name sortKey="Pakshir, K" uniqKey="Pakshir K">K. Pakshir</name>
</author>
<author>
<name sortKey="Miri, R" uniqKey="Miri R">R. Miri</name>
</author>
<author>
<name sortKey="Hemyari, K" uniqKey="Hemyari K">K. Hemyari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Re, R" uniqKey="Re R">R. Re</name>
</author>
<author>
<name sortKey="Pellegrini, N" uniqKey="Pellegrini N">N. Pellegrini</name>
</author>
<author>
<name sortKey="Proteggente, A" uniqKey="Proteggente A">A. Proteggente</name>
</author>
<author>
<name sortKey="Pannala, A" uniqKey="Pannala A">A. Pannala</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Rice Evans, C" uniqKey="Rice Evans C">C. Rice-Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garrett, A R" uniqKey="Garrett A">A. R. Garrett</name>
</author>
<author>
<name sortKey="Murray, B K" uniqKey="Murray B">B. K. Murray</name>
</author>
<author>
<name sortKey="Robison, R A" uniqKey="Robison R">R. A. Robison</name>
</author>
<author>
<name sortKey="O Neill, K L" uniqKey="O Neill K">K. L. O'Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, G" uniqKey="Cao G">G. Cao</name>
</author>
<author>
<name sortKey="Prior, R L" uniqKey="Prior R">R. L. Prior</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, L C" uniqKey="Green L">L. C. Green</name>
</author>
<author>
<name sortKey="Wagner, D A" uniqKey="Wagner D">D. A. Wagner</name>
</author>
<author>
<name sortKey="Glogowski, J" uniqKey="Glogowski J">J. Glogowski</name>
</author>
<author>
<name sortKey="Skipper, P L" uniqKey="Skipper P">P. L. Skipper</name>
</author>
<author>
<name sortKey="Wishnok, J S" uniqKey="Wishnok J">J. S. Wishnok</name>
</author>
<author>
<name sortKey="Tannenbaum, S R" uniqKey="Tannenbaum S">S. R. Tannenbaum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riss, T L" uniqKey="Riss T">T. L. Riss</name>
</author>
<author>
<name sortKey="Moravec, R A" uniqKey="Moravec R">R. A. Moravec</name>
</author>
<author>
<name sortKey="Niles, A L" uniqKey="Niles A">A. L. Niles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inouye, S" uniqKey="Inouye S">S. Inouye</name>
</author>
<author>
<name sortKey="Takizawa, T" uniqKey="Takizawa T">T. Takizawa</name>
</author>
<author>
<name sortKey="Yamaguchi, H" uniqKey="Yamaguchi H">H. Yamaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filipowicz, N" uniqKey="Filipowicz N">N. Filipowicz</name>
</author>
<author>
<name sortKey="Kami Ski, M" uniqKey="Kami Ski M">M. Kamiński</name>
</author>
<author>
<name sortKey="Kurlenda, J" uniqKey="Kurlenda J">J. Kurlenda</name>
</author>
<author>
<name sortKey="Asztemborska, M" uniqKey="Asztemborska M">M. Asztemborska</name>
</author>
<author>
<name sortKey="Ochocka, J R" uniqKey="Ochocka J">J. R. Ochocka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, J" uniqKey="Dai J">J. Dai</name>
</author>
<author>
<name sortKey="Zhu, L" uniqKey="Zhu L">L. Zhu</name>
</author>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L. Yang</name>
</author>
<author>
<name sortKey="Qiu, J" uniqKey="Qiu J">J. Qiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M. Luo</name>
</author>
<author>
<name sortKey="Zu, Y" uniqKey="Zu Y">Y. Zu</name>
</author>
<author>
<name sortKey="Efferth, T" uniqKey="Efferth T">T. Efferth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuzaki, Y" uniqKey="Matsuzaki Y">Y. Matsuzaki</name>
</author>
<author>
<name sortKey="Tsujisawa, T" uniqKey="Tsujisawa T">T. Tsujisawa</name>
</author>
<author>
<name sortKey="Nishihara, T" uniqKey="Nishihara T">T. Nishihara</name>
</author>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Kakinoki, Y" uniqKey="Kakinoki Y">Y. Kakinoki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivas Da Silva, A C" uniqKey="Rivas Da Silva A">A. C. Rivas da Silva</name>
</author>
<author>
<name sortKey="Lopes, P M" uniqKey="Lopes P">P. M. Lopes</name>
</author>
<author>
<name sortKey="Barros De Azevedo, M M" uniqKey="Barros De Azevedo M">M. M. Barros de Azevedo</name>
</author>
<author>
<name sortKey="Costa, D C M" uniqKey="Costa D">D. C. M. Costa</name>
</author>
<author>
<name sortKey="Alviano, C S" uniqKey="Alviano C">C. S. Alviano</name>
</author>
<author>
<name sortKey="Alviano, D S" uniqKey="Alviano D">D. S. Alviano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavaleiro, C" uniqKey="Cavaleiro C">C. Cavaleiro</name>
</author>
<author>
<name sortKey="Pinto, E" uniqKey="Pinto E">E. Pinto</name>
</author>
<author>
<name sortKey="Goncalves, M J" uniqKey="Goncalves M">M. J. Gonçalves</name>
</author>
<author>
<name sortKey="Salgueiro, L" uniqKey="Salgueiro L">L. Salgueiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, P" uniqKey="Singh P">P. Singh</name>
</author>
<author>
<name sortKey="Shukla, R" uniqKey="Shukla R">R. Shukla</name>
</author>
<author>
<name sortKey="Prakash, B" uniqKey="Prakash B">B. Prakash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Unal, M" uniqKey="Unal M">M. Ü. Ünal</name>
</author>
<author>
<name sortKey="Ucan, F" uniqKey="Ucan F">F. Uçan</name>
</author>
<author>
<name sortKey=" Ener, A" uniqKey=" Ener A">A. Şener</name>
</author>
<author>
<name sortKey="Dincer, S" uniqKey="Dincer S">S. Dinçer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marei, G I K" uniqKey="Marei G">G. I. K. Marei</name>
</author>
<author>
<name sortKey="Abdel Rasoul, M A" uniqKey="Abdel Rasoul M">M. A. Abdel Rasoul</name>
</author>
<author>
<name sortKey="Abdelgaleil, S A M" uniqKey="Abdelgaleil S">S. A. M. Abdelgaleil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitchell, A P" uniqKey="Mitchell A">A. P. Mitchell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saville, S P" uniqKey="Saville S">S. P. Saville</name>
</author>
<author>
<name sortKey="Lazzell, A L" uniqKey="Lazzell A">A. L. Lazzell</name>
</author>
<author>
<name sortKey="Bryant, A P" uniqKey="Bryant A">A. P. Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zore, G B" uniqKey="Zore G">G. B. Zore</name>
</author>
<author>
<name sortKey="Thakre, A D" uniqKey="Thakre A">A. D. Thakre</name>
</author>
<author>
<name sortKey="Rathod, V" uniqKey="Rathod V">V. Rathod</name>
</author>
<author>
<name sortKey="Karuppayil, S M" uniqKey="Karuppayil S">S. M. Karuppayil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vuong, C" uniqKey="Vuong C">C. Vuong</name>
</author>
<author>
<name sortKey="Kocianova, S" uniqKey="Kocianova S">S. Kocianova</name>
</author>
<author>
<name sortKey="Voyich, J M" uniqKey="Voyich J">J. M. Voyich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soto, S M" uniqKey="Soto S">S. M. Soto</name>
</author>
<author>
<name sortKey="Smithson, A" uniqKey="Smithson A">A. Smithson</name>
</author>
<author>
<name sortKey="Horcajada, J P" uniqKey="Horcajada J">J. P. Horcajada</name>
</author>
<author>
<name sortKey="Martinez, J A" uniqKey="Martinez J">J. A. Martinez</name>
</author>
<author>
<name sortKey="Mensa, J P" uniqKey="Mensa J">J. P. Mensa</name>
</author>
<author>
<name sortKey="Vila, J" uniqKey="Vila J">J. Vila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Neves, A" uniqKey="Neves A">Â. Neves</name>
</author>
<author>
<name sortKey="Rosa, S" uniqKey="Rosa S">S. Rosa</name>
</author>
<author>
<name sortKey="Goncalves, J" uniqKey="Goncalves J">J. Gonçalves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quintans Junior, L" uniqKey="Quintans Junior L">L. Quintans-Júnior</name>
</author>
<author>
<name sortKey="Moreira, J C F" uniqKey="Moreira J">J. C. F. Moreira</name>
</author>
<author>
<name sortKey="Pasquali, M A B" uniqKey="Pasquali M">M. A. B. Pasquali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rufino, A T" uniqKey="Rufino A">A. T. Rufino</name>
</author>
<author>
<name sortKey="Ribeiro, M" uniqKey="Ribeiro M">M. Ribeiro</name>
</author>
<author>
<name sortKey="Judas, F" uniqKey="Judas F">F. Judas</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Evid Based Complement Alternat Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Evid Based Complement Alternat Med</journal-id>
<journal-id journal-id-type="publisher-id">ECAM</journal-id>
<journal-title-group>
<journal-title>Evidence-based Complementary and Alternative Medicine : eCAM</journal-title>
</journal-title-group>
<issn pub-type="ppub">1741-427X</issn>
<issn pub-type="epub">1741-4288</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26981143</article-id>
<article-id pub-id-type="pmc">4769755</article-id>
<article-id pub-id-type="doi">10.1155/2016/9045196</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>New Claims for Wild Carrot (
<italic>Daucus carota</italic>
subsp.
<italic> carota</italic>
) Essential Oil</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Alves-Silva</surname>
<given-names>Jorge M.</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zuzarte</surname>
<given-names>Mónica</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gonçalves</surname>
<given-names>Maria José</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cavaleiro</surname>
<given-names>Carlos</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cruz</surname>
<given-names>Maria Teresa</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cardoso</surname>
<given-names>Susana M.</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-0948-821X</contrib-id>
<name>
<surname>Salgueiro</surname>
<given-names>Lígia</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Faculty of Pharmacy, University of Coimbra, Azinhaga de S. Comba, 3000-354 Coimbra, Portugal</aff>
<aff id="I2">
<sup>2</sup>
Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal</aff>
<aff id="I3">
<sup>3</sup>
Faculty of Medicine, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal</aff>
<aff id="I4">
<sup>4</sup>
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal</aff>
<author-notes>
<corresp id="cor1">*Mónica Zuzarte:
<email>mzuzarte@uc.pt</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Hajime Nakae</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>2</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>14</day>
<month>2</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>2016</volume>
<elocation-id>9045196</elocation-id>
<history>
<date date-type="received">
<day>13</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>14</day>
<month>12</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Jorge M. Alves-Silva et al.</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="open-access">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The essential oil of
<italic> Daucus carota</italic>
subsp.
<italic> carota</italic>
from Portugal, with high amounts of geranyl acetate (29.0%),
<italic>α</italic>
-pinene (27.2%), and 11
<italic>α</italic>
H-himachal-4-en-1
<italic>β</italic>
-ol (9.2%), was assessed for its biological potential. The antimicrobial activity was evaluated against several Gram-positive and Gram-negative bacteria, yeasts, dermatophytes, and
<italic> Aspergillus</italic>
strains. The minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were evaluated showing a significant activity towards Gram-positive bacteria (MIC = 0.32–0.64 
<italic>μ</italic>
L/mL),
<italic> Cryptococcus neoformans</italic>
(0.16 
<italic>μ</italic>
L/mL), and dermatophytes (0.32–0.64 
<italic>μ</italic>
L/mL). The inhibition of the germ tube formation and the effect of the oil on
<italic> Candida albicans</italic>
biofilms were also unveiled. The oil inhibited more than 50% of filamentation at concentrations as low as 0.04 
<italic>μ</italic>
L/mL (MIC/128) and decreased both biofilm mass and cell viability. The antioxidant capacity of the oil, as assessed by two
<italic> in chemico</italic>
methods, was not relevant. Still, it seems to exhibit some anti-inflammatory potential by decreasing nitric oxide production around 20% in LPS-stimulated macrophages, without decreasing macrophages viability. Moreover, the oils safety profile was assessed on keratinocytes, alveolar epithelial cells, macrophages, and hepatocytes. Overall, the oil demonstrated a safety profile at concentrations below 0.64 
<italic>μ</italic>
L/mL. The present work highlights the bioactive potential of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
suggesting its industrial exploitation.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Aromatic and medicinal plants, such as those found in Lamiaceae and Apiaceae families, have been widely used in folk medicine to treat several ailments. Their effects are particularly associated with the essential oils, which are widely described as having several bioactive properties such as antioxidant, anti-inflammatory, antifungal, and antibacterial ones [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B3" ref-type="bibr">3</xref>
].</p>
<p>Plants of the genus
<italic> Daucus</italic>
L. (Apiaceae) grow mostly in temperate regions of Europe, West Asia, and Africa. Nevertheless, some species have been found to grow in North America and Australia [
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
]. The species
<italic> Daucus carota</italic>
L., commonly known as carrot, is recognized worldwide due to its roots widely used for both food and medicinal purposes [
<xref rid="B6" ref-type="bibr">6</xref>
]. In addition, the seed essential oil has also been described as antihelmintic, antimicrobial, hypotensive, and diuretic, amongst other biological properties [
<xref rid="B4" ref-type="bibr">4</xref>
].</p>
<p>This taxon includes eleven highly polymorphic, interrelated, and interhybridized taxa [
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B9" ref-type="bibr">9</xref>
], among which some have been widely studied with regard to their bioactive properties. Nevertheless, only a few studies identify the subspecies used, a very important aspect to consider bearing in mind the high variability mentioned. For example,
<italic> D. carota</italic>
subsp.
<italic> halophilus</italic>
essential oil has been reported for its antifungal properties against several human pathogenic fungi [
<xref rid="B7" ref-type="bibr">7</xref>
]. In turn, besides the antifungal activities,
<italic> D. carota</italic>
subsp.
<italic> gummifer</italic>
essential oil has also been described as an anti-inflammatory agent [
<xref rid="B10" ref-type="bibr">10</xref>
] while that of
<italic> D. carota</italic>
subsp.
<italic> maritimus</italic>
has been pointed out as exhibiting a potential antibacterial effect [
<xref rid="B11" ref-type="bibr">11</xref>
].</p>
<p>Regarding the subspecies
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
, the antifungal effects of its essential oil were previously reported [
<xref rid="B12" ref-type="bibr">12</xref>
] and although a significant antifungal effect was claimed, the mechanism of action underlying such effects was not assessed. Therefore, in the present study, besides the antifungal effect of the oil against several yeasts (
<italic>Candida</italic>
strains,
<italic> Cryptococcus neoformans</italic>
), dermatophytes (
<italic>Trichophyton</italic>
spp.,
<italic> Epidermophyton</italic>
, and
<italic> Microsporum</italic>
spp.), and
<italic> Aspergillus</italic>
strains, we also aim to elucidate a possible mode of action particularly on
<italic> Candida albicans</italic>
. For that, the effect of the oil on the inhibition of the germ tube formation, an important virulence factor, as well as the effect of the oil on preformed biofilms, was considered. Additionally, other biological properties of the essential oil were also evaluated, namely, the antibacterial, antioxidant, and anti-inflammatory properties, in order to identify a broader bioactive potential of the oil for its industrial exploitation. Moreover, considering the lack of cytotoxic studies on the essential oil of this subspecies and the putative interest to develop a plant-based product to be used on humans and/or animals, the safety profile of the essential oil against macrophages (Raw 264.7), keratinocytes (HaCaT), epithelial alveolar cells (A549), and hepatocytes (HepG2) was also evaluated.</p>
</sec>
<sec id="sec2">
<title>2. Material and Methods</title>
<sec id="sec2.1">
<title>2.1. Essential Oil Isolation and Analysis</title>
<p>Ripe umbels with seeds of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
were collected at Serra da Lousã, Coimbra (Portugal), on the 1st of July 2013. A voucher specimen (Ligia Salgueiro 78) was deposited at the Herbarium of the Faculty of Pharmacy of the University of Coimbra. The essential oil was obtained by hydrodistillation from air dried umbels in a
<italic> Clevenger</italic>
-type apparatus according to the European Pharmacopoeia [
<xref rid="B13" ref-type="bibr">13</xref>
]. Oil analyses were carried out by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). GC was carried out on a Hewlett Packard 6890 gas chromatograph (Agilent Technologies, Palo Alto, California, USA) with HP GC ChemStation Rev. A.05.04 data handling system, equipped with a single injector and two flame ionization detectors (FID). A Graphpak divider (Agilent Technologies, part number 5021-7148) was used for simultaneous sampling in two Supelco (Supelco Inc., Bellefonte, PA, USA) fused silica capillary columns with different stationary phases: SPB-1 (polydimethylsiloxane; 30 m × 0.20 mm i.d., film thickness 0.20 
<italic>μ</italic>
m) and SupelcoWax-10 (polyethylene glycol; 30 m × 0.20 mm i.d., film thickness 0.20 
<italic>μ</italic>
m). Conditions were as follows: oven temperature program: 70–220°C (3°C/min), 220°C (15 min); injector temperature: 250°C; carrier gas: helium, adjusted to a linear velocity of 30 cm/s; splitting ratio 1 : 40; detectors temperature: 250°C. GC/MS analyses were performed on a Hewlett Packard 6890 gas chromatograph fitted with HP1 fused silica column (polydimethylsiloxane; 30 m × 0.25 mm i.d., film thickness 0.25 
<italic>μ</italic>
m), interfaced with Hewlett Packard Mass Selective Detector 5973 (Agilent Technologies, Palo Alto, CA, USA) operated by HP Enhanced ChemStation software, version A.03.00. GC parameters were as above; interface temperature was 250°C; MS source temperature was 230°C; MS quadrupole temperature was 150°C; ionization energy was 70 eV; ionization current was 60 
<italic>μ</italic>
A; scan range was 35–350 
<italic>μ</italic>
, with 4.51 scans/s [
<xref rid="B14" ref-type="bibr">14</xref>
]. The volatile compounds were identified by both their retention indices and mass spectra. Retention indices, calculated by linear interpolation relative to retention times of a series of
<italic> n</italic>
-alkanes, were compared with those of authenticated samples from the database of the Laboratory of Pharmacognosy of the Faculty of Pharmacy of the University of Coimbra. Mass spectra were compared with reference spectra from a home-made library or from literature data [
<xref rid="B15" ref-type="bibr">15</xref>
,
<xref rid="B16" ref-type="bibr">16</xref>
]. Relative amounts of individual components were calculated based on GC peak areas without FID response factor correction.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Antibacterial Assays</title>
<p>The antibacterial activity of the oil was evaluated against Gram-positive strains (
<italic>Bacillus subtilis</italic>
ATCC 6633,
<italic> Listeria monocytogenes</italic>
CBISA 3183, and
<italic> Staphylococcus aureus</italic>
ATCC 6538) and Gram-negative ones (
<italic>Escherichia coli</italic>
ATCC 25922 and
<italic> Salmonella typhimurium</italic>
ATCC 14028). The minimal inhibitory concentrations (MICs) and the minimum lethal concentrations (MLCs) were assessed according to the Clinical and Laboratory Standards Institute (CLSI) reference protocol M07-A9 [
<xref rid="B17" ref-type="bibr">17</xref>
]. Briefly, serial doubling dilutions of the oil were prepared in dimethyl sulfoxide (DMSO, Sigma Life Science, Sigma-Aldrich, MO, USA) with concentrations ranging from 0.08 to 20 
<italic>μ</italic>
L/mL. Recent cultures of each strain were used to prepare the cell suspensions (1-2 × 10
<sup>5</sup>
 CFU/mL) and cell concentration was confirmed by viable count on Mueller Hinton Agar (Oxoid, Hampshire, England). All tests were performed using Mueller Hinton Broth medium and the test tubes were incubated aerobically at 37°C for 24 h and then MICs were registered. To evaluate MLCs, 20 
<italic>μ</italic>
L of broth was taken from each negative tube after MIC reading, cultured in Mueller Hinton Agar plates, and incubated as mentioned above. The sensitivity of tested strains was controlled by the use of a reference compound, ampicillin (Fluka BioChemika, Buchs, Switzerland). All tests were performed in duplicate. The MIC and MLC values were considered when three independent assays had the same value.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Antifungal Activity and Mechanism of Action Assays</title>
<p>The antifungal properties of the essential oil were tested against three
<italic> Candida</italic>
reference strains (
<italic>C. albicans</italic>
ATCC 10231,
<italic> C. tropicalis</italic>
ATCC 13803, and
<italic> C. parapsilosis</italic>
ATCC 90018) and two clinical strains (
<italic>C. krusei</italic>
H9 and
<italic> C. guilliermondii</italic>
MAT23); one
<italic> Cryptococcus neoformans</italic>
reference strain (
<italic>C. neoformans</italic>
CECT 1078); four dermatophyte strains (
<italic>Trichophyton rubrum</italic>
CECT 2794,
<italic> T. mentagrophytes</italic>
var.
<italic> interdigitale</italic>
CECT 2958,
<italic> T. verrucosum</italic>
CECT 2992, and
<italic> Microsporum gypseum</italic>
CECT 2908); the remaining dermatophytes were clinically isolated (
<italic>T. mentagrophytes</italic>
FF7,
<italic> M. canis</italic>
FF1, and
<italic> Epidermophyton floccosum</italic>
FF9); two reference
<italic> Aspergillus</italic>
strains (
<italic>A. niger</italic>
ATCC 16404 and
<italic> A. fumigatus</italic>
ATCC 46645); and one
<italic> Aspergillus</italic>
strain was from a clinical origin (
<italic>A. flavus</italic>
F44). The MICs and MLCs were assessed according to the CLSI reference protocols M27-A3 [
<xref rid="B18" ref-type="bibr">18</xref>
] and M38-A2 [
<xref rid="B19" ref-type="bibr">19</xref>
] for yeasts and filamentous fungi, respectively, as previously described by Zuzarte et al. [
<xref rid="B20" ref-type="bibr">20</xref>
].</p>
<p>To elucidate a possible mechanism of action underlying the antifungal effects, two assays were considered: the inhibition of
<italic> C. albicans</italic>
germ tube formation and the disruption of its preformed biofilms, in the presence of the essential oil. The first assay was tested as previously reported by Pinto et al. [
<xref rid="B21" ref-type="bibr">21</xref>
]. The percentage of germ tubes was determined as the number of cells showing hyphae at least as long as the diameter of the blastospore. Cells showing a constriction at the point of connection of the hyphae to the mother cell, typical for pseudohyphae, were excluded. Results are shown as mean ± standard deviation of three independent determinations. The effect of the essential oil on preformed
<italic> C. albicans</italic>
biofilm was evaluated using the method described by Taweechaisupapong et al. [
<xref rid="B22" ref-type="bibr">22</xref>
] with some modifications. Briefly, a loop of SDA culture of
<italic> C. albicans</italic>
grown for 24 h at 37°C was suspended in Yeast Peptone Dextrose (YPD) broth (1% yeast extract, 2% peptone, and 2% dextrose) and incubated for 24 h at 37°C. Then, cells were thoroughly washed twice with sterile PBS (pH 7.4) (0.8% NaCl, 0.02% KH
<sub>2</sub>
PO
<sub>4</sub>
, 0.31% Na
<sub>2</sub>
HPO
<sub>4</sub>
·12H
<sub>2</sub>
O, and 0.02% KCl). Between each washing step, the suspension was submitted to 10 min centrifugation at 3000 g. Cell density was adjusted to approximately 1 × 10
<sup>6</sup>
 CFU/mL, using a haemocytometer, and then 100 
<italic>μ</italic>
L of the final suspension was added to 96-well microtiter plates and incubated for 24 h at 37°C, to form the biofilms. Following three washing steps with PBS, the essential oils (1.25–10 
<italic>μ</italic>
L/mL, prepared in RPMI) were added and incubated for 24 h, at 37°C. Both negative and positive controls were considered using sterile RPMI broth and inoculated RPMI broth, respectively. Biofilm mass was quantified using crystal violet according to Raut et al. [
<xref rid="B23" ref-type="bibr">23</xref>
]. Biofilm viability was evaluated using the XTT assay, as described by Saharkhiz et al. [
<xref rid="B24" ref-type="bibr">24</xref>
] with some modifications. Briefly, after biofilm formation and treatment with essential oils, the medium was removed and biofilms were thoroughly washed with PBS. To a solution of XTT (1 mg/mL), menadione (10 mM in acetone) was added to a final concentration of 4 
<italic>μ</italic>
M. 100 
<italic>μ</italic>
L of this solution was added following incubation for 2 h at 37°C in the dark. The absorbance was observed at 490 nm and biofilm viability was determined by comparing the absorbance of treated samples with those of untreated ones. Results are shown as mean ± standard deviation of three independent determinations performed in duplicate.</p>
</sec>
<sec id="sec2.4">
<title>2.4. Antioxidant Assays</title>
<p>The antioxidant properties of the essential oil were determined using two different antioxidant assays, namely, the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS
<sup>•+</sup>
) scavenging and oxygen radical absorbance capacity (ORAC) assays. The ABTS
<sup>•+</sup>
scavenging assay was performed according to the procedure described by Re et al. [
<xref rid="B25" ref-type="bibr">25</xref>
], with some modifications. Briefly, the ABTS
<sup>•+</sup>
stock solution was prepared by the reaction of ABTS-NH
<sub>4</sub>
aqueous solution (7 mM) with 2.45 mM dipotassium persulfate in the dark at room temperature for 12–16 h. This solution was then diluted until absorbance of 0.700 ± 0.03 at 734 nm. To determine the scavenging activity, 1 mL of ABTS
<sup>•+</sup>
was added to 100 
<italic>μ</italic>
L of 0.64–20 mg/mL essential oil solution made in DMSO. After 20 min, the absorbance was read at 734 nm in a spectrophotometer against a blank (absolute ethanol). The antioxidant power of the samples was expressed as IC
<sub>50</sub>
(
<italic>μ</italic>
g/mL) and compared to that of the standard compound, Trolox (0.75–12 
<italic>μ</italic>
g/mL). Data are shown as mean values ± standard deviation of three independent assays.</p>
<p>The ORAC assay was carried out using the method described by Garrett et al. [
<xref rid="B26" ref-type="bibr">26</xref>
] slightly modified. Briefly, 150 
<italic>μ</italic>
L of fluorescein (10 nM) was pipetted to a 96-well plate and 25 
<italic>μ</italic>
L of Trolox (25–200 
<italic>μ</italic>
M) or sample (0.32–10 mg/mL in phosphate buffer) was added. This mixture was incubated at 37°C for 10 min. After that, 25 
<italic>μ</italic>
L of 2,2′-azobis(2-amidino-propane) dihydrochloride (153 mM) was added to each well except that of negative control that contained 25 
<italic>μ</italic>
L of phosphate buffer. The fluorescence was immediately read on a plate reader every 1 min, in a total of 60 min. The emission wavelength was set at 530/20 nm and excitation wavelength at 485/20 nm. The area under the curve (AUC) was determined as described elsewhere [
<xref rid="B27" ref-type="bibr">27</xref>
]. The results, expressed as Trolox Equivalent (TE)/mg oil, are shown as mean ± standard deviation of at least three independent determinations.</p>
</sec>
<sec id="sec2.5">
<title>2.5. Anti-Inflammatory Assay</title>
<p>The anti-inflammatory effect of the essential oil was determined through
<italic> in chemico</italic>
and
<italic> in vitro</italic>
assays using S-nitroso-N-acetyl-D,L-penicillamine (SNAP) as nitric oxide (NO) donor and through evaluation of NO release from lipopolysaccharide- (LPS-) stimulated macrophages, respectively.</p>
<p>For the
<italic> in chemico</italic>
assay, several concentrations of the oil (0.08–1.25 
<italic>μ</italic>
L/mL) were incubated with 0.9 
<italic>μ</italic>
L of the SNAP solution (100 mM) in endotoxin-free Dulbecco's Modified Eagle Medium (DMEM), in a final volume of 300 
<italic>μ</italic>
L, for 3 h. The NO scavenging activity was evaluated by quantifying nitrite levels in the medium using the Griess reaction, as previously mentioned [
<xref rid="B10" ref-type="bibr">10</xref>
]. For the
<italic> in vitro</italic>
assay, Raw 264.7, a mouse leukaemic macrophage cell line ATCC (TIB-71), was cultured in DMEM supplemented with 10% (v/v) non-inactivated foetal bovine serum, 3.02 g/L sodium bicarbonate, 100 
<italic>μ</italic>
g/mL streptomycin, and 100 U/mL penicillin at 37°C, in a humidified atmosphere of 95% air and 5% CO
<sub>2</sub>
. To evaluate the anti-inflammatory potential of the oil, macrophages (0.3 × 10
<sup>6</sup>
cells/well) were cultured in 48-well microplates and allowed to stabilize for 12 h. Following this period, cells were either maintained in culture medium (control) or preincubated with different concentrations of the essential oil for 1 h and later activated with LPS (1 
<italic>μ</italic>
g/mL) for 24 h. Nitric oxide was quantified by measuring the accumulation of nitrites using the colorimetric Griess assay [
<xref rid="B28" ref-type="bibr">28</xref>
].</p>
<p>Simultaneously, cell viability was also determined using the resazurin method described by Riss et al. [
<xref rid="B29" ref-type="bibr">29</xref>
]. Metabolic active cells reduce resazurin (blue) into resorufin (pink) and therefore the magnitude of dye reduction is correlated with the number of viable cells. After the treatment described above for macrophages, resazurin solution (0.125 mg/mL) was added (1 : 10) and cells were further incubated at 37°C for 30 min in a humidified atmosphere of 95% air and 5% CO
<sub>2</sub>
. Quantification was performed using an ELISA microplate reader (SLT, Austria) at 570 nm, with a reference wavelength of 620 nm. A cell-free control was performed in order to exclude nonspecific effects of the oils on resazurin (data not shown).</p>
</sec>
<sec id="sec2.6">
<title>2.6. Toxicological Profile</title>
<p>Cytotoxicity was evaluated in several mammalian cell lines, namely, human hepatocellular carcinoma cell line HepG2, ATCC number 77400; human keratinocyte cell line HaCaT, obtained from DKFZ (Heidelberg); human alveolar epithelial cell line A549, ATCC number CCL-185; and the mouse leukaemic monocyte macrophage cell line, previously mentioned.</p>
<p>Briefly, Raw 264.7 (0.6 × 10
<sup>6</sup>
cells/mL), HepG2 (0.5 × 10
<sup>6</sup>
cells/mL), HaCaT (0.2 × 10
<sup>6</sup>
cells/mL), and A549 (0.2 × 10
<sup>6</sup>
cells/mL) cell suspensions were prepared. Then, cells were cultured in 48-well microplates in a final volume of 600 
<italic>μ</italic>
L for 12 h and were further cultured with different concentrations (0.08 to 1.25 
<italic>μ</italic>
L/mL) of the essential oil, for 24 h. At the end, 60 
<italic>μ</italic>
L of resazurin (0.125 mg/mL) was added and the plates were then incubated for 30 min (Raw 264.7), 60 min (HepG2 and A549), and 120 min (HaCaT) at 37°C, in a humidified atmosphere of 95% air and 5% CO
<sub>2</sub>
. Cell viability was determined by reading the absorbance at 570 nm with a reference filter at 620 nm against a negative control (cells cultured in the absence of the oil) in an ELISA microplate reader (SLT, Austria). A cell-free control was performed in order to exclude unspecific effects of the oil on resazurin (data not shown).</p>
</sec>
<sec id="sec2.7">
<title>2.7. Statistical Analysis</title>
<p>Data are expressed as mean ± standard error of the mean (SEM). Statistical significance was determined using one-way analysis of variance (ANOVA), followed by Dunnett's
<italic> post hoc</italic>
test. The statistical analysis was performed using Prism 5.0 Software (GraphPad Software). Differences were considered significant for
<italic>p</italic>
< 0.05.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results and Discussion</title>
<sec id="sec3.1">
<title>3.1. Chemical Composition</title>
<p>The essential oil of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
was obtained from the umbels with a yield of 0.9% (v/w). Constituents of the oil are listed in
<xref ref-type="table" rid="tab1">Table 1</xref>
, according to their elution order on a polydimethylsiloxane column. The oil is predominantly composed of hydrocarbon monoterpenes (46.6%) and oxygenated monoterpenes (29.5%), with geranyl acetate (29.0%) and
<italic>α</italic>
-pinene (27.2%) being the main components. Notably, these compounds were also identified as the main constituents of the essential oils obtained from flowering umbels of the same species grown in another region of Portugal (Cantanhede) [
<xref rid="B12" ref-type="bibr">12</xref>
], despite quantitative differences (37.9% for
<italic>α</italic>
-pinene and 15.0% for geranyl acetate). In turn, in opposition to that study, the
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
oil herein obtained had a significant amount of oxygen containing sesquiterpenes (15.6%
<italic> versus</italic>
2.5–3.1%), with 11
<italic>α</italic>
H-himachal-4-en-1
<italic>β</italic>
-ol being the main compound. This constituent was also identified as one of the main compounds in
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
oil from plants of Italian origin [
<xref rid="B12" ref-type="bibr">12</xref>
].</p>
</sec>
<sec id="sec3.2">
<title>3.2. Antibacterial Activity</title>
<p>The antibacterial potential of the oil against both Gram-positive strains (
<italic>Bacillus subtilis</italic>
,
<italic> Listeria monocytogenes</italic>
, and
<italic> Staphylococcus aureus</italic>
) and Gram-negative ones (
<italic>Escherichia coli</italic>
and
<italic> Salmonella typhimurium</italic>
) is summarized in
<xref ref-type="table" rid="tab2">Table 2</xref>
. The results show that the oil was significantly more effective against Gram-positive bacteria, with MIC values in the range of 0.32–0.64 
<italic>μ</italic>
L/mL. Differences observed between Gram-positive and Gram-negative bacteria are mainly due to their distinct cell wall structure, as the cell wall of Gram-negative bacteria is much more complex comprising an outer membrane composed of hydrophilic polysaccharides chains that act as a barrier for hydrophobic essential oils [
<xref rid="B30" ref-type="bibr">30</xref>
].</p>
<p>Previously, the antibacterial activity of essential oils from the herb, flowering, and mature umbels of wild carrot growing in Poland was also tested [
<xref rid="B9" ref-type="bibr">9</xref>
]. Although direct comparisons between that study and the present one cannot be considered since a different antibacterial test was used (agar dilution method
<italic> versus</italic>
macrodilution broth method), the oils obtained in the previous work were much less effective against Gram-positive bacteria (MIC = 3–5 
<italic>μ</italic>
L/mL). These differences might be explained by distinct chemical compositions (
<italic>α</italic>
-pinene and sabinene
<italic> versus α</italic>
-pinene and geranyl acetate), as it is known that sabinene is devoid of antibacterial activity [
<xref rid="B31" ref-type="bibr">31</xref>
]. Instead, the essential oil herein used was primarily rich in geranyl acetate and
<italic>α</italic>
-pinene. These compounds have been tested for their antibacterial potential and several studies have pointed out the high antibacterial activity of
<italic>α</italic>
-pinene [
<xref rid="B32" ref-type="bibr">32</xref>
,
<xref rid="B33" ref-type="bibr">33</xref>
] and weak activity of geranyl acetate [
<xref rid="B30" ref-type="bibr">30</xref>
], which may justify the activity of the oil. Nevertheless, minor compounds may also interfere with the antibacterial activity, and their potential effect should not be discarded.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Antifungal Activity and Mechanisms of Action</title>
<p>The antifungal activity of the essential oil against human and animal pathogens is presented in
<xref ref-type="table" rid="tab3">Table 3</xref>
. In general, the oil was more effective against
<italic> Cryptococcus neoformans</italic>
(MIC = 0.16 
<italic>μ</italic>
L/mL) and dermatophyte strains, with MICs ranging from 0.32 to 0.64 
<italic>μ</italic>
L/mL. Regardless of the oil being much less effective against
<italic> Candida</italic>
spp. and
<italic> Aspergillus </italic>
spp., it showed a very low MIC for
<italic> C. guilliermondii</italic>
, similar to that found for dermatophytes (0.32 
<italic>μ</italic>
L/mL), thus suggesting some specificity of the oil for this strain. Overall, the oil showed both fungistatic and fungicidal effects against most of the strains tested since the MIC values were similar to MLC ones. Of note is the fact that the main isolated compounds identified in the oil herein studied, namely, geranyl acetate,
<italic>α</italic>
-pinene, and limonene, have also been previously assessed for their antifungal potential. Geranyl acetate demonstrated good antifungal effects against dermatophytes and
<italic> Cryptococcus neoformans</italic>
; however, it had a weak performance in inhibiting the growth of
<italic> Candida </italic>
strains and
<italic> Aspergillus </italic>
spp. [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B21" ref-type="bibr">21</xref>
]. Similarly,
<italic>α</italic>
-pinene showed inhibitory effects against
<italic> C. albicans</italic>
and
<italic> Cryptococcus neoformans</italic>
[
<xref rid="B34" ref-type="bibr">34</xref>
,
<xref rid="B35" ref-type="bibr">35</xref>
] as well as a potent effect against dermatophyte strains [
<xref rid="B36" ref-type="bibr">36</xref>
]. Moreover, Pinto et al. [
<xref rid="B21" ref-type="bibr">21</xref>
] also demonstrated that this compound exhibits a strong fungistatic and fungicidal activity, with this effect being preeminent for
<italic> Candida</italic>
and
<italic> Aspergillus</italic>
spp. Several authors have also described the antifungal activity of limonene against several fungi strains [
<xref rid="B36" ref-type="bibr">36</xref>
<xref rid="B39" ref-type="bibr">39</xref>
]. Therefore, the activity of these major compounds of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil may be responsible for the higher antifungal effects of this oil.</p>
<p>Although studies on the antifungal activity of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
oil were previously carried out, the mechanism of action underlying this effect remains unknown. Therefore, in the present study, we attempt to elucidate possible modes of action on
<italic> C. albicans</italic>
. For that, two assays were selected, namely, the inhibition of germ tube formation and the disruption of preformed biofilms.</p>
<p>The effects of subinhibitory concentrations of the essential oil on the inhibition of
<italic> C. albicans</italic>
germ tube formation are presented in
<xref ref-type="table" rid="tab4">Table 4</xref>
. The oil was able to achieve more than 50% of filamentation inhibition at concentrations as low as 0.04 
<italic>μ</italic>
L/mL (MIC/128). This is quite interesting, since filamentation (dimorphic transition from yeast to filamentous form) in
<italic> C. albicans</italic>
is essential for virulence [
<xref rid="B41" ref-type="bibr">40</xref>
] and it seems that filamentation inhibition
<italic> per se</italic>
is sufficient to treat disseminated candidosis [
<xref rid="B42" ref-type="bibr">41</xref>
]. The striking difference between MICs and filamentation-inhibiting concentrations seems to suggest that different mechanisms of action may be responsible for these two biological effects. Geranyl acetate, the major compound of
<italic> D. carota </italic>
subsp.
<italic> carota</italic>
oil, may be responsible for this activity as assessed by Zore et al. [
<xref rid="B43" ref-type="bibr">42</xref>
]. This compound was highly effective against serum-induced morphogenesis (yeast to hyphal form transition in
<italic> C. albicans</italic>
ATCC 10231) with only 73 
<italic>μ</italic>
g/mL causing 63% inhibition of germ tube induction [
<xref rid="B43" ref-type="bibr">42</xref>
].</p>
<p>Figures
<xref ref-type="fig" rid="fig1">1</xref>
and
<xref ref-type="fig" rid="fig2">2</xref>
represent the effect of the essential oil on preformed
<italic> C. albicans</italic>
biofilms. The crystal violet method quantifies the biomass of the biofilm by staining it with the dye whereas the XTT assay evaluates cell viability by analysing the formation of a water soluble crystal formed after mitochondrial metabolization. Results show that the oil promoted a decrease of the biofilm biomass even for the lowest concentrations tested (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). Therefore, the results showed that the oil was able to interfere with preformed biofilms by reducing the amount of the attached biomass. Regarding biofilm cells viability, concentrations higher than 1.25 
<italic>μ</italic>
L/mL also reduced cell viability (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
), compromising biofilm development. Note that the biofilm formation is a survival mechanism, contributing to microbial virulence and persistence [
<xref rid="B44" ref-type="bibr">43</xref>
,
<xref rid="B45" ref-type="bibr">44</xref>
] since biofilms are very difficult to eliminate due to their high antifungal resistance in comparison to free-living cells. These results highlight the promising antibiofilm activity paving the way for future translational research on the treatment of disseminative candidiasis.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Antioxidant Analysis</title>
<p>The antioxidant analysis of the essential oil was carried out using the ABTS
<sup>•+</sup>
scavenging and ORAC assays.
<xref ref-type="table" rid="tab5"> Table 5</xref>
summarizes the results obtained. It was seen that the essential oil is neither a good scavenger of ABTS
<sup>•+</sup>
(IC
<sub>50</sub>
= 1924.25 
<italic>μ</italic>
g/mL) nor a good peroxyl-induced oxidation inhibitor (ORAC values of 7.13 
<italic>μ</italic>
mol/TE/mg oil). Comparison of the present results with others for the same plant species is not possible due to the absence of the latter.</p>
</sec>
<sec id="sec3.5">
<title>3.5. Anti-Inflammatory Activity</title>
<p>Chemical NO scavenging is a method possessing two valences; that is, it allows to evaluate the antioxidant potential of the essential oil by testing its ability to arrest this radical but also allows preliminary screening of the anti-inflammatory potential, since NO is a crucial mediator in inflammation.
<xref ref-type="fig" rid="fig3"> Figure 3</xref>
summarizes the NO scavenging activity of the essential oil. The results showed that the essential oil had no scavenging activity towards NO for all the tested concentrations (0.08–1.25 
<italic>μ</italic>
L/mL). In order to deeply explore whether the essential oil modulates NO production, we also used an
<italic> in vitro</italic>
model of inflammation consisting of macrophages stimulated with
<italic> Toll-like</italic>
receptor 4 agonist LPS. Figures
<xref ref-type="fig" rid="fig4">4(a)</xref>
and
<xref ref-type="fig" rid="fig4">4(b)</xref>
summarize the NO release and the cell viability of LPS-stimulated macrophages treated with different concentrations of the essential oil, respectively. As far as we know, this is the first report on the anti-inflammatory activity of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
. As shown in
<xref ref-type="fig" rid="fig4">Figure 4(a)</xref>
, incubation of macrophages with LPS, for 24 h, resulted in a significant increase in nitrite production. Taking into account the toxicity of the oil presented in
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
, inhibition of NO production was only considered for nontoxic concentrations of the oil. Indeed, NO production decreased by 19.04%, relatively to LPS (
<italic>p</italic>
< 0.05), without affecting cell viability in the presence of 0.64 
<italic>μ</italic>
L/mL of the oil. These results suggest a potential anti-inflammatory effect of the oil. Nevertheless, further experiments on different proinflammatory mediators and signal transduction pathways should be considered to confirm this activity.</p>
<p>The essential oil's major compounds, namely, geranyl acetate and
<italic>α</italic>
-pinene, may account for most of the oil's anti-inflammatory potential since previous studies have pointed out their anti-inflammatory potential (e.g., [
<xref rid="B46" ref-type="bibr">45</xref>
<xref rid="B48" ref-type="bibr">47</xref>
]).</p>
</sec>
<sec id="sec3.6">
<title>3.6. Toxicological Profile</title>
<p>The cytotoxicity of the essential oil was screened in several mammalian cells lines in order to evaluate a potential pharmacological application of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil and the gathered results are summarized in
<xref ref-type="table" rid="tab6">Table 6</xref>
. It can be inferred that the concentration of 0.64 
<italic>μ</italic>
L/mL induces different cell viability results among all the cell lines studied, with macrophages being the most resilient (92.83% ± 1.04 cell viability) and hepatocytes the most susceptible (60.73%  ±  6.51 cell viability). On the other hand, it is possible to conclude that concentrations below 0.64 
<italic>μ</italic>
L/mL are devoid of toxicity, presenting a safety profile for most of the cells studied. Lower concentrations of the oil trigger an increase in resazurin reduction, which may suggest augmentation of the metabolic activity of the cells or a rise in cell proliferation. Further studies should be done to further explore these results. It is, however, important to emphasize that no studies have been previously conducted regarding the cytotoxic effect of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil. Nevertheless, our group has previously reported that geranyl acetate has very detrimental cytotoxic effects [
<xref rid="B2" ref-type="bibr">2</xref>
].</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Conclusions</title>
<p>This study allowed a better understanding of the bioactivities of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil. The results showed that this oil had a significant activity towards the inhibition of Gram-positive bacteria,
<italic> Cryptococcus neoformans</italic>
, and dermatophytes. Importantly, the oil was also efficient in inhibiting the germ tube formation and the preformed biofilms of
<italic> Candida albicans</italic>
. Despite the oil exhibiting no considerable antiradical activity, it reduced about 20% NO release in LPS-stimulated macrophages, at concentrations devoid of toxicity to these cells. It is reasonable to conclude that concentrations lower than 0.64 
<italic>μ</italic>
L/mL present a safety profile for different human cell types unveiling the potential application of the essential oil for therapeutical purposes, with a special focus on fungal infections associated with a proinflammatory status. Further experiments disclosing the mechanism of action and
<italic> in vivo</italic>
tests are of utmost importance to further support the benefit and safety of
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors thank Otília Vieira (Center for Neuroscience and Cell Biology, University of Coimbra, Portugal) for providing the Raw 264.7 cell line, Eugénia Carvalho (Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal) for the kind gift of the HaCat cell line, and Conceição Pedroso Lima (Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal) for the HepG2 cell line.</p>
</ack>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bakkali</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Averbeck</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Averbeck</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Idaomar</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Biological effects of essential oils—a review</article-title>
<source>
<italic>Food and Chemical Toxicology</italic>
</source>
<year>2008</year>
<volume>46</volume>
<issue>2</issue>
<fpage>446</fpage>
<lpage>475</lpage>
<pub-id pub-id-type="doi">10.1016/j.fct.2007.09.106</pub-id>
<pub-id pub-id-type="other">2-s2.0-37349104213</pub-id>
<pub-id pub-id-type="pmid">17996351</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonçalves</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Tavares</surname>
<given-names>A. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Composition and biological activity of the essential oil from
<italic>Thapsia minor</italic>
, a new source of geranyl acetate</article-title>
<source>
<italic>Industrial Crops and Products</italic>
</source>
<year>2012</year>
<volume>35</volume>
<issue>1</issue>
<fpage>166</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2011.06.030</pub-id>
<pub-id pub-id-type="other">2-s2.0-80051950044</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chalchat</surname>
<given-names>J. C.</given-names>
</name>
<name>
<surname>Chiron</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Garry</surname>
<given-names>R. P.</given-names>
</name>
<name>
<surname>Lacoste</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Sautou</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Photochemical hydroperoxidation of terpenes. Antimicrobial activity of
<italic>α</italic>
-pinene,
<italic>β</italic>
-pinene and limonene hydroperoxides</article-title>
<source>
<italic>Journal of Essential Oil Research</italic>
</source>
<year>2000</year>
<volume>12</volume>
<issue>1</issue>
<fpage>125</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1080/10412905.2000.9712059</pub-id>
<pub-id pub-id-type="other">2-s2.0-2042483705</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soković</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stojković</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Glamočlija</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ćirić</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ristić</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Grubišić</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Susceptibility of pathogenic bacteria and fungi to essential oils of wild
<italic>Daucus carota</italic>
</article-title>
<source>
<italic>Pharmaceutical Biology</italic>
</source>
<year>2009</year>
<volume>47</volume>
<issue>1</issue>
<fpage>38</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1080/13880200802400535</pub-id>
<pub-id pub-id-type="other">2-s2.0-77149179769</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Guinoiseau</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Luciani</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Casanova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tomi</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bolla</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Berti</surname>
<given-names>L.</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Govil</surname>
<given-names>J. N.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>V. K.</given-names>
</name>
</person-group>
<article-title>
<italic>Daucus carota</italic>
L.: a common plant with a potentially large medicinal application-field</article-title>
<source>
<italic>Drug Plants III</italic>
</source>
<year>2010</year>
<volume>29</volume>
<publisher-loc>Houston, Tex, USA</publisher-loc>
<publisher-name>Studium Press LLC</publisher-name>
<fpage>385</fpage>
<lpage>411</lpage>
<series>Recent Progress in Medicinal Plants</series>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>da Silva Dias</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<article-title>Nutritional and health benefits of carrots and their seed extracts</article-title>
<source>
<italic>Food and Nutrition Sciences</italic>
</source>
<year>2014</year>
<volume>5</volume>
<issue>22</issue>
<fpage>2147</fpage>
<lpage>2156</lpage>
<pub-id pub-id-type="doi">10.4236/fns.2014.522227</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tavares</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Cavaleiro</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Essential oil of
<italic>Daucus carota</italic>
subsp.
<italic>halophilus</italic>
: composition, antifungal activity and cytotoxicity</article-title>
<source>
<italic>Journal of Ethnopharmacology</italic>
</source>
<year>2008</year>
<volume>119</volume>
<issue>1</issue>
<fpage>129</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1016/j.jep.2008.06.012</pub-id>
<pub-id pub-id-type="other">2-s2.0-49349115295</pub-id>
<pub-id pub-id-type="pmid">18606215</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chizzola</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Composition of the essential oil from
<italic>Daucus carota</italic>
ssp.
<italic>carota</italic>
growing wild in Vienna</article-title>
<source>
<italic>Journal of Essential Oil-Bearing Plants</italic>
</source>
<year>2010</year>
<volume>13</volume>
<issue>1</issue>
<fpage>12</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1080/0972060x.2010.10643785</pub-id>
<pub-id pub-id-type="other">2-s2.0-77950524527</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Staniszewska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kula</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wieczorkiewicz</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kusewicz</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity</article-title>
<source>
<italic>Journal of Essential Oil Research</italic>
</source>
<year>2005</year>
<volume>17</volume>
<issue>5</issue>
<fpage>579</fpage>
<lpage>583</lpage>
<pub-id pub-id-type="doi">10.1080/10412905.2005.9699002</pub-id>
<pub-id pub-id-type="other">2-s2.0-27744585201</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valente</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zuzarte</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Resende</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Daucus carota</italic>
subsp.
<italic>gummifer</italic>
essential oil as a natural source of antifungal and anti-inflammatory drugs</article-title>
<source>
<italic>Industrial Crops and Products</italic>
</source>
<year>2015</year>
<volume>65</volume>
<fpage>361</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2014.11.014</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jabrane</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jannet</surname>
<given-names>H. B.</given-names>
</name>
<name>
<surname>Harzallah-Skhiri</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mastouri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Casanova</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Mighri</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Flower and root oils of the Tunisian
<italic>Daucus carota</italic>
L. ssp.
<italic>maritimus</italic>
(Apiaceae): integrated analyses by GC, GC/MS, and
<sup>13</sup>
C-NMR spectroscopy, and
<italic>in vitro</italic>
antibacterial activity</article-title>
<source>
<italic>Chemistry and Biodiversity</italic>
</source>
<year>2009</year>
<volume>6</volume>
<issue>6</issue>
<fpage>881</fpage>
<lpage>889</lpage>
<pub-id pub-id-type="doi">10.1002/cbdv.200800144</pub-id>
<pub-id pub-id-type="other">2-s2.0-67650165381</pub-id>
<pub-id pub-id-type="pmid">19551729</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maxia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Marongiu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Piras</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical characterization and biological activity of essential oils from
<italic>Daucus carota</italic>
L. subsp.
<italic>carota</italic>
growing wild on the Mediterranean coast and on the Atlantic coast</article-title>
<source>
<italic>Fitoterapia</italic>
</source>
<year>2009</year>
<volume>80</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/j.fitote.2008.09.008</pub-id>
<pub-id pub-id-type="other">2-s2.0-58149098848</pub-id>
<pub-id pub-id-type="pmid">18950693</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="book">
<collab>Council of Europe</collab>
<source>
<italic>European Pharmacopoeia</italic>
</source>
<year>2010</year>
<edition>7th</edition>
<publisher-loc>Strasbourg, France</publisher-loc>
<publisher-name>Directorate for the Quality of Medicines & HealthCare of the Council of Europe</publisher-name>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavaleiro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Salgueiro</surname>
<given-names>L. R.</given-names>
</name>
<name>
<surname>Miguel</surname>
<given-names>M. G.</given-names>
</name>
<name>
<surname>Proença da Cunha</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Analysis by gas chromatography-mass spectrometry of the volatile components of
<italic>Teucrium lusitanicum</italic>
and
<italic>Teucrium algarbiensis</italic>
</article-title>
<source>
<italic>Journal of Chromatography A</italic>
</source>
<year>2004</year>
<volume>1033</volume>
<issue>1</issue>
<fpage>187</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1016/j.chroma.2004.01.005</pub-id>
<pub-id pub-id-type="other">2-s2.0-1542268935</pub-id>
<pub-id pub-id-type="pmid">15072306</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>R. P.</given-names>
</name>
</person-group>
<source>
<italic>Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy</italic>
</source>
<year>2007</year>
<edition>4th</edition>
<publisher-loc>Carol Stream, Ill, USA</publisher-loc>
<publisher-name>Allured</publisher-name>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Joulain</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>König</surname>
<given-names>W. A.</given-names>
</name>
</person-group>
<source>
<italic>The Atlas of Spectral Data of Sesquiterpene Hydrocarbons</italic>
</source>
<year>1998</year>
<publisher-loc>Hamburg, Germany</publisher-loc>
<publisher-name>E.B.-Verlag</publisher-name>
<comment>
<ext-link ext-link-type="uri" xlink:href="https://books.google.pt/books?id=j3RgQgAACAAJ">https://books.google.pt/books?id=j3RgQgAACAAJ</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="book">
<collab>CLSI</collab>
<source>
<italic>Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically</italic>
</source>
<year>2012</year>
<edition>9th</edition>
<publisher-loc>Wayne, Pa, USA</publisher-loc>
<publisher-name>Clinical & Laboratory Standards Institute</publisher-name>
<series>Standard M07-A9</series>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="book">
<collab>CLSI</collab>
<source>
<italic>Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A3</italic>
</source>
<year>2008</year>
<edition>3rd</edition>
<publisher-loc>Wayne, Pa, USA</publisher-loc>
<publisher-name>Clinical and Laboratory Standards Institute (CLSI)</publisher-name>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="book">
<collab>CLSI</collab>
<source>
<italic>Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard M38-A2</italic>
</source>
<year>2008</year>
<edition>2nd</edition>
<publisher-loc>Wayne, Pa, USA</publisher-loc>
<publisher-name>Clinical and Laboratory Standards Institute (CLSI)</publisher-name>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuzarte</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>M. T.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Lavandula luisieri</italic>
essential oil as a source of antifungal drugs</article-title>
<source>
<italic>Food Chemistry</italic>
</source>
<year>2012</year>
<volume>135</volume>
<issue>3</issue>
<fpage>1505</fpage>
<lpage>1510</lpage>
<pub-id pub-id-type="doi">10.1016/j.foodchem.2012.05.090</pub-id>
<pub-id pub-id-type="other">2-s2.0-84865720631</pub-id>
<pub-id pub-id-type="pmid">22953886</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Hrimpeng</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antifungal activity of the essential oil of
<italic>Thymus villosus</italic>
subsp.
<italic>lusitanicus</italic>
against
<italic>Candida, Cryptococcus, Aspergillus</italic>
and dermatophyte species</article-title>
<source>
<italic>Industrial Crops and Products</italic>
</source>
<year>2013</year>
<volume>51</volume>
<fpage>93</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/j.indcrop.2013.08.033</pub-id>
<pub-id pub-id-type="other">2-s2.0-84884366089</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taweechaisupapong</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ngaonee</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Patsuk</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pitiphat</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Khunkitti</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Antibiofilm activity and post antifungal effect of lemongrass oil on clinical
<italic>Candida dubliniensis</italic>
isolate</article-title>
<source>
<italic>South African Journal of Botany</italic>
</source>
<year>2012</year>
<volume>78</volume>
<fpage>37</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/j.sajb.2011.04.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-84855968743</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raut</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Shinde</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>N. M.</given-names>
</name>
<name>
<surname>Karuppayil</surname>
<given-names>S. M.</given-names>
</name>
</person-group>
<article-title>Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by
<italic>Candida albicans</italic>
</article-title>
<source>
<italic>Biofouling</italic>
</source>
<year>2013</year>
<volume>29</volume>
<issue>1</issue>
<fpage>87</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="doi">10.1080/08927014.2012.749398</pub-id>
<pub-id pub-id-type="other">2-s2.0-84876436686</pub-id>
<pub-id pub-id-type="pmid">23216018</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saharkhiz</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Motamedi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zomorodian</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pakshir</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Miri</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hemyari</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Chemical composition, antifungal and antibiofilm activities of the essential oil of
<italic>Mentha piperita</italic>
L.</article-title>
<source>
<italic>ISRN Pharmaceutics</italic>
</source>
<year>2012</year>
<volume>2012</volume>
<fpage>6</fpage>
<pub-id pub-id-type="publisher-id">718645</pub-id>
<pub-id pub-id-type="doi">10.5402/2012/718645</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Re</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Pellegrini</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Proteggente</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pannala</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rice-Evans</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Antioxidant activity applying an improved ABTS radical cation decolorization assay</article-title>
<source>
<italic>Free Radical Biology and Medicine</italic>
</source>
<year>1999</year>
<volume>26</volume>
<issue>9-10</issue>
<fpage>1231</fpage>
<lpage>1237</lpage>
<pub-id pub-id-type="doi">10.1016/S0891-5849(98)00315-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032982508</pub-id>
<pub-id pub-id-type="pmid">10381194</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garrett</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>B. K.</given-names>
</name>
<name>
<surname>Robison</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>O'Neill</surname>
<given-names>K. L.</given-names>
</name>
</person-group>
<article-title>Measuring antioxidant capacity using the ORAC and TOSC assays</article-title>
<source>
<italic>Methods in Molecular Biology</italic>
</source>
<year>2010</year>
<volume>594</volume>
<issue>12</issue>
<fpage>251</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="doi">10.1007/978-1-60761-411-1-17</pub-id>
<pub-id pub-id-type="other">2-s2.0-84888598687</pub-id>
<pub-id pub-id-type="pmid">20072922</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Prior</surname>
<given-names>R. L.</given-names>
</name>
</person-group>
<article-title>Measurement of oxygen radical absorbance capacity in biological samples</article-title>
<source>
<italic>Methods in Enzymology</italic>
</source>
<year>1998</year>
<volume>299</volume>
<fpage>50</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(99)99008-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031731053</pub-id>
<pub-id pub-id-type="pmid">9916196</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>L. C.</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Glogowski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Skipper</surname>
<given-names>P. L.</given-names>
</name>
<name>
<surname>Wishnok</surname>
<given-names>J. S.</given-names>
</name>
<name>
<surname>Tannenbaum</surname>
<given-names>S. R.</given-names>
</name>
</person-group>
<article-title>Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids</article-title>
<source>
<italic>Analytical Biochemistry</italic>
</source>
<year>1982</year>
<volume>126</volume>
<issue>1</issue>
<fpage>131</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1016/0003-2697(82)90118-X</pub-id>
<pub-id pub-id-type="other">2-s2.0-0020448709</pub-id>
<pub-id pub-id-type="pmid">7181105</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Riss</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Moravec</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Niles</surname>
<given-names>A. L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cell viability assays</article-title>
<source>
<italic>Assay Guidance Manual</italic>
</source>
<year>2004</year>
<publisher-name>National Center for Advancing Translational Sciences</publisher-name>
<fpage>p. 21</fpage>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inouye</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takizawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact</article-title>
<source>
<italic>Journal of Antimicrobial Chemotherapy</italic>
</source>
<year>2001</year>
<volume>47</volume>
<issue>5</issue>
<fpage>565</fpage>
<lpage>573</lpage>
<pub-id pub-id-type="doi">10.1093/jac/47.5.565</pub-id>
<pub-id pub-id-type="other">2-s2.0-0035009896</pub-id>
<pub-id pub-id-type="pmid">11328766</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Filipowicz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kamiński</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kurlenda</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Asztemborska</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ochocka</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
<article-title>Antibacterial and antifungal activity of juniper berry oil and its selected components</article-title>
<source>
<italic>Phytotherapy Research</italic>
</source>
<year>2003</year>
<volume>17</volume>
<issue>3</issue>
<fpage>227</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1002/ptr.1110</pub-id>
<pub-id pub-id-type="other">2-s2.0-0344838586</pub-id>
<pub-id pub-id-type="pmid">12672151</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Chemical composition, antioxidant and antimicrobial activities of essential oil from
<italic>Wedelia prostrata</italic>
</article-title>
<source>
<italic>EXCLI Journal</italic>
</source>
<year>2013</year>
<volume>12</volume>
<fpage>479</fpage>
<lpage>490</lpage>
<pub-id pub-id-type="other">2-s2.0-84878998365</pub-id>
<pub-id pub-id-type="pmid">26648809</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Efferth</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Antibacterial activity and anticancer activity of
<italic>Rosmarinus officinalis</italic>
L. essential oil compared to that of its main components</article-title>
<source>
<italic>Molecules</italic>
</source>
<year>2012</year>
<volume>17</volume>
<issue>3</issue>
<fpage>2704</fpage>
<lpage>2713</lpage>
<pub-id pub-id-type="doi">10.3390/molecules17032704</pub-id>
<pub-id pub-id-type="other">2-s2.0-84858975802</pub-id>
<pub-id pub-id-type="pmid">22391603</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuzaki</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tsujisawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nishihara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kakinoki</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Antifungal activity of chemotype essential oils from rosemary against
<italic>Candida albicans</italic>
</article-title>
<source>
<italic>Open Journal of Stomatology</italic>
</source>
<year>2013</year>
<volume>3</volume>
<issue>2</issue>
<fpage>176</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="doi">10.4236/ojst.2013.32031</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rivas da Silva</surname>
<given-names>A. C.</given-names>
</name>
<name>
<surname>Lopes</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Barros de Azevedo</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>D. C. M.</given-names>
</name>
<name>
<surname>Alviano</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Alviano</surname>
<given-names>D. S.</given-names>
</name>
</person-group>
<article-title>Biological activities of
<italic>α</italic>
-pinene and
<italic>β</italic>
-pinene enantiomers</article-title>
<source>
<italic>Molecules</italic>
</source>
<year>2012</year>
<volume>17</volume>
<issue>6</issue>
<fpage>6305</fpage>
<lpage>6316</lpage>
<pub-id pub-id-type="doi">10.3390/molecules17066305</pub-id>
<pub-id pub-id-type="other">2-s2.0-84867166667</pub-id>
<pub-id pub-id-type="pmid">22634841</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavaleiro</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Salgueiro</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Antifungal activity of
<italic>Juniperus</italic>
essential oils against dermatophyte,
<italic>Aspergillus</italic>
and
<italic>Candida strains</italic>
</article-title>
<source>
<italic>Journal of Applied Microbiology</italic>
</source>
<year>2006</year>
<volume>100</volume>
<issue>6</issue>
<fpage>1333</fpage>
<lpage>1338</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2672.2006.02862.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-33646545344</pub-id>
<pub-id pub-id-type="pmid">16696681</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of
<italic>Citrus maxima</italic>
Burm. and
<italic>Citrus sinensis</italic>
(L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene</article-title>
<source>
<italic>Food and Chemical Toxicology</italic>
</source>
<year>2010</year>
<volume>48</volume>
<issue>6</issue>
<fpage>1734</fpage>
<lpage>1740</lpage>
<pub-id pub-id-type="doi">10.1016/j.fct.2010.04.001</pub-id>
<pub-id pub-id-type="other">2-s2.0-77952875403</pub-id>
<pub-id pub-id-type="pmid">20385194</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ünal</surname>
<given-names>M. Ü.</given-names>
</name>
<name>
<surname>Uçan</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Şener</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dinçer</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Research on antifungal and inhibitory effects of DL-limonene on some yeasts</article-title>
<source>
<italic>Turkish Journal of Agriculture and Forestry</italic>
</source>
<year>2012</year>
<volume>36</volume>
<issue>5</issue>
<fpage>576</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="doi">10.3906/tar-1104-41</pub-id>
<pub-id pub-id-type="other">2-s2.0-84865462114</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marei</surname>
<given-names>G. I. K.</given-names>
</name>
<name>
<surname>Abdel Rasoul</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Abdelgaleil</surname>
<given-names>S. A. M.</given-names>
</name>
</person-group>
<article-title>Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi</article-title>
<source>
<italic>Pesticide Biochemistry and Physiology</italic>
</source>
<year>2012</year>
<volume>103</volume>
<issue>1</issue>
<fpage>56</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/j.pestbp.2012.03.004</pub-id>
<pub-id pub-id-type="other">2-s2.0-84860278606</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitchell</surname>
<given-names>A. P.</given-names>
</name>
</person-group>
<article-title>Dimorphism and virulence in
<italic>Candida albicans</italic>
</article-title>
<source>
<italic>Current Opinion in Microbiology</italic>
</source>
<year>1998</year>
<volume>1</volume>
<issue>6</issue>
<fpage>687</fpage>
<lpage>692</lpage>
<pub-id pub-id-type="doi">10.1016/s1369-5274(98)80116-1</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032241050</pub-id>
<pub-id pub-id-type="pmid">10066539</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saville</surname>
<given-names>S. P.</given-names>
</name>
<name>
<surname>Lazzell</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>A. P.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of filamentation can be used to treat disseminated candidiasis</article-title>
<source>
<italic>Antimicrobial Agents and Chemotherapy</italic>
</source>
<year>2006</year>
<volume>50</volume>
<issue>10</issue>
<fpage>3312</fpage>
<lpage>3316</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.00628-06</pub-id>
<pub-id pub-id-type="other">2-s2.0-33749513604</pub-id>
<pub-id pub-id-type="pmid">17005810</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zore</surname>
<given-names>G. B.</given-names>
</name>
<name>
<surname>Thakre</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Rathod</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Karuppayil</surname>
<given-names>S. M.</given-names>
</name>
</person-group>
<article-title>Evaluation of anti-
<italic>Candida</italic>
potential of geranium oil constituents against clinical isolates of
<italic>Candida albicans</italic>
differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization</article-title>
<source>
<italic>Mycoses</italic>
</source>
<year>2011</year>
<volume>54</volume>
<issue>4</issue>
<fpage>e99</fpage>
<lpage>e109</lpage>
<pub-id pub-id-type="doi">10.1111/j.1439-0507.2009.01852.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-79959248083</pub-id>
<pub-id pub-id-type="pmid">20337938</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vuong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kocianova</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Voyich</surname>
<given-names>J. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence</article-title>
<source>
<italic>The Journal of Biological Chemistry</italic>
</source>
<year>2004</year>
<volume>279</volume>
<issue>52</issue>
<fpage>54881</fpage>
<lpage>54886</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.m411374200</pub-id>
<pub-id pub-id-type="other">2-s2.0-11144237620</pub-id>
<pub-id pub-id-type="pmid">15501828</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soto</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Smithson</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Horcajada</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J. A.</given-names>
</name>
<name>
<surname>Mensa</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Vila</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic
<italic>Escherichia coli</italic>
</article-title>
<source>
<italic>Clinical Microbiology and Infection</italic>
</source>
<year>2006</year>
<volume>12</volume>
<issue>10</issue>
<fpage>1034</fpage>
<lpage>1036</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-0691.2006.01543.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-33748295529</pub-id>
<pub-id pub-id-type="pmid">16961644</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Neves</surname>
<given-names>Â.</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Screening of five essential oils for identification of potential inhibitors of IL-1-induced Nf-
<italic>κ</italic>
B activation and NO production in human chondrocytes: characterization of the inhibitory activity of
<italic>α</italic>
-pinene</article-title>
<source>
<italic>Planta Medica</italic>
</source>
<year>2010</year>
<volume>76</volume>
<issue>3</issue>
<fpage>303</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1055/s-0029-1186085</pub-id>
<pub-id pub-id-type="other">2-s2.0-77049099601</pub-id>
<pub-id pub-id-type="pmid">19774507</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quintans-Júnior</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Moreira</surname>
<given-names>J. C. F.</given-names>
</name>
<name>
<surname>Pasquali</surname>
<given-names>M. A. B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antinociceptive activity and redox profile of the monoterpenes (+)-camphene,
<italic>p</italic>
-cymene, and geranyl acetate in experimental models</article-title>
<source>
<italic>ISRN Toxicology</italic>
</source>
<year>2013</year>
<volume>2013</volume>
<fpage>11</fpage>
<pub-id pub-id-type="publisher-id">459530</pub-id>
<pub-id pub-id-type="doi">10.1155/2013/459530</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rufino</surname>
<given-names>A. T.</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Judas</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anti-inflammatory and chondroprotective activity of (+)-
<italic>α</italic>
-pinene: structural and enantiomeric selectivity</article-title>
<source>
<italic>Journal of Natural Products</italic>
</source>
<year>2014</year>
<volume>77</volume>
<issue>2</issue>
<fpage>264</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="doi">10.1021/np400828x</pub-id>
<pub-id pub-id-type="other">2-s2.0-84896857993</pub-id>
<pub-id pub-id-type="pmid">24455984</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Biofilm biomass after treatment with
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil, using the crystal violet assay. Biofilm biomass was determined using the formula (Abs
<sub>620</sub>
sample/Abs
<sub>620</sub>
control)
<italic></italic>
100. Results are shown as mean ± standard deviation of at least three independent determinations carried out in duplicate.
<sup>
<italic>∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.001,
<sup>
<italic>∗∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.0001, compared to control using one-way ANOVA followed by Dunnett's multiple comparison test. Control (100%) corresponds to an absorbance mean value of 1.587.</p>
</caption>
<graphic xlink:href="ECAM2016-9045196.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Biofilm viability after treatment with
<italic> D. carota</italic>
subsp.
<italic> carota</italic>
essential oil using the XTT viability assay. Results are shown as mean ± standard deviation of at least three independent determinations carried out in duplicate.
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05,
<sup>
<italic>∗∗</italic>
</sup>
<italic>p</italic>
< 0.01, and
<sup>
<italic>∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.001, compared to control using one-way ANOVA followed by Dunnett's multiple comparison test. Control (100%) corresponds to an absorbance mean value of 0.621.</p>
</caption>
<graphic xlink:href="ECAM2016-9045196.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>NO scavenging activity of
<italic> Daucus carota</italic>
subsp.
<italic> carota</italic>
essential oil. Different concentrations of essential oil (1.25–0.08 
<italic>μ</italic>
L/mL) were incubated with the NO donor, SNAP (100 mM), in culture medium for 3 h. Results are shown as mean ± SEM of three independent assays, done in duplicate.</p>
</caption>
<graphic xlink:href="ECAM2016-9045196.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Anti-inflammatory effect of
<italic> Daucus carota</italic>
subsp.
<italic> carota</italic>
in LPS-stimulated Raw 264.7 macrophages: (a) NO production and (b) cell viability. Macrophages were treated with essential oil (1.25–0.08 
<italic>μ</italic>
L/mL) for 1 h prior to LPS (1 
<italic>μ</italic>
g/mL) activation and further incubated for 24 h. NO release was determined in the supernatants of the cultures using the Griess reagent (a) and cell viability was assessed on adherent cells using the resazurin reagent and expressed as percentage of cell viability by control cells (b). Results are shown as mean ± SEM of at least three independent assays. (
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05;
<sup>
<italic>∗∗</italic>
</sup>
<italic>p</italic>
< 0.01;
<sup>
<italic>∗∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.0001, compared to LPS). Cell viability control (100%) corresponds to an absorbance mean value of 0.435.</p>
</caption>
<graphic xlink:href="ECAM2016-9045196.004"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Composition of the essential oil of
<italic>Daucus carota</italic>
subsp.
<italic>carota</italic>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">RI
<sup>a</sup>
</th>
<th align="center" rowspan="1" colspan="1">RI
<sup>p</sup>
</th>
<th align="center" rowspan="1" colspan="1">Compounds
<sup>
<italic></italic>
</sup>
</th>
<th align="center" rowspan="1" colspan="1">%</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">922</td>
<td align="center" rowspan="1" colspan="1">1030</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
-Thujene</td>
<td align="center" rowspan="1" colspan="1">t</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">930</td>
<td align="center" rowspan="1" colspan="1">1030</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
-Pinene</td>
<td align="center" rowspan="1" colspan="1">27.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">943</td>
<td align="center" rowspan="1" colspan="1">1073</td>
<td align="center" rowspan="1" colspan="1">Camphene</td>
<td align="center" rowspan="1" colspan="1">0.9</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">964</td>
<td align="center" rowspan="1" colspan="1">1128</td>
<td align="center" rowspan="1" colspan="1">Sabinene</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">970</td>
<td align="center" rowspan="1" colspan="1">1118</td>
<td align="center" rowspan="1" colspan="1">
<italic>β</italic>
-Pinene</td>
<td align="center" rowspan="1" colspan="1">4.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">980</td>
<td align="center" rowspan="1" colspan="1">1161</td>
<td align="center" rowspan="1" colspan="1">Myrcene</td>
<td align="center" rowspan="1" colspan="1">2.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1006</td>
<td align="center" rowspan="1" colspan="1">1185</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
-Terpinene</td>
<td align="center" rowspan="1" colspan="1">t</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1013</td>
<td align="center" rowspan="1" colspan="1">1272</td>
<td align="center" rowspan="1" colspan="1">
<italic>p</italic>
-Cymene</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1020</td>
<td align="center" rowspan="1" colspan="1">1206</td>
<td align="center" rowspan="1" colspan="1">Limonene</td>
<td align="center" rowspan="1" colspan="1">9.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1025</td>
<td align="center" rowspan="1" colspan="1">1235</td>
<td align="center" rowspan="1" colspan="1">
<italic>Z</italic>
-
<italic>β</italic>
-Ocimene</td>
<td align="center" rowspan="1" colspan="1">0.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1035</td>
<td align="center" rowspan="1" colspan="1">1250</td>
<td align="center" rowspan="1" colspan="1">
<italic>E</italic>
-
<italic>β</italic>
-Ocimene</td>
<td align="center" rowspan="1" colspan="1">0.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1047</td>
<td align="center" rowspan="1" colspan="1">1250</td>
<td align="center" rowspan="1" colspan="1">
<italic>γ-</italic>
Terpinene</td>
<td align="center" rowspan="1" colspan="1">1.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1081</td>
<td align="center" rowspan="1" colspan="1">1543</td>
<td align="center" rowspan="1" colspan="1">Linalool</td>
<td align="center" rowspan="1" colspan="1">t</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1158</td>
<td align="center" rowspan="1" colspan="1">1595</td>
<td align="center" rowspan="1" colspan="1">Terpinen-4-ol</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1176</td>
<td align="center" rowspan="1" colspan="1">1699</td>
<td align="center" rowspan="1" colspan="1">Verbenone</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1233</td>
<td align="center" rowspan="1" colspan="1">1838</td>
<td align="center" rowspan="1" colspan="1">Geraniol</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1266</td>
<td align="center" rowspan="1" colspan="1">1574</td>
<td align="center" rowspan="1" colspan="1">Bornyl acetate</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1345</td>
<td align="center" rowspan="1" colspan="1">1466</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
-Longipene</td>
<td align="center" rowspan="1" colspan="1">1.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1362</td>
<td align="center" rowspan="1" colspan="1">1753</td>
<td align="center" rowspan="1" colspan="1">Geranyl acetate</td>
<td align="center" rowspan="1" colspan="1">29.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1411</td>
<td align="center" rowspan="1" colspan="1">1590</td>
<td align="center" rowspan="1" colspan="1">
<italic>E</italic>
-
<italic>β</italic>
-Caryophyllene</td>
<td align="center" rowspan="1" colspan="1">0.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1443</td>
<td align="center" rowspan="1" colspan="1">1660</td>
<td align="center" rowspan="1" colspan="1">
<italic>α</italic>
-Humulene</td>
<td align="center" rowspan="1" colspan="1">0.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1459</td>
<td align="center" rowspan="1" colspan="1">2172</td>
<td align="center" rowspan="1" colspan="1">(
<italic>E</italic>
)
<italic>-</italic>
Methyl isoeugenol</td>
<td align="center" rowspan="1" colspan="1">1.4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1466</td>
<td align="center" rowspan="1" colspan="1">1699</td>
<td align="center" rowspan="1" colspan="1">Germacrene D</td>
<td align="center" rowspan="1" colspan="1">0.1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1488</td>
<td align="center" rowspan="1" colspan="1">1699</td>
<td align="center" rowspan="1" colspan="1">
<italic>β</italic>
-Himachalene</td>
<td align="center" rowspan="1" colspan="1">1.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1498</td>
<td align="center" rowspan="1" colspan="1">1720</td>
<td align="center" rowspan="1" colspan="1">
<italic>β</italic>
-Bisabolene</td>
<td align="center" rowspan="1" colspan="1">0.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1557</td>
<td align="center" rowspan="1" colspan="1">1968</td>
<td align="center" rowspan="1" colspan="1">Caryophyllene oxide</td>
<td align="center" rowspan="1" colspan="1">0.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1581</td>
<td align="center" rowspan="1" colspan="1">2001</td>
<td align="center" rowspan="1" colspan="1">Carotol</td>
<td align="center" rowspan="1" colspan="1">6.2</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1623</td>
<td align="center" rowspan="1" colspan="1">2089</td>
<td align="center" rowspan="1" colspan="1">11
<italic>α</italic>
H-Himachal-4-en-1
<italic>β</italic>
-ol</td>
<td align="center" rowspan="1" colspan="1">9.2</td>
</tr>
<tr>
<td align="center" colspan="4" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Monoterpene hydrocarbons</td>
<td align="center" rowspan="1" colspan="1">46.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Oxygen containing monoterpenes</td>
<td align="center" rowspan="1" colspan="1">29.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Sesquiterpene hydrocarbons</td>
<td align="center" rowspan="1" colspan="1">3.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Oxygen containing sesquiterpenes</td>
<td align="center" rowspan="1" colspan="1">15.6</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Others</td>
<td align="center" rowspan="1" colspan="1">1.4</td>
</tr>
<tr>
<td align="center" colspan="4" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">Total</td>
<td align="center" rowspan="1" colspan="1">96.6</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>
<italic></italic>
</sup>
Compounds listed in order to their elution on the SPB-1 column.</p>
</fn>
<fn>
<p>t: traces (≤0.05%).</p>
</fn>
<fn>
<p>RI
<sup>a</sup>
: retention indices on the SPB-1 column relative to C
<sub>8</sub>
to C
<sub>24</sub>
  
<italic>n</italic>
-alkanes.</p>
</fn>
<fn>
<p>RI
<sup>p</sup>
: retention indices on the SupelcoWax-10 column relative to C
<sub>8</sub>
to C
<sub>24</sub>
  
<italic>n</italic>
-alkanes.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Antibacterial activity (MIC and MLC) of
<italic>D. carota</italic>
subsp.
<italic>carota</italic>
essential oil.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2" colspan="1">Strains</th>
<th align="center" colspan="2" rowspan="1">Essential oil</th>
<th align="center" colspan="2" rowspan="1">Ampicillin</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">MIC
<sup>a</sup>
</th>
<th align="center" rowspan="1" colspan="1">MLC
<sup>a</sup>
</th>
<th align="center" rowspan="1" colspan="1">MIC
<sup>b</sup>
</th>
<th align="center" rowspan="1" colspan="1">MLC
<sup>b</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Gram-positive</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Bacillus subtilis</italic>
ATCC 6633</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.06</td>
<td align="center" rowspan="1" colspan="1">0.025</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Listeria monocytogenes</italic>
CBISA 3183</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">16</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Staphylococcus aureus</italic>
ATCC 6538</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.25</td>
<td align="center" rowspan="1" colspan="1">0.5</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gram-negative</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Escherichia coli</italic>
ATCC 25922</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">16</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Salmonella typhimurium</italic>
ATCC 14028</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">8</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>MIC and MLC were determined by a macrodilution method and expressed in
<sup>a</sup>
<italic>μ</italic>
L/mL and in
<sup>b</sup>
<italic>μ</italic>
g/mL.</p>
</fn>
<fn>
<p>Results were obtained from three independent experiments performed in duplicate.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Antifungal activity (MIC and MLC) of
<italic>Daucus carota</italic>
subsp.
<italic>carota</italic>
essential oil for
<italic>Candida</italic>
spp.,
<italic>Cryptococcus neoformans</italic>
, dermatophyte, and
<italic>Aspergillus</italic>
strains.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2" colspan="1">Strains</th>
<th align="center" colspan="2" rowspan="1">Essential oil</th>
<th align="center" colspan="2" rowspan="1">Fluconazole</th>
<th align="center" colspan="2" rowspan="1">Amphotericin</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">MIC
<sup>a</sup>
</th>
<th align="center" rowspan="1" colspan="1">MLC
<sup>a</sup>
</th>
<th align="center" rowspan="1" colspan="1">MIC
<sup>b</sup>
</th>
<th align="center" rowspan="1" colspan="1">MLC
<sup>b</sup>
</th>
<th align="center" rowspan="1" colspan="1">MIC
<sup>b</sup>
</th>
<th align="center" rowspan="1" colspan="1">MLC
<sup>b</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Candida albicans </italic>
ATCC 10231</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">1</td>
<td align="center" rowspan="1" colspan="1">>128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Candida guilliermondii </italic>
MAT23</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">8</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Candida krusei </italic>
H9</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">64</td>
<td align="center" rowspan="1" colspan="1">64–128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Candida parapsilosis </italic>
ATCC 90018</td>
<td align="center" rowspan="1" colspan="1">10</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1"><1</td>
<td align="center" rowspan="1" colspan="1"><1</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Candida tropicalis </italic>
ATCC 13803</td>
<td align="center" rowspan="1" colspan="1">5</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">4</td>
<td align="center" rowspan="1" colspan="1">>128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Cryptococcus neoformans </italic>
CECT 1078</td>
<td align="center" rowspan="1" colspan="1">0.16</td>
<td align="center" rowspan="1" colspan="1">0.16</td>
<td align="center" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1">128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Epidermophyton floccosum </italic>
FF9</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Microsporum canis </italic>
FF1</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">128</td>
<td align="center" rowspan="1" colspan="1">128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Microsporum gypseum </italic>
CECT 2908</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">128</td>
<td align="center" rowspan="1" colspan="1">>128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Trichophyton mentagrophytes </italic>
FF7</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">16–32</td>
<td align="center" rowspan="1" colspan="1">32–64</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Trichophyton mentagrophytes </italic>
var.
<italic>interdigitale </italic>
CECT 2958</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">1.25</td>
<td align="center" rowspan="1" colspan="1">128</td>
<td align="center" rowspan="1" colspan="1">≥128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Trichophyton rubrum </italic>
CECT 2794</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">16</td>
<td align="center" rowspan="1" colspan="1">64</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Trichophyton verrucosum </italic>
CECT 2992</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">>128</td>
<td align="center" rowspan="1" colspan="1">>128</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aspergillus flavus </italic>
F44</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aspergillus fumigatus </italic>
ATCC 46645</td>
<td align="center" rowspan="1" colspan="1">2.5</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">2</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Aspergillus niger </italic>
ATCC 16404</td>
<td align="center" rowspan="1" colspan="1">1.25</td>
<td align="center" rowspan="1" colspan="1">>10</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">NT</td>
<td align="center" rowspan="1" colspan="1">1-2</td>
<td align="center" rowspan="1" colspan="1">4</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>MIC and MLC were determined by a macrodilution method and expressed in
<sup>a</sup>
<italic>µ</italic>
L/mL and in
<sup>b</sup>
<italic>µ</italic>
g/mL.</p>
</fn>
<fn>
<p>Results were obtained from three independent determinations performed in duplicate.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<p>Influence of subinhibitory concentrations of the essential oil of
<italic>Daucus carota</italic>
subsp.
<italic>carota</italic>
on germ tube formation of
<italic>C. albicans</italic>
ATCC 10231. </p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Essential oil concentration</th>
<th align="center" rowspan="1" colspan="1">
<italic>Candida albicans </italic>
ATCC 10231</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">(
<italic>µ</italic>
L/mL)</th>
<th align="center" rowspan="1" colspan="1">(% of filamentous cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">0.00 (control)
<sup>a</sup>
</td>
<td align="center" rowspan="1" colspan="1">100.00 ± 0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">5.00 (MIC)</td>
<td align="center" rowspan="1" colspan="1">0.00 ± 0.00</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">2.50 (MIC/2)</td>
<td align="center" rowspan="1" colspan="1">0.59 ± 1.0 </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1.25 (MIC/4)</td>
<td align="center" rowspan="1" colspan="1">0.88 ± 1.54</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.64 (MIC/8)</td>
<td align="center" rowspan="1" colspan="1">1.63 ± 2.82 </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.32 (MIC/16)</td>
<td align="center" rowspan="1" colspan="1">2.52 ± 4.36 </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.16 (MIC/32)</td>
<td align="center" rowspan="1" colspan="1">2.90 ± 1.25 </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.08 (MIC/64)</td>
<td align="center" rowspan="1" colspan="1">21.49 ± 10.89</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.04 (MIC/128)</td>
<td align="center" rowspan="1" colspan="1">44.44 ± 8.60 </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.02 (MIC/256)</td>
<td align="center" rowspan="1" colspan="1">68.54 ± 5.09</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>a</sup>
Samples with 1% (v/v) DMSO.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab5" orientation="portrait" position="float">
<label>Table 5</label>
<caption>
<p>Antioxidant analysis of
<italic>D. carota</italic>
subsp.
<italic>carota</italic>
essential oil.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Sample</th>
<th align="center" rowspan="1" colspan="1">ABTS
<sup>•+a</sup>
</th>
<th align="center" rowspan="1" colspan="1">ORAC
<sup>b</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Essential oil</td>
<td align="center" rowspan="1" colspan="1">1924.25</td>
<td align="center" rowspan="1" colspan="1">7.13</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Trolox</td>
<td align="center" rowspan="1" colspan="1">5.53</td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<sup>a</sup>
Values expressed as IC
<sub>50</sub>
(
<italic>µ</italic>
g/mL).</p>
</fn>
<fn>
<p>
<sup>b</sup>
Values expressed as
<italic>µ</italic>
mol TE/mg.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="tab6" orientation="portrait" position="float">
<label>Table 6</label>
<caption>
<p>Effect of
<italic>Daucus carota</italic>
subsp.
<italic>carota</italic>
essential oil on cell lines viability.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Essential oil</th>
<th align="center" rowspan="1" colspan="1">Macrophages</th>
<th align="center" rowspan="1" colspan="1">Epithelial alveolar</th>
<th align="center" rowspan="1" colspan="1">Hepatocytes</th>
<th align="center" rowspan="1" colspan="1">Keratinocytes</th>
</tr>
<tr>
<th align="left" rowspan="1" colspan="1">(
<italic>µ</italic>
L/mL)</th>
<th align="center" rowspan="1" colspan="1">Raw 264.7 (%)</th>
<th align="center" rowspan="1" colspan="1"> cells A549 (%)</th>
<th align="center" rowspan="1" colspan="1">HepG2 (%)</th>
<th align="center" rowspan="1" colspan="1">HaCaT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">0.00 (control)</td>
<td align="center" rowspan="1" colspan="1">100 ± 0.0</td>
<td align="center" rowspan="1" colspan="1">100 ± 0.0</td>
<td align="center" rowspan="1" colspan="1">100 ± 0.0</td>
<td align="center" rowspan="1" colspan="1">100 ± 0.0</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">1.25</td>
<td align="center" rowspan="1" colspan="1">9.01 ± 9.01
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">64.25 ± 4.66
<sup>
<italic>∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">34.54 ± 4.92
<sup>
<italic>∗∗∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">55.76 ± 5.03
<sup>
<italic>∗∗∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.64</td>
<td align="center" rowspan="1" colspan="1">92.83 ± 1.04</td>
<td align="center" rowspan="1" colspan="1">86.25 ± 5.78</td>
<td align="center" rowspan="1" colspan="1">60.73 ± 6.51
<sup>
<italic>∗∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">76.30 ± 0.54
<sup>
<italic>∗∗∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.32</td>
<td align="center" rowspan="1" colspan="1">123.60 ± 15.28</td>
<td align="center" rowspan="1" colspan="1">110.60 ± 5.72</td>
<td align="center" rowspan="1" colspan="1">99.40 ± 5.49</td>
<td align="center" rowspan="1" colspan="1">85.21 ± 2.35
<sup>
<italic>∗∗</italic>
</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.16</td>
<td align="center" rowspan="1" colspan="1">141.50 ± 14.56
<sup>
<italic></italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">130.80 ± 9.96
<sup>
<italic></italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">108.80 ± 4.81</td>
<td align="center" rowspan="1" colspan="1">94.44 ± 2.94</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0.08</td>
<td align="center" rowspan="1" colspan="1">154.60 ± 15.55
<sup>
<italic>∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">201.90 ± 19.43
<sup>
<italic>∗∗∗∗</italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">122.60 ± 10.43
<sup>
<italic></italic>
</sup>
</td>
<td align="center" rowspan="1" colspan="1">104.23 ± 2.10</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Results expressed as percentage of resazurin reduction compared to control cells maintained in culture medium. Each value represents mean ± SEM of at least three independent experiments done in duplicate. Statistical differences compared to control cells (
<sup>
<italic></italic>
</sup>
<italic>p</italic>
< 0.05,
<sup>
<italic>∗∗</italic>
</sup>
<italic>p</italic>
< 0.01,
<sup>
<italic>∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.001, and
<sup>
<italic>∗∗∗∗</italic>
</sup>
<italic>p</italic>
< 0.0001 using one-way ANOVA followed by Dunnett's multiple comparison test).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000289 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000289 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4769755
   |texte=   New Claims for Wild Carrot (Daucus carota subsp. carota) Essential Oil
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26981143" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024