Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]

Identifieur interne : 000A19 ( PascalFrancis/Corpus ); précédent : 000A18; suivant : 000A20

Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]

Auteurs : J. P. Syvertsen ; J. H. Graham

Source :

RBID : Pascal:99-0408821

Descripteurs français

English descriptors

Abstract

We hypothesized that greater photosynthate supply at elevated [CO2 could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (ACO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or ACO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased ACO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0032-079X
A02 01      @0 PLSOA2
A03   1    @0 Plant soil
A05       @2 208
A06       @2 2
A08 01  1  ENG  @1 Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]
A11 01  1    @1 SYVERTSEN (J. P.)
A11 02  1    @1 GRAHAM (J. H.)
A14 01      @1 University of Florida, Citrus Research and Education Center, 700 Experiment Station Road @2 Lake Alfred, FL 33851-2299 @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 209-219
A21       @1 1999
A23 01      @0 ENG
A43 01      @1 INIST @2 4772 @5 354000085876780060
A44       @0 0000 @1 © 1999 INIST-CNRS. All rights reserved.
A45       @0 34 ref.
A47 01  1    @0 99-0408821
A60       @1 P
A61       @0 A
A64 01  1    @0 Plant and soil
A66 01      @0 NLD
C01 01    ENG  @0 We hypothesized that greater photosynthate supply at elevated [CO2 could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (ACO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or ACO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased ACO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.
C02 01  X    @0 002A32C03A4
C03 01  X  FRE  @0 Biodisponibilité @5 01
C03 01  X  ENG  @0 Bioavailability @5 01
C03 01  X  SPA  @0 Biodisponibilidad @5 01
C03 02  X  FRE  @0 Fertilisation phosphatée @5 02
C03 02  X  ENG  @0 Phosphorus fertilization @5 02
C03 02  X  SPA  @0 Fertilización fosfatada @5 02
C03 03  X  FRE  @0 Endomycorhize @5 03
C03 03  X  ENG  @0 Endomycorrhiza @5 03
C03 03  X  SPA  @0 Endomicorriza @5 03
C03 04  X  FRE  @0 Croissance @5 04
C03 04  X  ENG  @0 Growth @5 04
C03 04  X  SPA  @0 Crecimiento @5 04
C03 05  X  FRE  @0 Echange gazeux @5 05
C03 05  X  ENG  @0 Gas exchange @5 05
C03 05  X  SPA  @0 Intercambio gaseoso @5 05
C03 06  X  FRE  @0 Enrichissement milieu @5 06
C03 06  X  ENG  @0 Medium enrichment @5 06
C03 06  X  SPA  @0 Enriquecimiento medio @5 06
C03 07  X  FRE  @0 Nutrition @5 07
C03 07  X  ENG  @0 Nutrition @5 07
C03 07  X  SPA  @0 Nutrición @5 07
C03 08  X  FRE  @0 Comparaison interspécifique @5 08
C03 08  X  ENG  @0 Interspecific comparison @5 08
C03 08  X  SPA  @0 Comparación interespecífica @5 08
C03 09  X  FRE  @0 Citrus @2 NS @5 10
C03 09  X  ENG  @0 Citrus @2 NS @5 10
C03 09  X  SPA  @0 Citrus @2 NS @5 10
C03 10  X  FRE  @0 Carbone dioxyde @2 NK @2 FX @5 15
C03 10  X  ENG  @0 Carbon dioxide @2 NK @2 FX @5 15
C03 10  X  SPA  @0 Carbono dióxido @2 NK @2 FX @5 15
C03 11  X  FRE  @0 Phosphore @2 NC @5 16
C03 11  X  ENG  @0 Phosphorus @2 NC @5 16
C03 11  X  SPA  @0 Fósforo @2 NC @5 16
C03 12  X  FRE  @0 Amidon @5 17
C03 12  X  ENG  @0 Starch @5 17
C03 12  X  SPA  @0 Almidón @5 17
C03 13  X  FRE  @0 Glomus intraradices @2 NS @4 INC @5 75
C07 01  X  FRE  @0 Mycorhize
C07 01  X  ENG  @0 Mycorrhiza
C07 01  X  SPA  @0 Micorriza
C07 02  X  FRE  @0 Rutaceae @2 NS
C07 02  X  ENG  @0 Rutaceae @2 NS
C07 02  X  SPA  @0 Rutaceae @2 NS
C07 03  X  FRE  @0 Dicotyledones @2 NS
C07 03  X  ENG  @0 Dicotyledones @2 NS
C07 03  X  SPA  @0 Dicotyledones @2 NS
C07 04  X  FRE  @0 Angiospermae @2 NS
C07 04  X  ENG  @0 Angiospermae @2 NS
C07 04  X  SPA  @0 Angiospermae @2 NS
C07 05  X  FRE  @0 Spermatophyta @2 NS
C07 05  X  ENG  @0 Spermatophyta @2 NS
C07 05  X  SPA  @0 Spermatophyta @2 NS
C07 06  X  FRE  @0 Symbiose @5 34
C07 06  X  ENG  @0 Symbiosis @5 34
C07 06  X  SPA  @0 Simbiosis @5 34
C07 07  X  FRE  @0 Agrume @5 40
C07 07  X  ENG  @0 Citrus fruit @5 40
C07 07  X  SPA  @0 Agrios @5 40
C07 08  X  FRE  @0 Symbionte @5 41
C07 08  X  ENG  @0 Symbionte @5 41
C07 08  X  SPA  @0 Simbionte @5 41
C07 09  X  FRE  @0 Phycomycetes @2 NS @5 47
C07 09  X  ENG  @0 Phycomycetes @2 NS @5 47
C07 09  X  SPA  @0 Phycomycetes @2 NS @5 47
C07 10  X  FRE  @0 Fungi @2 NS
C07 10  X  ENG  @0 Fungi @2 NS
C07 10  X  SPA  @0 Fungi @2 NS
C07 11  X  FRE  @0 Thallophyta @2 NS
C07 11  X  ENG  @0 Thallophyta @2 NS
C07 11  X  SPA  @0 Thallophyta @2 NS
C07 12  X  FRE  @0 Nutriment @5 50
C07 12  X  ENG  @0 Nutrient @5 50
C07 12  X  SPA  @0 Nutriente @5 50
N21       @1 263

Format Inist (serveur)

NO : PASCAL 99-0408821 INIST
ET : Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]
AU : SYVERTSEN (J. P.); GRAHAM (J. H.)
AF : University of Florida, Citrus Research and Education Center, 700 Experiment Station Road/Lake Alfred, FL 33851-2299/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Plant and soil; ISSN 0032-079X; Coden PLSOA2; Pays-Bas; Da. 1999; Vol. 208; No. 2; Pp. 209-219; Bibl. 34 ref.
LA : Anglais
EA : We hypothesized that greater photosynthate supply at elevated [CO2 could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (ACO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or ACO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased ACO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.
CC : 002A32C03A4
FD : Biodisponibilité; Fertilisation phosphatée; Endomycorhize; Croissance; Echange gazeux; Enrichissement milieu; Nutrition; Comparaison interspécifique; Citrus; Carbone dioxyde; Phosphore; Amidon; Glomus intraradices
FG : Mycorhize; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Symbiose; Agrume; Symbionte; Phycomycetes; Fungi; Thallophyta; Nutriment
ED : Bioavailability; Phosphorus fertilization; Endomycorrhiza; Growth; Gas exchange; Medium enrichment; Nutrition; Interspecific comparison; Citrus; Carbon dioxide; Phosphorus; Starch
EG : Mycorrhiza; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Symbiosis; Citrus fruit; Symbionte; Phycomycetes; Fungi; Thallophyta; Nutrient
SD : Biodisponibilidad; Fertilización fosfatada; Endomicorriza; Crecimiento; Intercambio gaseoso; Enriquecimiento medio; Nutrición; Comparación interespecífica; Citrus; Carbono dióxido; Fósforo; Almidón
LO : INIST-4772.354000085876780060
ID : 99-0408821

Links to Exploration step

Pascal:99-0408821

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO
<sub>2</sub>
]</title>
<author>
<name sortKey="Syvertsen, J P" sort="Syvertsen, J P" uniqKey="Syvertsen J" first="J. P." last="Syvertsen">J. P. Syvertsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road</s1>
<s2>Lake Alfred, FL 33851-2299</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Graham, J H" sort="Graham, J H" uniqKey="Graham J" first="J. H." last="Graham">J. H. Graham</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road</s1>
<s2>Lake Alfred, FL 33851-2299</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">99-0408821</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 99-0408821 INIST</idno>
<idno type="RBID">Pascal:99-0408821</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000A19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO
<sub>2</sub>
]</title>
<author>
<name sortKey="Syvertsen, J P" sort="Syvertsen, J P" uniqKey="Syvertsen J" first="J. P." last="Syvertsen">J. P. Syvertsen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road</s1>
<s2>Lake Alfred, FL 33851-2299</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Graham, J H" sort="Graham, J H" uniqKey="Graham J" first="J. H." last="Graham">J. H. Graham</name>
<affiliation>
<inist:fA14 i1="01">
<s1>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road</s1>
<s2>Lake Alfred, FL 33851-2299</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Plant and soil</title>
<title level="j" type="abbreviated">Plant soil</title>
<idno type="ISSN">0032-079X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bioavailability</term>
<term>Carbon dioxide</term>
<term>Citrus</term>
<term>Endomycorrhiza</term>
<term>Gas exchange</term>
<term>Growth</term>
<term>Interspecific comparison</term>
<term>Medium enrichment</term>
<term>Nutrition</term>
<term>Phosphorus</term>
<term>Phosphorus fertilization</term>
<term>Starch</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Biodisponibilité</term>
<term>Fertilisation phosphatée</term>
<term>Endomycorhize</term>
<term>Croissance</term>
<term>Echange gazeux</term>
<term>Enrichissement milieu</term>
<term>Nutrition</term>
<term>Comparaison interspécifique</term>
<term>Citrus</term>
<term>Carbone dioxyde</term>
<term>Phosphore</term>
<term>Amidon</term>
<term>Glomus intraradices</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We hypothesized that greater photosynthate supply at elevated [CO
<sub>2</sub>
could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO
<sub>2</sub>
]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO
<sub>2</sub>
] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO
<sub>2</sub>
] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO
<sub>2</sub>
], high P or with G. intraradices had greater growth, net assimilation of CO
<sub>2</sub>
(A
<sub>CO2</sub>
) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO
<sub>2</sub>
], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO
<sub>2</sub>
] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO
<sub>2</sub>
] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A
<sub>CO2</sub>
. Mycorrhizas did not increase plant growth at ambient [CO
<sub>2</sub>
]. At elevated [CO
<sub>2</sub>
], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO
<sub>2</sub>
], colonization by the AM fungus increased A
<sub>CO2</sub>
in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO
<sub>2</sub>
] availability to mycorrhizal plants increased CO
<sub>2</sub>
assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0032-079X</s0>
</fA01>
<fA02 i1="01">
<s0>PLSOA2</s0>
</fA02>
<fA03 i2="1">
<s0>Plant soil</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO
<sub>2</sub>
]</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SYVERTSEN (J. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRAHAM (J. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road</s1>
<s2>Lake Alfred, FL 33851-2299</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>209-219</s1>
</fA20>
<fA21>
<s1>1999</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4772</s2>
<s5>354000085876780060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1999 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>99-0408821</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Plant and soil</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We hypothesized that greater photosynthate supply at elevated [CO
<sub>2</sub>
could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO
<sub>2</sub>
]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO
<sub>2</sub>
] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO
<sub>2</sub>
] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO
<sub>2</sub>
], high P or with G. intraradices had greater growth, net assimilation of CO
<sub>2</sub>
(A
<sub>CO2</sub>
) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO
<sub>2</sub>
], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO
<sub>2</sub>
] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO
<sub>2</sub>
] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A
<sub>CO2</sub>
. Mycorrhizas did not increase plant growth at ambient [CO
<sub>2</sub>
]. At elevated [CO
<sub>2</sub>
], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO
<sub>2</sub>
], colonization by the AM fungus increased A
<sub>CO2</sub>
in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO
<sub>2</sub>
] availability to mycorrhizal plants increased CO
<sub>2</sub>
assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32C03A4</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Biodisponibilité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Bioavailability</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Biodisponibilidad</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Fertilisation phosphatée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Phosphorus fertilization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fertilización fosfatada</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Endomycorhize</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Endomycorrhiza</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Endomicorriza</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Growth</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Echange gazeux</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Gas exchange</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Intercambio gaseoso</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Enrichissement milieu</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Medium enrichment</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Enriquecimiento medio</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nutrition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nutrition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nutrición</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Comparaison interspécifique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Interspecific comparison</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Comparación interespecífica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Citrus</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Citrus</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Citrus</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Carbone dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phosphore</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Phosphorus</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fósforo</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Amidon</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Starch</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Almidón</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Glomus intraradices</s0>
<s2>NS</s2>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Mycorhize</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Mycorrhiza</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Micorriza</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Rutaceae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Symbiose</s0>
<s5>34</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Symbiosis</s0>
<s5>34</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Simbiosis</s0>
<s5>34</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Agrume</s0>
<s5>40</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Citrus fruit</s0>
<s5>40</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Agrios</s0>
<s5>40</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Symbionte</s0>
<s5>41</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Symbionte</s0>
<s5>41</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Simbionte</s0>
<s5>41</s5>
</fC07>
<fC07 i1="09" i2="X" l="FRE">
<s0>Phycomycetes</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="09" i2="X" l="ENG">
<s0>Phycomycetes</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="09" i2="X" l="SPA">
<s0>Phycomycetes</s0>
<s2>NS</s2>
<s5>47</s5>
</fC07>
<fC07 i1="10" i2="X" l="FRE">
<s0>Fungi</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="10" i2="X" l="ENG">
<s0>Fungi</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="10" i2="X" l="SPA">
<s0>Fungi</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="11" i2="X" l="FRE">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="11" i2="X" l="ENG">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="11" i2="X" l="SPA">
<s0>Thallophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="12" i2="X" l="FRE">
<s0>Nutriment</s0>
<s5>50</s5>
</fC07>
<fC07 i1="12" i2="X" l="ENG">
<s0>Nutrient</s0>
<s5>50</s5>
</fC07>
<fC07 i1="12" i2="X" l="SPA">
<s0>Nutriente</s0>
<s5>50</s5>
</fC07>
<fN21>
<s1>263</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 99-0408821 INIST</NO>
<ET>Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO
<sub>2</sub>
]</ET>
<AU>SYVERTSEN (J. P.); GRAHAM (J. H.)</AU>
<AF>University of Florida, Citrus Research and Education Center, 700 Experiment Station Road/Lake Alfred, FL 33851-2299/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Plant and soil; ISSN 0032-079X; Coden PLSOA2; Pays-Bas; Da. 1999; Vol. 208; No. 2; Pp. 209-219; Bibl. 34 ref.</SO>
<LA>Anglais</LA>
<EA>We hypothesized that greater photosynthate supply at elevated [CO
<sub>2</sub>
could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO
<sub>2</sub>
]. Half of the seedlings of sour orange (C. aurantium L.) and 'Ridge Pineapple' sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO
<sub>2</sub>
] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO
<sub>2</sub>
] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO
<sub>2</sub>
], high P or with G. intraradices had greater growth, net assimilation of CO
<sub>2</sub>
(A
<sub>CO2</sub>
) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO
<sub>2</sub>
], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO
<sub>2</sub>
] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO
<sub>2</sub>
] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A
<sub>CO2</sub>
. Mycorrhizas did not increase plant growth at ambient [CO
<sub>2</sub>
]. At elevated [CO
<sub>2</sub>
], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO
<sub>2</sub>
], colonization by the AM fungus increased A
<sub>CO2</sub>
in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO
<sub>2</sub>
] availability to mycorrhizal plants increased CO
<sub>2</sub>
assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation.</EA>
<CC>002A32C03A4</CC>
<FD>Biodisponibilité; Fertilisation phosphatée; Endomycorhize; Croissance; Echange gazeux; Enrichissement milieu; Nutrition; Comparaison interspécifique; Citrus; Carbone dioxyde; Phosphore; Amidon; Glomus intraradices</FD>
<FG>Mycorhize; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Symbiose; Agrume; Symbionte; Phycomycetes; Fungi; Thallophyta; Nutriment</FG>
<ED>Bioavailability; Phosphorus fertilization; Endomycorrhiza; Growth; Gas exchange; Medium enrichment; Nutrition; Interspecific comparison; Citrus; Carbon dioxide; Phosphorus; Starch</ED>
<EG>Mycorrhiza; Rutaceae; Dicotyledones; Angiospermae; Spermatophyta; Symbiosis; Citrus fruit; Symbionte; Phycomycetes; Fungi; Thallophyta; Nutrient</EG>
<SD>Biodisponibilidad; Fertilización fosfatada; Endomicorriza; Crecimiento; Intercambio gaseoso; Enriquecimiento medio; Nutrición; Comparación interespecífica; Citrus; Carbono dióxido; Fósforo; Almidón</SD>
<LO>INIST-4772.354000085876780060</LO>
<ID>99-0408821</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000A19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:99-0408821
   |texte=   Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp. grown at elevated [CO2]
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024