Serveur d'exploration sur l'oranger

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetic calibration for automated headspace liquid-phase microextraction.

Identifieur interne : 002823 ( Main/Merge ); précédent : 002822; suivant : 002824

Kinetic calibration for automated headspace liquid-phase microextraction.

Auteurs : Gangfeng Ouyang [Canada] ; Wennan Zhao ; Janusz Pawliszyn

Source :

RBID : pubmed:16351164

English descriptors

Abstract

The kinetics of the absorption and desorption of analytes for headspace liquid-phase microextraction (HS-LPME) were studied. It was found that the desorption of analytes from the extraction phase into the sample matrix is isotropic to the absorption of the analytes from the sample matrix into the extraction phase under the same conditions. This therefore allows for the calibration of absorption using desorption. Calibration was accomplished by exposing the extraction phase, which contained a standard, to the sample matrix. The information from the desorption of the standard, such as time constant a, could be directly used to estimate the concentration of the target analyte in the sample matrix. This new kinetic calibration method for headspace LPME was successfully used to correct the matrix effects in the BTEX analysis of an orange juice sample. In this study, the headspace LPME techniques were successfully fully automated, for both static and dynamic methods, with the CTC CombiPal autosampler. All operations of headspace LPME, including sample transfer and agitation, filling of extraction solvent, exposing the solvent in the headspace, withdrawing the solvent to syringe and introducing the extraction phase into injector, were autoperformed by the CTC autosampler. The fully automated headspace LPME technique is more convenient and improved the precision and sensitivity of the method. This automated dynamic headspace LPME technique can be also used to obtain the distribution coefficient between the sample matrix (aqueous or another solution) and the extraction phase (1-octanol or another solvent). The distribution coefficient between 1-octanol and orange juice, at 25 degrees C, was obtained with this technique.

DOI: 10.1021/ac051493z
PubMed: 16351164

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16351164

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetic calibration for automated headspace liquid-phase microextraction.</title>
<author>
<name sortKey="Ouyang, Gangfeng" sort="Ouyang, Gangfeng" uniqKey="Ouyang G" first="Gangfeng" last="Ouyang">Gangfeng Ouyang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Waterloo, Ontario N2L 3G1</wicri:regionArea>
<wicri:noRegion>Ontario N2L 3G1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Wennan" sort="Zhao, Wennan" uniqKey="Zhao W" first="Wennan" last="Zhao">Wennan Zhao</name>
</author>
<author>
<name sortKey="Pawliszyn, Janusz" sort="Pawliszyn, Janusz" uniqKey="Pawliszyn J" first="Janusz" last="Pawliszyn">Janusz Pawliszyn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16351164</idno>
<idno type="pmid">16351164</idno>
<idno type="doi">10.1021/ac051493z</idno>
<idno type="wicri:Area/PubMed/Corpus">000C59</idno>
<idno type="wicri:Area/PubMed/Curation">000C59</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000C59</idno>
<idno type="wicri:Area/Ncbi/Merge">000449</idno>
<idno type="wicri:Area/Ncbi/Curation">000449</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000449</idno>
<idno type="wicri:doubleKey">0003-2700:2005:Ouyang G:kinetic:calibration:for</idno>
<idno type="wicri:Area/Main/Merge">002823</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetic calibration for automated headspace liquid-phase microextraction.</title>
<author>
<name sortKey="Ouyang, Gangfeng" sort="Ouyang, Gangfeng" uniqKey="Ouyang G" first="Gangfeng" last="Ouyang">Gangfeng Ouyang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry, University of Waterloo, Ontario N2L 3G1</wicri:regionArea>
<wicri:noRegion>Ontario N2L 3G1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Wennan" sort="Zhao, Wennan" uniqKey="Zhao W" first="Wennan" last="Zhao">Wennan Zhao</name>
</author>
<author>
<name sortKey="Pawliszyn, Janusz" sort="Pawliszyn, Janusz" uniqKey="Pawliszyn J" first="Janusz" last="Pawliszyn">Janusz Pawliszyn</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="ISSN">0003-2700</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Benzene (analysis)</term>
<term>Benzene Derivatives (analysis)</term>
<term>Beverages (analysis)</term>
<term>Chemical Fractionation (methods)</term>
<term>Chemistry Techniques, Analytical (instrumentation)</term>
<term>Chemistry Techniques, Analytical (methods)</term>
<term>Chromatography, Gas (instrumentation)</term>
<term>Chromatography, Gas (methods)</term>
<term>Citrus sinensis (chemistry)</term>
<term>Kinetics</term>
<term>Toluene (analysis)</term>
<term>Xylenes (analysis)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Benzene</term>
<term>Benzene Derivatives</term>
<term>Toluene</term>
<term>Xylenes</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Beverages</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Citrus sinensis</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Chemistry Techniques, Analytical</term>
<term>Chromatography, Gas</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chemical Fractionation</term>
<term>Chemistry Techniques, Analytical</term>
<term>Chromatography, Gas</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adsorption</term>
<term>Kinetics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The kinetics of the absorption and desorption of analytes for headspace liquid-phase microextraction (HS-LPME) were studied. It was found that the desorption of analytes from the extraction phase into the sample matrix is isotropic to the absorption of the analytes from the sample matrix into the extraction phase under the same conditions. This therefore allows for the calibration of absorption using desorption. Calibration was accomplished by exposing the extraction phase, which contained a standard, to the sample matrix. The information from the desorption of the standard, such as time constant a, could be directly used to estimate the concentration of the target analyte in the sample matrix. This new kinetic calibration method for headspace LPME was successfully used to correct the matrix effects in the BTEX analysis of an orange juice sample. In this study, the headspace LPME techniques were successfully fully automated, for both static and dynamic methods, with the CTC CombiPal autosampler. All operations of headspace LPME, including sample transfer and agitation, filling of extraction solvent, exposing the solvent in the headspace, withdrawing the solvent to syringe and introducing the extraction phase into injector, were autoperformed by the CTC autosampler. The fully automated headspace LPME technique is more convenient and improved the precision and sensitivity of the method. This automated dynamic headspace LPME technique can be also used to obtain the distribution coefficient between the sample matrix (aqueous or another solution) and the extraction phase (1-octanol or another solvent). The distribution coefficient between 1-octanol and orange juice, at 25 degrees C, was obtained with this technique.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/OrangerV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002823 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 002823 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    OrangerV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:16351164
   |texte=   Kinetic calibration for automated headspace liquid-phase microextraction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:16351164" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a OrangerV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 17:11:04 2016. Site generation: Wed Mar 6 18:18:32 2024