Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ozone uptake by citrus trees exposed to a range of ozone concentrations

Identifieur interne : 000221 ( PascalFrancis/Checkpoint ); précédent : 000220; suivant : 000222

Ozone uptake by citrus trees exposed to a range of ozone concentrations

Auteurs : Silvano Fares [États-Unis, Italie] ; Jeong-Hoo Park [États-Unis] ; Elena Ormeno [États-Unis] ; Drew R. Gentner [États-Unis] ; Megan Mckay [États-Unis] ; Francesco Loreto [Italie] ; John Karlik [États-Unis] ; Allen H. Goldstein [États-Unis]

Source :

RBID : Pascal:10-0482239

Descripteurs français

English descriptors

Abstract

The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NOx). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s-1 m-2 of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0482239

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ozone uptake by citrus trees exposed to a range of ozone concentrations</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>CNR (National Research Council), Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300</s1>
<s2>00016 Monterotondo Scalo, Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Jeong Hoo" sort="Park, Jeong Hoo" uniqKey="Park J" first="Jeong-Hoo" last="Park">Jeong-Hoo Park</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ormeno, Elena" sort="Ormeno, Elena" uniqKey="Ormeno E" first="Elena" last="Ormeno">Elena Ormeno</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gentner, Drew R" sort="Gentner, Drew R" uniqKey="Gentner D" first="Drew R." last="Gentner">Drew R. Gentner</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>University of California Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>Berkeley, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckay, Megan" sort="Mckay, Megan" uniqKey="Mckay M" first="Megan" last="Mckay">Megan Mckay</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNR (National Research Council), Istituto per la Protezione delle Piante</s1>
<s2>Sesto Fiorentino, Florence</s2>
<s3>ITA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Sesto Fiorentino, Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karlik, John" sort="Karlik, John" uniqKey="Karlik J" first="John" last="Karlik">John Karlik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of California Cooperative Extension</s1>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University of California Cooperative Extension</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>University of California Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>Berkeley, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0482239</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0482239 INIST</idno>
<idno type="RBID">Pascal:10-0482239</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000214</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000786</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000221</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ozone uptake by citrus trees exposed to a range of ozone concentrations</title>
<author>
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>CNR (National Research Council), Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300</s1>
<s2>00016 Monterotondo Scalo, Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, Jeong Hoo" sort="Park, Jeong Hoo" uniqKey="Park J" first="Jeong-Hoo" last="Park">Jeong-Hoo Park</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ormeno, Elena" sort="Ormeno, Elena" uniqKey="Ormeno E" first="Elena" last="Ormeno">Elena Ormeno</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gentner, Drew R" sort="Gentner, Drew R" uniqKey="Gentner D" first="Drew R." last="Gentner">Drew R. Gentner</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>University of California Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>Berkeley, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mckay, Megan" sort="Mckay, Megan" uniqKey="Mckay M" first="Megan" last="Mckay">Megan Mckay</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNR (National Research Council), Istituto per la Protezione delle Piante</s1>
<s2>Sesto Fiorentino, Florence</s2>
<s3>ITA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>Sesto Fiorentino, Florence</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karlik, John" sort="Karlik, John" uniqKey="Karlik J" first="John" last="Karlik">John Karlik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of California Cooperative Extension</s1>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University of California Cooperative Extension</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>University of California Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>Berkeley, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air pollution</term>
<term>Air quality</term>
<term>Biogenic factor</term>
<term>California</term>
<term>Gaseous phase reaction</term>
<term>Mediterranean climate</term>
<term>Modeling</term>
<term>Models</term>
<term>Natural origin pollution</term>
<term>Nitrogen</term>
<term>Nitrogen compounds</term>
<term>Nitrogen dioxide</term>
<term>Nitrogen oxide</term>
<term>Orchard</term>
<term>Organic compounds</term>
<term>Ozone</term>
<term>Plant leaf</term>
<term>Regional scope</term>
<term>Secondary pollutant</term>
<term>Summer</term>
<term>Troposphere</term>
<term>Uptake</term>
<term>Volatile organic compound</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ozone</term>
<term>Captation</term>
<term>Climat méditerranéen</term>
<term>Eté</term>
<term>Verger</term>
<term>Troposphère</term>
<term>Composé organique volatil</term>
<term>Azote</term>
<term>Oxyde d'azote</term>
<term>Dioxyde d'azote</term>
<term>Qualité air</term>
<term>Echelon régional</term>
<term>Facteur biogène</term>
<term>Polluant secondaire</term>
<term>Aérosol</term>
<term>Composé organique</term>
<term>Réaction phase gazeuse</term>
<term>Feuille végétal</term>
<term>Pollution air</term>
<term>Modélisation</term>
<term>Modèle</term>
<term>Californie</term>
<term>Composé de l'azote</term>
<term>Pollution origine naturelle</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Ozone</term>
<term>Verger</term>
<term>Azote</term>
<term>Aérosol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NO
<sub>x</sub>
). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s
<sup>-1</sup>
m
<sup>-2</sup>
of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>28</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ozone uptake by citrus trees exposed to a range of ozone concentrations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FARES (Silvano)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARK (Jeong-Hoo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ORMENO (Elena)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GENTNER (Drew R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MCKAY (Megan)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LORETO (Francesco)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KARLIK (John)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GOLDSTEIN (Allen H.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of California Berkeley, Department of Environmental Science, Policy, and Management, 137 Mulford Hall</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNR (National Research Council), Istituto di Biologia Agroambientale e Forestale, Via Salaria km. 29,300</s1>
<s2>00016 Monterotondo Scalo, Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>University of California Berkeley, Department of Civil and Environmental Engineering</s1>
<s2>Berkeley, CA</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNR (National Research Council), Istituto per la Protezione delle Piante</s1>
<s2>Sesto Fiorentino, Florence</s2>
<s3>ITA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of California Cooperative Extension</s1>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>3404-3412</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000193893460080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0482239</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The Citrus genus includes a large number of species and varieties widely cultivated in the Central Valley of California and in many other countries having similar Mediterranean climates. In the summer, orchards in California experience high levels of tropospheric ozone, formed by reactions of volatile organic compounds (VOC) with oxides of nitrogen (NO
<sub>x</sub>
). Citrus trees may improve air quality in the orchard environment by taking up ozone through stomatal and non-stomatal mechanisms, but they may ultimately be detrimental to regional air quality by emitting biogenic VOC (BVOC) that oxidize to form ozone and secondary organic aerosol downwind of the site of emission. BVOC also play a key role in removing ozone through gas-phase chemical reactions in the intercellular spaces of the leaves and in ambient air outside the plants. Ozone is known to oxidize leaf tissues after entering stomata, resulting in decreased carbon assimilation and crop yield. To characterize ozone deposition and BVOC emissions for lemon (Citrus limon), mandarin (Citrus reticulata), and orange (Citrus sinensis), we designed branch enclosures that allowed direct measurement of fluxes under different physiological conditions in a controlled greenhouse environment. Average ozone uptake was up to 11 nmol s
<sup>-1</sup>
m
<sup>-2</sup>
of leaf. At low concentrations of ozone (40 ppb), measured ozone deposition was higher than expected ozone deposition modeled on the basis of stomatal aperture and ozone concentration. Our results were in better agreement with modeled values when we included non-stomatal ozone loss by reaction with gas-phase BVOC emitted from the citrus plants. At high ozone concentrations (160 ppb), the measured ozone deposition was lower than modeled, and we speculate that this indicates ozone accumulation in the leaf mesophyll.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E02D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Captation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Uptake</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Captación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Climat méditerranéen</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Mediterranean climate</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Clima mediterráneo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Eté</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Summer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Verano</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Verger</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Orchard</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Huerto</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composé organique volatil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Volatile organic compound</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compuesto orgánico volátil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Azote</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nitrogen</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nitrógeno</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde d'azote</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dioxyde d'azote</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Echelon régional</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Regional scope</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Escala regional</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Facteur biogène</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Biogenic factor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Factor biógeno</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Polluant secondaire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Secondary pollutant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Contaminante secundario</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Réaction phase gazeuse</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Gaseous phase reaction</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Reacción fase gaseosa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Feuille végétal</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Plant leaf</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Hoja vegetal</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Models</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Californie</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>California</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>California</s0>
<s2>NG</s2>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Composé de l'azote</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Nitrogen compounds</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Compuesto nitrogenado</s0>
<s2>NK</s2>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Pollution origine naturelle</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Natural origin pollution</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Polución origen natural</s0>
<s5>36</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Etats-Unis</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>319</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
</region>
<name sortKey="Gentner, Drew R" sort="Gentner, Drew R" uniqKey="Gentner D" first="Drew R." last="Gentner">Drew R. Gentner</name>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<name sortKey="Goldstein, Allen H" sort="Goldstein, Allen H" uniqKey="Goldstein A" first="Allen H." last="Goldstein">Allen H. Goldstein</name>
<name sortKey="Karlik, John" sort="Karlik, John" uniqKey="Karlik J" first="John" last="Karlik">John Karlik</name>
<name sortKey="Mckay, Megan" sort="Mckay, Megan" uniqKey="Mckay M" first="Megan" last="Mckay">Megan Mckay</name>
<name sortKey="Ormeno, Elena" sort="Ormeno, Elena" uniqKey="Ormeno E" first="Elena" last="Ormeno">Elena Ormeno</name>
<name sortKey="Park, Jeong Hoo" sort="Park, Jeong Hoo" uniqKey="Park J" first="Jeong-Hoo" last="Park">Jeong-Hoo Park</name>
</country>
<country name="Italie">
<region name="Latium">
<name sortKey="Fares, Silvano" sort="Fares, Silvano" uniqKey="Fares S" first="Silvano" last="Fares">Silvano Fares</name>
</region>
<name sortKey="Loreto, Francesco" sort="Loreto, Francesco" uniqKey="Loreto F" first="Francesco" last="Loreto">Francesco Loreto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000221 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000221 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:10-0482239
   |texte=   Ozone uptake by citrus trees exposed to a range of ozone concentrations
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024