Le SIDA en Afrique subsaharienne (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1

Identifieur interne : 001569 ( Istex/Corpus ); précédent : 001568; suivant : 001570

HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1

Auteurs : Jianming Tang ; Ana Penman-Aguilar ; Elena Lobashevsky ; Susan Allen ; Ricahrd A. Kaslow

Source :

RBID : ISTEX:42657B23A1BD112A21C370910BC38B945FF3F41D

Abstract

In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples, HLA-DRB1 and -DQB1 variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60; P = .009) or DRB1*1503-DQB1*0602 (RH, 1.67; P = .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54; P = .05). The combined groups of seroprevalent and seroincident partners (n = 433) also differed from those who remained seronegative (n = 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28; P = .003) and DRB1*1503-DQB1*0602 (RO, 1.81; P = .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.

Url:
DOI: 10.1086/383280

Links to Exploration step

ISTEX:42657B23A1BD112A21C370910BC38B945FF3F41D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
<author>
<name sortKey="Tang, Jianming" sort="Tang, Jianming" uniqKey="Tang J" first="Jianming" last="Tang">Jianming Tang</name>
<affiliation>
<mods:affiliation>Department of Medicine University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rkaslow@uab.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Penman Aguilar, Ana" sort="Penman Aguilar, Ana" uniqKey="Penman Aguilar A" first="Ana" last="Penman-Aguilar">Ana Penman-Aguilar</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lobashevsky, Elena" sort="Lobashevsky, Elena" uniqKey="Lobashevsky E" first="Elena" last="Lobashevsky">Elena Lobashevsky</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allen, Susan" sort="Allen, Susan" uniqKey="Allen S" first="Susan" last="Allen">Susan Allen</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaslow, Ricahrd A" sort="Kaslow, Ricahrd A" uniqKey="Kaslow R" first="Ricahrd A." last="Kaslow">Ricahrd A. Kaslow</name>
<affiliation>
<mods:affiliation>Department of Medicine University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rkaslow@uab.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:42657B23A1BD112A21C370910BC38B945FF3F41D</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1086/383280</idno>
<idno type="url">https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001569</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
<author>
<name sortKey="Tang, Jianming" sort="Tang, Jianming" uniqKey="Tang J" first="Jianming" last="Tang">Jianming Tang</name>
<affiliation>
<mods:affiliation>Department of Medicine University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rkaslow@uab.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Penman Aguilar, Ana" sort="Penman Aguilar, Ana" uniqKey="Penman Aguilar A" first="Ana" last="Penman-Aguilar">Ana Penman-Aguilar</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lobashevsky, Elena" sort="Lobashevsky, Elena" uniqKey="Lobashevsky E" first="Elena" last="Lobashevsky">Elena Lobashevsky</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allen, Susan" sort="Allen, Susan" uniqKey="Allen S" first="Susan" last="Allen">Susan Allen</name>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaslow, Ricahrd A" sort="Kaslow, Ricahrd A" uniqKey="Kaslow R" first="Ricahrd A." last="Kaslow">Ricahrd A. Kaslow</name>
<affiliation>
<mods:affiliation>Department of Medicine University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Epidemiology University of Alabama at Birmingham</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: rkaslow@uab.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">The Journal of Infectious Diseases</title>
<title level="j" type="abbrev">The Journal of Infectious Diseases</title>
<idno type="ISSN">0022-1899</idno>
<idno type="eISSN">1537-6613</idno>
<imprint>
<publisher>University Chicago Press</publisher>
<date type="published" when="2004-05-01">2004-05-01</date>
<biblScope unit="volume">189</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1696">1696</biblScope>
<biblScope unit="page" to="1704">1704</biblScope>
</imprint>
<idno type="ISSN">0022-1899</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples, HLA-DRB1 and -DQB1 variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60; P = .009) or DRB1*1503-DQB1*0602 (RH, 1.67; P = .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54; P = .05). The combined groups of seroprevalent and seroincident partners (n = 433) also differed from those who remained seronegative (n = 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28; P = .003) and DRB1*1503-DQB1*0602 (RO, 1.81; P = .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<author>
<json:item>
<name>Jianming Tang</name>
<affiliations>
<json:string>Department of Medicine University of Alabama at Birmingham</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ana Penman-Aguilar</name>
<affiliations>
<json:string>Department of Epidemiology University of Alabama at Birmingham</json:string>
</affiliations>
</json:item>
<json:item>
<name>Elena Lobashevsky</name>
<affiliations>
<json:string>Department of Epidemiology University of Alabama at Birmingham</json:string>
</affiliations>
</json:item>
<json:item>
<name>Susan Allen</name>
<affiliations>
<json:string>Department of Epidemiology University of Alabama at Birmingham</json:string>
</affiliations>
</json:item>
<json:item>
<name>for the Zambia-UAB HIV Research Project Ricahrd A. Kaslow</name>
<affiliations>
<json:string>Department of Medicine University of Alabama at Birmingham</json:string>
<json:string>Department of Epidemiology University of Alabama at Birmingham</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples, HLA-DRB1 and -DQB1 variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60; P = .009) or DRB1*1503-DQB1*0602 (RH, 1.67; P = .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54; P = .05). The combined groups of seroprevalent and seroincident partners (n = 433) also differed from those who remained seronegative (n = 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28; P = .003) and DRB1*1503-DQB1*0602 (RO, 1.81; P = .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.</abstract>
<qualityIndicators>
<score>8.956</score>
<pdfWordCount>5233</pdfWordCount>
<pdfCharCount>34709</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>163</abstractWordCount>
<abstractCharCount>1149</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>The Journal of Infectious Diseases</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0022-1899</json:string>
</issn>
<eissn>
<json:string>1537-6613</json:string>
</eissn>
<publisherId>
<json:string>jid</json:string>
</publisherId>
<volume>189</volume>
<issue>9</issue>
<pages>
<first>1696</first>
<last>1704</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>microbiology</json:string>
<json:string>infectious diseases</json:string>
<json:string>immunology</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>biomedical research</json:string>
<json:string>microbiology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1086/383280</json:string>
</doi>
<id>42657B23A1BD112A21C370910BC38B945FF3F41D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">University Chicago Press</publisher>
<availability>
<licence>
<p>© 2004 by the Infectious Diseases Society of America</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</p>
</availability>
<date>2004</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Presented in part: 10th Conference on Retroviruses and Opportunistic Infections, Boston, 10–14 February 2003 (abstract 507).</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">Jianming</forename>
<surname>Tang</surname>
</persName>
<email>rkaslow@uab.edu</email>
<affiliation>Department of Medicine University of Alabama at Birmingham</affiliation>
<affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ana</forename>
<surname>Penman-Aguilar</surname>
</persName>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Elena</forename>
<surname>Lobashevsky</surname>
</persName>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Susan</forename>
<surname>Allen</surname>
</persName>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
</author>
<author xml:id="author-0004" corresp="yes">
<persName>
<forename type="first">Ricahrd A.</forename>
<surname>Kaslow</surname>
</persName>
<email>rkaslow@uab.edu</email>
<note type="biography">a Additional members of the Zambia-UAB HIV Research Project are listed after the text.</note>
<affiliation>a Additional members of the Zambia-UAB HIV Research Project are listed after the text.</affiliation>
<affiliation>Department of Medicine University of Alabama at Birmingham</affiliation>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
<affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</affiliation>
</author>
<idno type="istex">42657B23A1BD112A21C370910BC38B945FF3F41D</idno>
<idno type="ark">ark:/67375/HXZ-155JRM1X-G</idno>
<idno type="DOI">10.1086/383280</idno>
</analytic>
<monogr>
<title level="j">The Journal of Infectious Diseases</title>
<title level="j" type="abbrev">The Journal of Infectious Diseases</title>
<idno type="pISSN">0022-1899</idno>
<idno type="eISSN">1537-6613</idno>
<idno type="publisher-id">jid</idno>
<idno type="PublisherID-hwp">jinfdis</idno>
<imprint>
<publisher>University Chicago Press</publisher>
<date type="published" when="2004-05-01"></date>
<biblScope unit="volume">189</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1696">1696</biblScope>
<biblScope unit="page" to="1704">1704</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<abstract>
<p>In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples, HLA-DRB1 and -DQB1 variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60; P = .009) or DRB1*1503-DQB1*0602 (RH, 1.67; P = .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54; P = .05). The combined groups of seroprevalent and seroincident partners (n = 433) also differed from those who remained seronegative (n = 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28; P = .003) and DRB1*1503-DQB1*0602 (RO, 1.81; P = .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2004-05-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">jinfdis</journal-id>
<journal-id journal-id-type="publisher-id">jid</journal-id>
<journal-title>The Journal of Infectious Diseases</journal-title>
<abbrev-journal-title>The Journal of Infectious Diseases</abbrev-journal-title>
<issn pub-type="ppub">0022-1899</issn>
<issn pub-type="epub">1537-6613</issn>
<publisher>
<publisher-name>University Chicago Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1086/383280</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Major Articles and Brief Reports</subject>
<subj-group subj-group-type="heading">
<subject>HIV/AIDS</subject>
<subj-group subj-group-type="heading">
<subject>Major Articles</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>HLA-DRB1</italic>
and
<italic>-DQB1</italic>
Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Tang</surname>
<given-names>Jianming</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="COR1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Penman-Aguilar</surname>
<given-names>Ana</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lobashevsky</surname>
<given-names>Elena</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Allen</surname>
<given-names>Susan</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Kaslow</surname>
<given-names>Ricahrd A.</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="corresp" rid="COR1"></xref>
<on-behalf-of>for the Zambia-UAB HIV Research Project</on-behalf-of>
<xref ref-type="fn" rid="FN1">a</xref>
</contrib>
<aff id="aff1">
<institution>Department of Medicine University of Alabama at Birmingham</institution>
</aff>
<aff id="aff2">
<institution>Department of Epidemiology University of Alabama at Birmingham</institution>
</aff>
</contrib-group>
<author-notes>
<corresp id="COR1">Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming (James) Tang, Program in Epidemiology of Infection and Immunity, 610 Ryals Bldg., 1665 University Blvd., University of Alabama at Birmingham, Birmingham, AL 35294-0022 (
<email>rkaslow@uab.edu</email>
or
<email>jtang@uab.edu</email>
).</corresp>
<fn fn-type="other">
<p>Presented in part: 10th Conference on Retroviruses and Opportunistic Infections, Boston, 10–14 February 2003 (abstract 507).</p>
</fn>
<fn id="FN1" fn-type="other">
<label>a</label>
<p>Additional members of the Zambia-UAB HIV Research Project are listed after the text.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>Financial support: National Institute of Allergy and Infectious Diseases (grants AI40951, AI41530, and AI41951).</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>1</day>
<month>5</month>
<year>2004</year>
</pub-date>
<volume>189</volume>
<issue>9</issue>
<fpage>1696</fpage>
<lpage>1704</lpage>
<history>
<date date-type="received">
<day>7</day>
<month>8</month>
<year>2003</year>
</date>
<date date-type="accepted">
<day>4</day>
<month>11</month>
<year>2003</year>
</date>
</history>
<copyright-statement>© 2004 by the Infectious Diseases Society of America</copyright-statement>
<copyright-year>2004</copyright-year>
<abstract>
<p>In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples,
<italic>HLA-DRB1</italic>
and
<italic>-DQB1</italic>
variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60;
<italic>P</italic>
= .009) or DRB1*1503-DQB1*0602 (RH, 1.67;
<italic>P</italic>
= .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54;
<italic>P</italic>
= .05). The combined groups of seroprevalent and seroincident partners (
<italic>n</italic>
= 433) also differed from those who remained seronegative (
<italic>n</italic>
= 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28;
<italic>P</italic>
= .003) and DRB1*1503-DQB1*0602 (RO, 1.81;
<italic>P</italic>
= .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Sub-Saharan Africa has been experiencing the worst public health and socioeconomic problems associated with the HIV/AIDS pandemic [
<xref ref-type="bibr" rid="R1">1</xref>
,
<xref ref-type="bibr" rid="R2">2</xref>
]. Studies of native Africans have uncovered important host and viral factors predictive of relative risk for heterosexual transmission of HIV-1 and subsequent pathogenesis [
<xref ref-type="bibr" rid="R3">3</xref>
<xref ref-type="bibr" rid="R14">14</xref>
]. Consensus findings from such research have suggested mechanisms that may eventually guide the design of effective biologic interventions [
<xref ref-type="bibr" rid="R15">15</xref>
<xref ref-type="bibr" rid="R19">19</xref>
].</p>
<p>Earlier analyses of initially HIV-1-serodiscordant and cohabiting Zambian couples [
<xref ref-type="bibr" rid="R12">12</xref>
,
<xref ref-type="bibr" rid="R14">14</xref>
,
<xref ref-type="bibr" rid="R20">20</xref>
] have identified multiple host factors with independent influences on HIV-1 infection and subsequent virus-host equilibration. A comprehensive analysis of both genetic and nongenetic host factors, in relation to heterosexual transmission of HIV-1, now suggests that HLA class II (
<italic>DRB1</italic>
and
<italic>DQB1</italic>
) polymorphism may play a dual role in modulating both propagation of HIV by seropositive partners and acquisition of HIV by seronegative partners.</p>
<sec>
<title>Subjects and Methods</title>
<p>
<bold>
<italic>Participants and HIV-1 identities.</italic>
</bold>
Initially HIV-1—serodiscordant couples (one partner seropositive and the other seronegative) were selected from the Zambia-UAB HIV Research Project (ZUHRP). Informed consent was obtained from all study participants, in accordance with the human-experimentation guidelines of the US Department of Health and Human Services. Detailed procedures for recruitment, counseling, quarterly follow-up visits, and laboratory testing have been described elsewhere [
<xref ref-type="bibr" rid="R12">12</xref>
,
<xref ref-type="bibr" rid="R21">21</xref>
,
<xref ref-type="bibr" rid="R22">22</xref>
]. Between February 1995 and December 2002, within-couple transmission of HIV was determined by phylogenetic analyses of subgenomic HIV-1 sequences corresponding to
<italic>gag</italic>
,
<italic>env</italic>
(
<italic>gp120</italic>
and
<italic>gp41</italic>
), and the long terminal repeat regions [
<xref ref-type="bibr" rid="R12">12</xref>
,
<xref ref-type="bibr" rid="R20">20</xref>
]. The vast majority (95%) of HIV-1 sequences derived from ZUHRP participants belonged to subtype C (HIV-1C), although other subtypes—such as A, D, G, and J—were also detected occasionally [
<xref ref-type="bibr" rid="R20">20</xref>
]. Overall, virus isolates from each transmission pair (transmitter and seroconverter) were closely related, with a median of 1.5% and a maximum of 4.0% nucleotide substitutions [
<xref ref-type="bibr" rid="R20">20</xref>
]. In contrast, the median nucleotide substitution rate was 8.8% for unlinked HIV-1C viruses from the same cohort or elsewhere.</p>
<p>
<bold>
<italic>Virological measurements.</italic>
</bold>
HIV-1 RNA levels in plasma samples from patients were measured universally by use of the Roche Amplicor 1.0 assay in a laboratory certified by the Virology Quality Assurance Program of the AIDS Clinical Trials Group. Additional comparison of 4 commercial viral assays (Chiron Quantiplex HIV-1 branched DNA, Amplicor version 1.0, Amplicor version 1.5, and Organon-Teknika nucleic acid sequence-based amplification HIV-1 RNA QT) suggested that each of them could successfully quantify cell-free HIV-1 RNA in Zambians; the modified (new-generation) Amplicor assay (version 1.5) with additional primer sets targeting non-B-subtype viruses showed slight (0.3 log
<sub>10</sub>
copies/mL;
<italic>P</italic>
> .05) improvement, compared with the first-generation Amplicor assay (version 1.0) [
<xref ref-type="bibr" rid="R23">23</xref>
]. The index partners with medium (10
<sup>4</sup>
–10
<sup>5</sup>
copies/mL) and high (>10
<sup>5</sup>
copies/ mL) levels of HIV-1 RNA transmitted viruses more readily than did those with reduced viremia (<10
<sup>4</sup>
copies/mL) [
<xref ref-type="bibr" rid="R12">12</xref>
]. These 3 categories of virus load were retained as a key predictive covariate in subsequent analyses.</p>
<p>
<bold>
<italic>DNA extraction and HLA typing.</italic>
</bold>
Genomic DNA was extracted from whole blood by use of the QIAamp Blood Kit and protocols recommended by the manufacturer (Qiagen). Allelic specificities of HLA class II genes
<italic>DRB1</italic>
and
<italic>DQB1</italic>
were resolved to their 4–5-digit molecular level by use of several techniques, including solid-phase DNA sequencing (Amersham Pharmacia Biotech) and polymerase chain reaction with sequence-specific primers, as described elsewhere for another cohort of native Africans (Rwandans) [
<xref ref-type="bibr" rid="R24">24</xref>
]. Two-locus
<italic>DRB1</italic>
and
<italic>DQB1</italic>
haplotypes were assigned according to linkage disequilibria observed in populations of African ancestry [
<xref ref-type="bibr" rid="R24">24</xref>
,
<xref ref-type="bibr" rid="R25">25</xref>
].</p>
<p>
<bold>
<italic>Statistical analyses.</italic>
</bold>
The overall genetic heterogeneity between groups of patients was measured by use of exact tests based on metropolis algorithms [
<xref ref-type="bibr" rid="R26">26</xref>
] and row-by-column contingency tables. Other analyses relied on several statistical routines in SAS (version 8.0; SAS Institute). More specifically, χ
<sup>2</sup>
tests were applied, to compare effects of categorical variables—such as sex and the distribution of HLA alleles, and haplotypes—between groups of patients defined by the status of transmission of HIV-1. Student's
<italic>t</italic>
tests and F tests were used to compare continuous variables, including age and mean log
<sub>10</sub>
HIV-1 load of patients. The univariate relative hazards (RHs) of HIV-1 infection for specific HLA variants, were estimated by use of Cox proportional hazards models, using subjects stratified by the HLA markers under investigation. Kaplan-Meier plots were used to show the time from enrollment to incident HIV-1 infection (transmission by seropositive index partners and acquisition by seronegative nonindex partners). Both Wilcoxon and log-rank tests of significance are shown, since the 2 tests differ in their emphasis on earlier and latter periods of follow-up. All HLA factors showing at least a marginal association (
<italic>P</italic>
< .10) with HIV-1 infection (in either cross-sectional or longitudinal analyses, described above) were tested in multivariable models. Further statistical adjustments were made for genetic markers identified at the HLA class I (M.T. Dorak, J.T., S.A., and R.A.K., unpublished data) and chemokine receptor (CCR2 and CCR5) loci (J.T., S.A., and R.A.K., unpublished data).</p>
</sec>
<sec>
<title>Results</title>
<p>
<bold>
<italic>Characteristics of patients and key measures of outcome.</italic>
</bold>
Our analyses focused on a subset of 292 HIV-1-serodiscordant couples at relatively high risk for transmission of HIV, as reflected by unprotected sex (both self-reported and biologically proven), genital ulceration/inflammation, and a history of sexually transmitted infections [
<xref ref-type="bibr" rid="R22">22</xref>
]. These couples were classified into 3 subgroups: 124 linked transmitting couples, 17 unlinked couples, and 151 persistently nontransmitting couples. Data censored in December 2002 were suitable for nested case-control analyses of viral and host factors related to transmission of HIV-1 and seropositivity (
<xref ref-type="fig" rid="fig3">table 1</xref>
) and for analysis of time to transmission. Overall, the sex ratio (F:M) was ∼0.90 when the 17 unlinked pairs were excluded, and the majority (∼87%) of fully analyzed subjects were ≤40 years old at enrollment. Virus load was measured once in >95% of all HIV-1-seropositive individuals, and high-resolution HLA class II typing was successful in all individuals.</p>
<p>
<bold>
<italic>Distribution of</italic>
HLA-DRB1
<italic>and</italic>
-DQB1
<italic>alleles and haplotypes in Zambians, in relation to HIV-1 seropositivity.</italic>
</bold>
At the 4-digit specificity level, 16
<italic>DRB1</italic>
and 10
<italic>DQB1</italic>
alleles were common in the Zambian cohort (
<xref ref-type="fig" rid="fig4">table 2</xref>
). These major alleles accounted for >90% of the total at each locus; they also produced 25 common 2-locus haplotypes (data available on request). The allelic and genotypic frequencies closely matched those expected for Hardy-Weinberg equilibrium (
<italic>P</italic>
> .20). Homozygosity frequencies for the major alleles were also within their expected ranges.</p>
<p>Stratification for HIV-1 infection status did not reveal any overall allelic or haplotypic heterogeneity at
<italic>DRB1</italic>
and
<italic>DQB1</italic>
loci (
<italic>P</italic>
= .113–.399, global exact tests;
<xref ref-type="fig" rid="fig4">table 2</xref>
). However, distribution of DRB1*0301, DQB1*0604, DRB1*1302-DQB1*0604, and DRB1*1503-DQB1*0602 differed betweenHIV-1-seropositiveand HIV-1-seronegative groups, in comparisons of individual alleles and haplotypes (
<italic>P</italic>
= .005–.042;
<xref ref-type="fig" rid="fig4">table 2</xref>
) and/or in univariate analyses of population (marker) frequencies (
<italic>P</italic>
=.004–.084;
<xref ref-type="fig" rid="fig5">table 3</xref>
). DRB1*0301 was found exclusively on the DRB1*0301-DQB1*0201 haplotype, but DQB1*0201 by itself showed similar frequencies in seropositive and seronegative groups (
<xref ref-type="fig" rid="fig4">table 2</xref>
). Differential distribution of these individual variants was not due to age group or sex (adjusted
<italic>P</italic>
=.003–.065;
<xref ref-type="fig" rid="fig5">table 3</xref>
).</p>
<p>
<bold>
<italic>Associations of</italic>
DRB1
<italic>and</italic>
DQB1
<italic>variants with transmission of HIV-1 from initially seropositive partners.</italic>
</bold>
In a comparison of transmitting couples (
<italic>n</italic>
= 124, excluding 17 unlinked) and nontransmitting couples (
<italic>n</italic>
= 151), initially seropositive index partners carrying the DRB1*1301 (
<italic>n</italic>
= 32) or the DRB1*1301-DQB1*0501 (
<italic>n</italic>
= 19) haplotype were less likely to transmit HIV-1 to their seronegative partners during the 7-year follow-up period (RH, 0.48;
<italic>P</italic>
= .034–.082;
<xref ref-type="fig" rid="fig1">figure 1</xref>
). The effects of DRB1*1301 remained stable (RH, 0.50;
<italic>P</italic>
= .044) when age, sex, and donor virus load (RH, 1.9;
<italic>P</italic>
< .0001) were treated as covariates. However, DRB1*1301 had no appreciable effect on log
<sub>10</sub>
HIV-1 load in the seropositive partners, compared with other
<italic>DRB1</italic>
alleles (
<italic>P</italic>
> .50,
<italic>t</italic>
test).</p>
<p>
<bold>
<italic>Associations of</italic>
DRB1
<italic>and</italic>
<italic>DQB1 variants with seroconversion, in initially seronegative partners.</italic>
</bold>
Among the initially seronegative partners, accelerated seroconversion was associated with 2 major haplotypes—that is, DRB1*1302-D QB1*0609 (
<italic>n</italic>
= 7; RHp3.03;
<italic>P</italic>
= .017;
<xref ref-type="fig" rid="fig6">table 4</xref>
) and DRB1*1503-DQB1*0602 (
<italic>n</italic>
= 60; RH, 1.68;
<italic>P</italic>
= .009;
<xref ref-type="fig" rid="fig2">figure 2</xref>
and
<xref ref-type="fig" rid="fig6">table 4</xref>
). Adjustment for other host factors—including age, sex, and virus load—in seropositive index partners did not materially alter these relationships (RH, 4.09 and 1.44;
<italic>P</italic>
= .079 and
<italic>P</italic>
= .04, respectively), whereas the moremodest effect of DRB1*0301-DQB1*0201 on HIV-1 seroconversion was diminished after these adjustments (RH, 1.27–1.54;
<italic>P</italic>
= .046–.289).</p>
<p>
<bold>DRB1
<italic>and</italic>
DQB1
<italic>homozygosity and</italic>
DRB1
<italic>lineages, in relation to transmission of HIV-1 and seroconversion.</italic>
</bold>
Homozygosity at the
<italic>DRB1</italic>
and
<italic>DQB1</italic>
loci was found in 11.3% and 19.9% of HIV-1 seronegative patients and in 9.7% and 16.6% of seropositive patients, respectively (
<italic>P</italic>
> .35). Homozygosity frequencies were similar between HIV-1-transmitting couples and HIV-1-nontransmitting couples (
<italic>P</italic>
> .50) and between HIV-1 seroconverters and persistently seronegative patients (
<italic>P</italic>
> .50). Analyses of
<italic>DRB1</italic>
alleles alternatively classified into 5 known lineages (
<italic>DR1, DR51, DR52, DR53,</italic>
and
<italic>DR8</italic>
) revealed no trends toward association with transmission of HIV-1 or seroconversion. For example, DRB1*04, DRB1*07, and DRB1*09 alleles define the
<italic>DR53</italic>
group, which was equally common in the HIV-1-seropositive group and the HIV-1-seronegative group (
<xref ref-type="fig" rid="fig4">table 2</xref>
). Likewise, the
<italic>DR51</italic>
group, comprising DRB1*15 and DRB1*16 alleles, showed no separate association with transmission or seroconversion and did not better explain the effect of DRB1*1503.</p>
<p>
<bold>DRB1
<italic>and</italic>
DQB1
<italic>allele sharing, in relation to transmission of HIV-1 and seroconversion.</italic>
</bold>
In contrast to the clear effects of HLA class I sharing on transmission of HIV-1, in ZUHRP [
<xref ref-type="bibr" rid="R27">27</xref>
] and another African cohort [
<xref ref-type="bibr" rid="R28">28</xref>
], proportions (30%–42%) of couples who shared
<italic>DRB1</italic>
or
<italic>DQB1</italic>
alleles did not differ by HIV-1-transmission status (
<italic>P</italic>
> .50; data not shown). Likewise, sharing of
<italic>DRB1</italic>
lineages was as common in transmitting couples as in nontransmitting couples (
<italic>P</italic>
> .50; data not shown). Ongoing analyses of extended HLA class I and class II haplotypes might yield more definitive findings.</p>
<p>
<bold>
<italic>Multivariable models for within-couple transmission of HIV-1.</italic>
</bold>
Several models were used to assess the simultaneous effects of multiple host and viral factors on within-couple HIV-1-transmission status (
<xref ref-type="fig" rid="fig7">table 5</xref>
). For seropositive partners, male sex (RH, 2.27–2.86;
<italic>P</italic>
< .0001) and elevated virus load (RH, 1.52–1.55;
<italic>P</italic>
< .01) were the significant cofactors for HIV-1 transmission. Genital ulcer/inflammation in both partners, whether initially seropositive (RH, 3.04–3.23;
<italic>P</italic>
< .0001) or seronegative (RH, 3.11–3.74;
<italic>P</italic>
< .0001), also served as a strong predisposing factor for HIV infection. With statistical adjustment for other genetic factors (including HLA class I and
<italic>CCR2-CCR5</italic>
variants [M. T. Dorak, J. Tang, and R. A. Kaslow, unpublished data]), HLA class II variants (
<xref ref-type="fig" rid="fig6">table 4</xref>
) showing marginally significant (univariate
<italic>P</italic>
< .10) associations with transmission of HIV-1 (in seropositive partners) or seroconversion (in seronegative partners), for the most part, remained contributing factors in the respective models. In particular, DRB1*1301 in seropositive partners (RH, 0.16–0.18;
<italic>P</italic>
< .005) and DRB1*1302-DQB1*0609 in seronegative partners (adjusted RH, 2.69–3.85;
<italic>P</italic>
< .05) retained their relationships to virus transmission. The effect of DRB1*1503-DQB1*0602 was no longer statistically significant in the full model (model 1; RH, 1.41;
<italic>P</italic>
= .124), but the RH value remained similar to that observed in univariate analyses (
<xref ref-type="fig" rid="fig6">table 4</xref>
). Excluding DRB1*1503-DQB1*0602 from the reduced model (model 2) did not substantially alter the strength of other associations.</p>
<p>In further multivariable testing, increased duration of cohabitation reported at enrollment was accompanied by a reduction in subsequent transmission of HIV-1 in this cohort (RH, 0.95/year; adjusted
<italic>P</italic>
< .05). This effect was largely attributed to apparent confounding by other factors, especially the index partner's age, which correlated with both duration of cohabitation (Spearman
<italic>r</italic>
= 0.54;
<italic>P</italic>
< .0001) and age of the seronegative partner (Spearman
<italic>r</italic>
= 0.27;
<italic>P</italic>
< .0001). Alternatively, age could replace duration of cohabitation as another modest factor in the multivariable model (model 3;
<xref ref-type="fig" rid="fig7">table 5</xref>
)—that is, either younger age (RH, 1.44; adjusted
<italic>P</italic>
= .174) or shorter duration of cohabitation at enrollment (baseline) could be treated as a risk factor for within-couple transmission of HIV-1 in this cohort.</p>
</sec>
<sec>
<title>Discussion</title>
<p>Effects of host genetic diversity on susceptibility or resistance to HIV-1 infection have been documented for several
<italic>HLA</italic>
loci [
<xref ref-type="bibr" rid="R6">6</xref>
,
<xref ref-type="bibr" rid="R28">28</xref>
<xref ref-type="bibr" rid="R31">31</xref>
], but reported relationships have been less consistent for class II than for class I markers [
<xref ref-type="bibr" rid="R32">32</xref>
]. The apparent protection against heterosexual HIV-1 infection by DRB1*1301 (or DRB1*1301-DQB1*0501) and DRB1*1302-DQB1*0604 here bears some similarity to the earlier observation of resistance to vertical transmission of HIV-1 in black and Hispanic infants with the DRB1*13 allele [
<xref ref-type="bibr" rid="R29">29</xref>
]. The deleterious effect of DRB1*0301, found exclusively on the DRB1*0301-DQB1*0201 haplotype in Zambians, also resembled that seen in white individuals [
<xref ref-type="bibr" rid="R29">29</xref>
]. On the other hand, the effects of DRB1*1503-DQB1*0602 contrasted with those of DRB1*1501, an allele commonly found on the DRB1*1501-DQB1*0602 haplotype in white individuals [
<xref ref-type="bibr" rid="R29">29</xref>
]. For the rare haplotype DRB1*1302-DQB1*0609, its persistent and rather independent association with increased risk for HIV-1 seroconversion might indicate the influence of another variant in the neighboring loci, especially since the closely related haplotype DRB1*1302-DQB1*0604 had the opposite effect. Overall, these class II associations identified in Zambians could not be readily related to earlier, more-limited reports, in the context of heterosexual transmission of HIV-1.</p>
<p>Distinctive findings for HLA alleles and haplotypes more common in individuals of African ancestry, rather than those distributed more widely, should not be surprising for several reasons. First, HLA relationships may simply reflect the genetic background of the study population, the viruses circulating in it at the time of study, or other cohort characteristics. Indeed, several established genetic associations have been recognized more readily in selected, rather than all, ethnic groups studied, because of different marker frequencies or strength of relationships [
<xref ref-type="bibr" rid="R33">33</xref>
<xref ref-type="bibr" rid="R35">35</xref>
]. Nonetheless, multivariable analysis has reinforced our confidence that neither other known genetic factors (i.e., HLA class I or
<italic>CCR2-CCR5</italic>
genotypes) nor nongenetic factors (i.e., sexual behavior, genital ulcer, and donor virus load) could entirely account for the association of HLA class II with transmission or acquisition of HIV-1. Second, application of Kaplan-Meier plots to the analyses of serodiscordant couples followed prospectively might be expected to reveal associations (
<xref ref-type="fig" rid="fig6">table 4</xref>
) not detectable in prior cross-sectional comparisons (
<xref ref-type="fig" rid="fig5">table 3</xref>
), especially since the mechanism by which
<italic>HLA</italic>
mediates infection may be better measured as a function of exposure time rather than as a cumulative phenomenon [
<xref ref-type="bibr" rid="R16">16</xref>
]. Third, well-established and statistically significant associations of host genotypes with HIV-1 infection are often modest in magnitude, with estimates of RHs or relative odds only occasionally >2-fold [
<xref ref-type="bibr" rid="R6">6</xref>
,
<xref ref-type="bibr" rid="R30">30</xref>
,
<xref ref-type="bibr" rid="R34">34</xref>
,
<xref ref-type="bibr" rid="R36">36</xref>
]. Such a pattern most likely implies either findings by chance or the involvement of multiple host factors acting in concert to mediate HIV-1 infection, as has already been shown for progression of HIV-1 disease [
<xref ref-type="bibr" rid="R37">37</xref>
<xref ref-type="bibr" rid="R41">41</xref>
].</p>
<p>HLA genes participating in adaptive immunity are the suspected determinants of numerous autoimmune and infectious diseases [
<xref ref-type="bibr" rid="R42">42</xref>
<xref ref-type="bibr" rid="R44">44</xref>
]. Conversely, HLA allelic and haplotypic diversity in human populations is apparently driven by a variety of old and new diseases [
<xref ref-type="bibr" rid="R45">45</xref>
<xref ref-type="bibr" rid="R50">50</xref>
]. For transmission of HIV-1, the mechanisms underlying HLA class II associations are not clear. Detection of HIV-1-specific antibodies and cytotoxic T lymphocyte responses, in exposed and uninfected individuals [
<xref ref-type="bibr" rid="R10">10</xref>
,
<xref ref-type="bibr" rid="R18">18</xref>
], does suggest a possible role for HLA-mediated adaptive immunity in virus transmission, but there is scant evidence that HIV-1-specific immune responses mediated by certain HLA molecules would confer relatively higher or lower risk for infection [
<xref ref-type="bibr" rid="R18">18</xref>
,
<xref ref-type="bibr" rid="R51">51</xref>
]. The unfavorable effect of the DRB1*1503-DQB1*0602 haplotype could, for example, reflect its tendency to promote another infection known to predispose to acquisition of HIV-1. The common allele DRB1*15 (or DR2 by serology) appears to be a risk factor for mycobacterial infections [
<xref ref-type="bibr" rid="R52">52</xref>
,
<xref ref-type="bibr" rid="R53">53</xref>
]. Both
<italic>Mycobacterium tuberculosis</italic>
and
<italic>M. avium</italic>
have been shown to enhance HIV-1 replication and coreceptor expression [
<xref ref-type="bibr" rid="R54">54</xref>
,
<xref ref-type="bibr" rid="R55">55</xref>
]. Therefore, DRB1*15-positive HIV-1 seroconverters among serodiscordant Zambian couples could be subclinically infected with mycobacteria capable of accelerating HIV-1 infection. Systematic analyses of extended HLA haplotypes in common disease models may help to define the extent to which both direct and indirect mechanisms operate in the process of transmission of HIV-1.</p>
<p>As in any immunogenetic studies, the search for host genetic determinants of HIV-1—related outcomes is often compromised by other issues, including type I error resulting from multiple statistical tests and confounding by closely related factors. The
<italic>P</italic>
values reported here were not “corrected” for multiple comparisons made or implied in our multifaceted analyses, and we view these statistical test results as a useful guide for future studies. Strong covariance among host, viral, and environmental factors was also of critical concern. For example, HIV-1 load as a key predictor of transmission of HIV-1 could vary by age, sex, and HLA class I genotypes [
<xref ref-type="bibr" rid="R12">12</xref>
,
<xref ref-type="bibr" rid="R14">14</xref>
]. Thus, further efforts to replicate various findings beyond this single Zambian cohort may need to consider not only interpopulation differences in HLA allele and haplotype diversity but also behavioral risk, circulating HIV-1 subtypes, virus transmission mechanisms, and common coinfections.</p>
</sec>
<sec>
<title>Zambia-Uab HIV Research Project: Additional Investigators</title>
<p>Additional investigators in the Zambia-UAB HIV Research Project include the following: Elwyn Chomba and Alan Haworth, for epidemiology and clinical studies, and Francis Kasolo and Isaac Zulu, for virology (University of Zambia School of Medicine); Beatrice Hahn, Ulgen Fideli, and Eric Hunter, for virology, and Steffanie Sabbaj and Mark Mulligan, for immunology (University of Alabama at Birmingham); and Marylyn Addo, Marcus Altfeld, and Bruce Walker, for immunology (Harvard University).</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We are indebted to C. A. Rivers and D. Munfus, for assistance with HLA genotyping; G. Cloud, R. Izurieta, and C. Flanigan, for data management; and S. Tang and A. Westfall, for help with SAS programming.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="R1">
<label>1</label>
<nlm-citation citation-type="journal">
<collab collab-type="author">Centers for Disease Control and Prevention</collab>
<article-title>The global HIV and AIDS epidemic, 2001</article-title>
<source>MMWR Morb Mortal Wkly Rep</source>
<year>2001</year>
<volume>50</volume>
<fpage>434</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="R2">
<label>2</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piot</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bartos</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ghys</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Schwartlander</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The global impact of HIV/AIDS</article-title>
<source>Nature</source>
<year>2001</year>
<volume>410</volume>
<fpage>968</fpage>
<lpage>73</lpage>
</nlm-citation>
</ref>
<ref id="R3">
<label>3</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rowland-Jones</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>McMichael</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Immune responses in HIV-exposed seronegatives: have they repelled the virus?</article-title>
<source>Curr Opin Immunol</source>
<year>1995</year>
<volume>7</volume>
<fpage>448</fpage>
<lpage>55</lpage>
</nlm-citation>
</ref>
<ref id="R4">
<label>4</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rowland-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sutton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ariyoshi</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIV-specific cytotoxic Tcells in HIV-exposed but uninfected Gambian women</article-title>
<source>Nat Med</source>
<year>1995</year>
<volume>1</volume>
<fpage>59</fpage>
<lpage>64</lpage>
</nlm-citation>
</ref>
<ref id="R5">
<label>5</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rowland-Jones</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fowke</surname>
<given-names>KR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi</article-title>
<source>J Clin Invest</source>
<year>1998</year>
<volume>102</volume>
<fpage>1758</fpage>
<lpage>65</lpage>
</nlm-citation>
</ref>
<ref id="R6">
<label>6</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacDonald</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Fowke</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Kimani</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection</article-title>
<source>J Infect Dis</source>
<year>2000</year>
<volume>181</volume>
<fpage>1581</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="R7">
<label>7</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rowland-Jones</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pinheiro</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>New insights into host factors in HIV-1 pathogenesis</article-title>
<source>Cell</source>
<year>2001</year>
<volume>104</volume>
<fpage>473</fpage>
<lpage>6</lpage>
</nlm-citation>
</ref>
<ref id="R8">
<label>8</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kimani</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nagelkerke</surname>
<given-names>NJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk factors for genital ulcerations in Kenyan sex workers: the role of human immunodeficiency virus type 1 infection</article-title>
<source>Sex Transm Dis</source>
<year>1997</year>
<volume>24</volume>
<fpage>387</fpage>
<lpage>92</lpage>
</nlm-citation>
</ref>
<ref id="R9">
<label>9</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Kimani</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in Nairobi</article-title>
<source>J Immunol</source>
<year>2000</year>
<volume>164</volume>
<fpage>1602</fpage>
<lpage>11</lpage>
</nlm-citation>
</ref>
<ref id="R10">
<label>10</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Clerici</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bomsel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lopalco</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Broliden</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Mucosal IgA in exposed, uninfected subjects: evidence for a role in protection against HIV infection</article-title>
<source>AIDS</source>
<year>2001</year>
<volume>15</volume>
<fpage>431</fpage>
<lpage>2</lpage>
</nlm-citation>
</ref>
<ref id="R11">
<label>11</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quinn</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Wawer</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Sewankambo</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group</article-title>
<source>N Engl J Med</source>
<year>2000</year>
<volume>342</volume>
<fpage>921</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="R12">
<label>12</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fideli</surname>
<given-names>US</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Musunda</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virologic and immunologic determinants of heterosexual transmission of human immunodeficiency virus type 1 (HIV-1) in Africa</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>2001</year>
<volume>17</volume>
<fpage>901</fpage>
<lpage>10</lpage>
</nlm-citation>
</ref>
<ref id="R13">
<label>13</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Costello</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Keet</surname>
<given-names>IPM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HLA class I homozygosity accelerates disease progression in human immunodeficiency virus type 1 infection</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>1999</year>
<volume>15</volume>
<fpage>317</fpage>
<lpage>24</lpage>
</nlm-citation>
</ref>
<ref id="R14">
<label>14</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lobashevsky</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Favorable and unfavorable HLA class I alleles and haplotypes in Zambians predominantly infected with clade C human immunodeficiency virus type 1</article-title>
<source>J Virol</source>
<year>2002</year>
<volume>76</volume>
<fpage>8276</fpage>
<lpage>84</lpage>
</nlm-citation>
</ref>
<ref id="R15">
<label>15</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanke</surname>
<given-names>T</given-names>
</name>
<name>
<surname>McMichael</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya</article-title>
<source>Nat Med</source>
<year>2000</year>
<volume>6</volume>
<fpage>951</fpage>
<lpage>5</lpage>
</nlm-citation>
</ref>
<ref id="R16">
<label>16</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rowland-Jones</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Kimani</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Late seroconversion in HIVresistant Nairobi prostitutes despite pre-existing HIV-specific CD8+ responses</article-title>
<source>J Clin Invest</source>
<year>2001</year>
<volume>107</volume>
<fpage>341</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="R17">
<label>17</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rowland-Jones</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Kimani</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New insights into HIV-1 specific cytotoxic T-lymphocyte responses in exposed, persistently seronegative Kenyan sex workers</article-title>
<source>Immunol Lett</source>
<year>2001</year>
<volume>79</volume>
<fpage>3</fpage>
<lpage>13</lpage>
</nlm-citation>
</ref>
<ref id="R18">
<label>18</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Plummer</surname>
<given-names>FA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD8+ lymphocytes respond to different HIV epitopes in seronegative and infected subjects</article-title>
<source>J Clin Invest</source>
<year>2001</year>
<volume>107</volume>
<fpage>1303</fpage>
<lpage>10</lpage>
</nlm-citation>
</ref>
<ref id="R19">
<label>19</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gillespie</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Kaul</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cross-reactive cytotoxic T lymphocytes against a HIV-1 p24 epitope in slow progressors with B*57</article-title>
<source>AIDS</source>
<year>2002</year>
<volume>16</volume>
<fpage>961</fpage>
<lpage>72</lpage>
</nlm-citation>
</ref>
<ref id="R20">
<label>20</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trask</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Derdeyn</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Fideli</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Molecular epidemiology of human immunodeficiency virus type 1 transmission in a heterosexual cohort of discordant couples in Zambia</article-title>
<source>J Virol</source>
<year>2002</year>
<volume>76</volume>
<fpage>397</fpage>
<lpage>405</lpage>
</nlm-citation>
</ref>
<ref id="R21">
<label>21</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKenna</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Muyinda</surname>
<given-names>GK</given-names>
</name>
<name>
<surname>Roth</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rapid HIV testing and counseling for voluntary testing centers in Africa</article-title>
<source>AIDS</source>
<year>1997</year>
<volume>11</volume>
<supplement>Suppl 1</supplement>
<fpage>S103</fpage>
<lpage>10</lpage>
</nlm-citation>
</ref>
<ref id="R22">
<label>22</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meinzen-Derr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kautzman</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sexual behavior of HIV discordant couples after HIV counseling and testing</article-title>
<source>AIDS</source>
<year>2003</year>
<volume>17</volume>
<fpage>733</fpage>
<lpage>40</lpage>
</nlm-citation>
</ref>
<ref id="R23">
<label>23</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoesley</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Raper</surname>
<given-names>JL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative analysis of commercial assays for the detection and quantification of plasma HIV-1 RNA in patients infected with HIV-1 subtype C</article-title>
<source>Clin Infect Dis</source>
<year>2002</year>
<volume>35</volume>
<fpage>323</fpage>
<lpage>5</lpage>
</nlm-citation>
</ref>
<ref id="R24">
<label>24</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Naik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Costello</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characteristics of HLA class I and class II polymorphisms in Rwandan women</article-title>
<source>Exp Clin Immunogenet</source>
<year>2000</year>
<volume>17</volume>
<fpage>185</fpage>
<lpage>98</lpage>
</nlm-citation>
</ref>
<ref id="R25">
<label>25</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Just</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>King</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Klitz</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>African-American HLA class II allele and haplotype diversity</article-title>
<source>Tissue Antigens</source>
<year>1997</year>
<volume>49</volume>
<fpage>547</fpage>
<lpage>55</lpage>
</nlm-citation>
</ref>
<ref id="R26">
<label>26</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raymond</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Rousset</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>An exact test for population differentiation</article-title>
<source>Evolution</source>
<year>1995</year>
<volume>49</volume>
<fpage>1280</fpage>
<lpage>3</lpage>
</nlm-citation>
</ref>
<ref id="R27">
<label>27</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Dorak</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Westfall</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>HLA</italic>
class I effects on transmission of HIV-1C in heterosexual Zambian couples: risk of concordance at
<italic>HLA</italic>
-B</article-title>
<source>Program and abstracts of AIDS2002 (Barcelona, Spain)</source>
<year>2002</year>
<publisher-loc>Stockholm</publisher-loc>
<publisher-name>International AIDS Society</publisher-name>
<fpage>18</fpage>
</nlm-citation>
</ref>
<ref id="R28">
<label>28</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacDonald</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Embree</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Njenga</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mother-child class I HLA concordance increases perinatal human immunodeficiency virus type 1 infection</article-title>
<source>J Infect Dis</source>
<year>1998</year>
<volume>177</volume>
<fpage>551</fpage>
<lpage>6</lpage>
</nlm-citation>
</ref>
<ref id="R29">
<label>29</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winchester</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Selby</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Borkowsky</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Major histocompatibility complex class II DR alleles DRB1*1501 and those encoding HLA-DR13 are preferentially associated with a diminution in maternally transmitted human immunodeficiency virus 1 infection in different ethnic groups: determination by an automated sequencebased typing method</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1995</year>
<volume>92</volume>
<fpage>12374</fpage>
<lpage>8</lpage>
</nlm-citation>
</ref>
<ref id="R30">
<label>30</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>MacDonald</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Embree</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Nagelkerke</surname>
<given-names>NJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The HLA A2/6802 supertype is associated with reduced risk of perinatal human immunodeficiency virus type 1 transmission</article-title>
<source>J Infect Dis</source>
<year>2001</year>
<volume>183</volume>
<fpage>503</fpage>
<lpage>6</lpage>
</nlm-citation>
</ref>
<ref id="R31">
<label>31</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carrington</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kaslow</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Association of polymorphisms in human leukocyte antigen class I and transporter associated with antigen processing genes with resistance to human immunodeficiency virus type 1 infection</article-title>
<source>J Infect Dis</source>
<year>2003</year>
<volume>187</volume>
<fpage>1404</fpage>
<lpage>10</lpage>
</nlm-citation>
</ref>
<ref id="R32">
<label>32</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Kaslow</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dorak</surname>
<given-names>MT</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wormser</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>The role of host genetic variation in HIV infection and its manifestations</article-title>
<source>AIDS and other manifestations of HIV infection</source>
<year>2004</year>
<edition>4th ed.</edition>
<publisher-loc>San Diego</publisher-loc>
<publisher-name>Academic Press</publisher-name>
<fpage>285</fpage>
<lpage>302</lpage>
</nlm-citation>
</ref>
<ref id="R33">
<label>33</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonzalez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bamshad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Race-specific HIV-1 disease modifying effects associated with CCR5 haplotypes</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>12004</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
<ref id="R34">
<label>34</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonzalez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Dhanda</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bamshad</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Global survey of genetic variation in CCR5, RANTES, and MIP-1α: impact on the epidemiology of the HIV-1 pandemic</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>5199</fpage>
<lpage>204</lpage>
</nlm-citation>
</ref>
<ref id="R35">
<label>35</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Schaen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Myracle</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Douglas</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Kaslow</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>
<italic>CCR2</italic>
and
<italic>CCR5</italic>
genotypes in HIV type 1-infected adolescents: limited contributions to variability in plasma HIV type 1 RNA concentration in the absence of antiretroviral therapy</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>2002</year>
<volume>18</volume>
<fpage>403</fpage>
<lpage>12</lpage>
</nlm-citation>
</ref>
<ref id="R36">
<label>36</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shelton</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Makhatadze</surname>
<given-names>NJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distribution of chemokine receptor
<italic>CCR2</italic>
and
<italic>CCR5</italic>
genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression</article-title>
<source>J Virol</source>
<year>2002</year>
<volume>76</volume>
<fpage>662</fpage>
<lpage>72</lpage>
</nlm-citation>
</ref>
<ref id="R37">
<label>37</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keet</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Just</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Kaslow</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>The role of host genetics in the natural history of HIV-1 infection: the needles in the haystack</article-title>
<source>AIDS</source>
<year>1996</year>
<volume>10</volume>
<fpage>S59</fpage>
<lpage>67</lpage>
</nlm-citation>
</ref>
<ref id="R38">
<label>38</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Brien</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>Polygenic and multifactorial disease gene association in man: lessons from AIDS</article-title>
<source>Annu Rev Genet</source>
<year>2000</year>
<volume>34</volume>
<fpage>563</fpage>
<lpage>91</lpage>
</nlm-citation>
</ref>
<ref id="R39">
<label>39</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrington</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>G</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Considering genetic profiles in functional studies of immune responsiveness to HIV-1</article-title>
<source>Immunol Lett</source>
<year>2001</year>
<volume>79</volume>
<fpage>131</fpage>
<lpage>40</lpage>
</nlm-citation>
</ref>
<ref id="R40">
<label>40</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Meleth</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host genetic profiles predict virological and immunological control of HIV-1 infection in adolescents</article-title>
<source>AIDS</source>
<year>2002</year>
<volume>16</volume>
<fpage>2275</fpage>
<lpage>84</lpage>
</nlm-citation>
</ref>
<ref id="R41">
<label>41</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrington</surname>
<given-names>M</given-names>
</name>
<name>
<surname>O'Brien</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>The influence of HLA genotype on AIDS</article-title>
<source>Annu Rev Med</source>
<year>2003</year>
<volume>54</volume>
<fpage>535</fpage>
<lpage>51</lpage>
</nlm-citation>
</ref>
<ref id="R42">
<label>42</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Allsopp</surname>
<given-names>CE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human leukocyte antigens and natural selection by malaria</article-title>
<source>Philos Trans R Soc Lond B Biol Sci</source>
<year>1994</year>
<volume>346</volume>
<fpage>379</fpage>
<lpage>85</lpage>
</nlm-citation>
</ref>
<ref id="R43">
<label>43</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>The immunogenetics of human infectious diseases</article-title>
<source>Annu Rev Immunol</source>
<year>1998</year>
<volume>16</volume>
<fpage>593</fpage>
<lpage>617</lpage>
</nlm-citation>
</ref>
<ref id="R44">
<label>44</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cooke</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>Genetics of susceptibility to human infectious disease</article-title>
<source>Nat Rev Genet</source>
<year>2001</year>
<volume>2</volume>
<fpage>967</fpage>
<lpage>77</lpage>
</nlm-citation>
</ref>
<ref id="R45">
<label>45</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bontrop</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Otting</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Slierendregt</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Lanchbury</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Evolution of major histocompatibility complex polymorphisms and T-cell receptor diversity in primates</article-title>
<source>Immunol Rev</source>
<year>1995</year>
<volume>143</volume>
<fpage>33</fpage>
<lpage>62</lpage>
</nlm-citation>
</ref>
<ref id="R46">
<label>46</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Potts</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Slev</surname>
<given-names>PR</given-names>
</name>
</person-group>
<article-title>Pathogen-based models favoring MHC genetic diversity</article-title>
<source>Immunol Rev</source>
<year>1995</year>
<volume>143</volume>
<fpage>181</fpage>
<lpage>97</lpage>
</nlm-citation>
</ref>
<ref id="R47">
<label>47</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parham</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ohta</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Population biology of antigen presentation byMHC class I molecules</article-title>
<source>Science</source>
<year>1996</year>
<volume>272</volume>
<fpage>67</fpage>
<lpage>74</lpage>
</nlm-citation>
</ref>
<ref id="R48">
<label>48</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeager</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution</article-title>
<source>Immunol Rev</source>
<year>1999</year>
<volume>167</volume>
<fpage>45</fpage>
<lpage>58</lpage>
</nlm-citation>
</ref>
<ref id="R49">
<label>49</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vogel</surname>
<given-names>TU</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Urvater</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Watkins</surname>
<given-names>DI</given-names>
</name>
</person-group>
<article-title>Major histocompatibility complex class I genes in primates: coevolution with pathogens</article-title>
<source>Immunol Rev</source>
<year>1999</year>
<volume>167</volume>
<fpage>327</fpage>
<lpage>37</lpage>
</nlm-citation>
</ref>
<ref id="R50">
<label>50</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rivers</surname>
<given-names>CA</given-names>
</name>
<etal></etal>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Hansen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dupont</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Distinct and evolving HLA class I profiles in native Africans with high prevalence of HIV/AIDS</article-title>
<source>HLA 2002: immunobiology of the human MHC</source>
<year>2004</year>
<volume>2</volume>
<publisher-loc>Seattle</publisher-loc>
<publisher-name>Fred Hutchinson Cancer Research Center</publisher-name>
</nlm-citation>
</ref>
<ref id="R51">
<label>51</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sriwanthana</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hodge</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mastro</surname>
<given-names>TD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HIV-specific cytotoxic T lymphocytes, HLA-A11, and chemokine-related factors may act synergistically to determine HIV resistance in CCR5 Δ32-negative female sex workers in Chiang Rai, northern Thailand</article-title>
<source>AIDS Res Hum Retroviruses</source>
<year>2001</year>
<volume>17</volume>
<fpage>719</fpage>
<lpage>34</lpage>
</nlm-citation>
</ref>
<ref id="R52">
<label>52</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehra</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Rajalingam</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mitra</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Taneja</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Giphart</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Variants of HLA-DR2/DR51 group haplotypes and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians</article-title>
<source>Int J Lepr Other Mycobact Dis</source>
<year>1995</year>
<volume>63</volume>
<fpage>241</fpage>
<lpage>8</lpage>
</nlm-citation>
</ref>
<ref id="R53">
<label>53</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>LeBlanc</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Naik</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kaslow</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Association of
<italic>DRB1*1501</italic>
with disseminated
<italic>Mycobacterium avium</italic>
complex infection in North American AIDS patients</article-title>
<source>Tissue Antigens</source>
<year>2000</year>
<volume>55</volume>
<fpage>17</fpage>
<lpage>23</lpage>
</nlm-citation>
</ref>
<ref id="R54">
<label>54</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Weiden</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rom</surname>
<given-names>WN</given-names>
</name>
</person-group>
<article-title>
<italic>Mycobacterium tuberculosis</italic>
enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat</article-title>
<source>J Clin Invest</source>
<year>1995</year>
<volume>95</volume>
<fpage>2324</fpage>
<lpage>31</lpage>
</nlm-citation>
</ref>
<ref id="R55">
<label>55</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wahl</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Greenwellwild</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Mycobacterium avium</italic>
complex augments macrophage HIV-1 production and increases CCR5 expression</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1998</year>
<volume>95</volume>
<fpage>12574</fpage>
<lpage>9</lpage>
</nlm-citation>
</ref>
</ref-list>
<sec sec-type="display-objects">
<title>Figures and Tables</title>
<fig position="float" id="fig1">
<label>Figure 1</label>
<caption>
<p>Kaplan-Meier curves showing the time from enrollment to transmission of HIV-1, in seropositive index partners with (+) and without (−) DRB1*1301. The univariate relative hazards (RH) values of transmission of HIV-1 are estimated by use of Cox proportional hazards models, and both Wilcoxon and log-rank tests of significance are shown. The transmission rate does not reflect that of the entire Zambia-UAB HIV Research Project cohort, since the analyses only dealt with couples at high risk for transmission of HIV-1. CI, confidence interval.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-fig001.tif"></graphic>
</fig>
<fig position="float" id="fig2">
<label>Figure 2</label>
<caption>
<p>Kaplan-Meier curves showing the time from enrollment to HIV-1 seroconversion, in initially seronegative nonindex partners with (+) and without (−) DRB1*1503-DQB1*0602. The univariate relative hazards (RH) values of HIV-1 seroconversion are estimated by use of Cox proportional hazards models, and both Wilcoxon and log-rank tests of significance are shown. As in
<xref ref-type="fig" rid="fig1">figure 1</xref>
, the seroconversion rate does not reflect that of the entire Zambia-UAB HIV Research Project cohort. CI, confidence interval.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-fig002.tif"></graphic>
</fig>
<fig position="float" id="fig3">
<label>Table 1</label>
<caption>
<p>Classification of HIV-1-seropositive and -seronegative Zambians representing initially serodiscordant couples (one partner seropositive and the other seronegative) at high risk for heterosexual transmission.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-tbl001.tif"></graphic>
</fig>
<fig position="float" id="fig4">
<label>Table 2</label>
<caption>
<p>Distribution of 2-digit and 4-digit
<italic>HLA-DRB1</italic>
and
<italic>-DQB1</italic>
variants in 584 Zambia-UAB HIV Research Project participants, stratified by HIV-1 status.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-tbl002.tif"></graphic>
</fig>
<fig position="float" id="fig5">
<label>Table 3</label>
<caption>
<p>Trend for disproportional representation of HLA class II variants in accumulated HIV-1-seropositive (seroprevalent and seroconverted) Zambians and in the remaining HIV-1-seronegative Zambians, at the end of follow-up.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-tbl003.tif"></graphic>
</fig>
<fig position="float" id="fig6">
<label>Table 4</label>
<caption>
<p>Time-dependent analyses of host and viral factors associated with transmission of HIV-1 and seroconversion, for 275 serodiscordant Zambian couples during a 7-year followed-up period.</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-tbl004.tif"></graphic>
</fig>
<fig position="float" id="fig7">
<label>Table 5</label>
<caption>
<p>Multifactorial influences on transmission of HIV-1, for 275 serodiscordant Zambian couples during a 7-year followed-up period (1995–2002).</p>
</caption>
<graphic mimetype="image" xlink:href="189-9-1696-tbl005.tif"></graphic>
</fig>
</sec>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Jianming</namePart>
<namePart type="family">Tang</namePart>
<affiliation>Department of Medicine University of Alabama at Birmingham</affiliation>
<affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</affiliation>
<affiliation>E-mail: rkaslow@uab.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="family">Penman-Aguilar</namePart>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Lobashevsky</namePart>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="family">Allen</namePart>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart>for the Zambia-UAB HIV Research Project</namePart>
<namePart type="given">Ricahrd A.</namePart>
<namePart type="family">Kaslow</namePart>
<affiliation>Department of Medicine University of Alabama at Birmingham</affiliation>
<affiliation>Department of Epidemiology University of Alabama at Birmingham</affiliation>
<affiliation>Reprints or correspondence: Dr. Richard A. Kaslow or Dr. Jianming</affiliation>
<affiliation>E-mail: rkaslow@uab.edu</affiliation>
<description>a Additional members of the Zambia-UAB HIV Research Project are listed after the text.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>University Chicago Press</publisher>
<dateIssued encoding="w3cdtf">2004-05-01</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<abstract>In 292 initially human immunodeficiency virus (HIV)-1-serodiscordant and cohabiting Zambian couples, HLA-DRB1 and -DQB1 variants were associated with HIV-1 transmission events during a 7-year follow-up period. Initially seronegative partners with either DRB1*0301-DQB1*0201 (relative hazard [RH], 1.60; P = .009) or DRB1*1503-DQB1*0602 (RH, 1.67; P = .03) showed accelerated seroconversion. Carriage of DRB1*1301 in initially seropositive partners led to delayed transmission of HIV to their spouses (RH, 0.54; P = .05). The combined groups of seroprevalent and seroincident partners (n = 433) also differed from those who remained seronegative (n = 151), with regard to 2 common haplotypes, DRB1*1302-DQB1*0604 (relative odds [RO], 0.28; P = .003) and DRB1*1503-DQB1*0602 (RO, 1.81; P = .02). Statistical adjustments for other host factors (age, sex, genital ulcer, and index partner's virus load) known to influence transmission of HIV-1 seldom altered the genetic relationships. Overall, associations of HLA class II polymorphisms with both HIV transmission and acquisition are not as readily interpretable as are effects reported for other loci.</abstract>
<note type="footnotes">Presented in part: 10th Conference on Retroviruses and Opportunistic Infections, Boston, 10–14 February 2003 (abstract 507).</note>
<relatedItem type="host">
<titleInfo>
<title>The Journal of Infectious Diseases</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>The Journal of Infectious Diseases</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0022-1899</identifier>
<identifier type="eISSN">1537-6613</identifier>
<identifier type="PublisherID">jid</identifier>
<identifier type="PublisherID-hwp">jinfdis</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>189</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1696</start>
<end>1704</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">42657B23A1BD112A21C370910BC38B945FF3F41D</identifier>
<identifier type="DOI">10.1086/383280</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2004 by the Infectious Diseases Society of America</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>© 2004 by the Infectious Diseases Society of America</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/metadata/json</uri>
</json:item>
</metadata>
<covers>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/covers/tiff</uri>
</json:item>
</covers>
<annexes>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/annexes/jpeg</uri>
</json:item>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/document/42657B23A1BD112A21C370910BC38B945FF3F41D/annexes/gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/SidaSubSaharaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001569 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001569 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    SidaSubSaharaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:42657B23A1BD112A21C370910BC38B945FF3F41D
   |texte=   HLA-DRB1 and -DQB1 Alleles and Haplotypes in Zambian Couples and Their Associations with Heterosexual Transmission of HIV Type 1
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Mon Nov 13 19:31:10 2017. Site generation: Wed Mar 6 19:14:32 2024