Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co2.39Cu0.61(PO4)2·H2O

Identifieur interne : 000388 ( Pmc/Corpus ); précédent : 000387; suivant : 000389

Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co2.39Cu0.61(PO4)2·H2O

Auteurs : Abderrazzak Assani ; Mohamed Saadi ; Lahcen El Ammari

Source :

RBID : PMC:2979060

Abstract

In an attempt to hydro­thermally synthesize a phase with composition Co2Cu(PO4)2·H2O, we obtained the title compound, Co2.39Cu0.61(PO4)2·H2O instead. Chemical analysis confirmed the presence of copper in the crystal. The crystal structure of the title compound can be described as a three- dimensional network constructed from the stacking of two types of layers extending parallel to (010). These layers are made up from more or less deformed polyhedra: CoO6 octa­hedra, (Cu/Co)O5 square pyramids and PO4 tetra­hedra. The first layer is formed by pairs of edge-sharing (Cu/Co)O5 square pyramids linked via a common edge of each end of the (Cu/Co)2O8 dimer to PO4 tetra­hedra. The second layer is undulating and is built up from edge-sharing CoO6 octa­hedra. The linkage between the two layers is accomplished by PO4 tetra­hedra. The presence of water mol­ecules in the CoO4(H2O)2 octa­hedron also contributes to the cohesion of the layers through O—H⋯O hydrogen bonding.


Url:
DOI: 10.1107/S1600536810015382
PubMed: 21578990
PubMed Central: 2979060

Links to Exploration step

PMC:2979060

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</title>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21578990</idno>
<idno type="pmc">2979060</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2979060</idno>
<idno type="RBID">PMC:2979060</idno>
<idno type="doi">10.1107/S1600536810015382</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000388</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000388</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</title>
<author>
<name sortKey="Assani, Abderrazzak" sort="Assani, Abderrazzak" uniqKey="Assani A" first="Abderrazzak" last="Assani">Abderrazzak Assani</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Saadi, Mohamed" sort="Saadi, Mohamed" uniqKey="Saadi M" first="Mohamed" last="Saadi">Mohamed Saadi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="El Ammari, Lahcen" sort="El Ammari, Lahcen" uniqKey="El Ammari L" first="Lahcen" last="El Ammari">Lahcen El Ammari</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Structure Reports Online</title>
<idno type="eISSN">1600-5368</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In an attempt to hydro­thermally synthesize a phase with composition Co
<sub>2</sub>
Cu(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O, we obtained the title compound, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O instead. Chemical analysis confirmed the presence of copper in the crystal. The crystal structure of the title compound can be described as a three- dimensional network constructed from the stacking of two types of layers extending parallel to (010). These layers are made up from more or less deformed polyhedra: CoO
<sub>6</sub>
octa­hedra, (Cu/Co)O
<sub>5</sub>
square pyramids and PO
<sub>4</sub>
tetra­hedra. The first layer is formed by pairs of edge-sharing (Cu/Co)O
<sub>5</sub>
square pyramids linked
<italic>via</italic>
a common edge of each end of the (Cu/Co)
<sub>2</sub>
O
<sub>8</sub>
dimer to PO
<sub>4</sub>
tetra­hedra. The second layer is undulating and is built up from edge-sharing CoO
<sub>6</sub>
octa­hedra. The linkage between the two layers is accomplished by PO
<sub>4</sub>
tetra­hedra. The presence of water mol­ecules in the CoO
<sub>4</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
octa­hedron also contributes to the cohesion of the layers through O—H⋯O hydrogen bonding.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Structure Reports Online</journal-title>
</journal-title-group>
<issn pub-type="epub">1600-5368</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21578990</article-id>
<article-id pub-id-type="pmc">2979060</article-id>
<article-id pub-id-type="publisher-id">wm2323</article-id>
<article-id pub-id-type="doi">10.1107/S1600536810015382</article-id>
<article-id pub-id-type="coden">ACSEBH</article-id>
<article-id pub-id-type="pii">S1600536810015382</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Inorganic Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</article-title>
<alt-title>
<italic>Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Assani</surname>
<given-names>Abderrazzak</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Saadi</surname>
<given-names>Mohamed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>El Ammari</surname>
<given-names>Lahcen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat,
<country>Morocco</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>mohamedsaadi82@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>5</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>4</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>4</month>
<year>2010</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>66</volume>
<issue>Pt 5</issue>
<issue-id pub-id-type="publisher-id">e100500</issue-id>
<fpage>i44</fpage>
<lpage>i44</lpage>
<history>
<date date-type="received">
<day>06</day>
<month>4</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>4</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© Assani et al. 2010</copyright-statement>
<copyright-year>2010</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536810015382">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract>
<p>In an attempt to hydro­thermally synthesize a phase with composition Co
<sub>2</sub>
Cu(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O, we obtained the title compound, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O instead. Chemical analysis confirmed the presence of copper in the crystal. The crystal structure of the title compound can be described as a three- dimensional network constructed from the stacking of two types of layers extending parallel to (010). These layers are made up from more or less deformed polyhedra: CoO
<sub>6</sub>
octa­hedra, (Cu/Co)O
<sub>5</sub>
square pyramids and PO
<sub>4</sub>
tetra­hedra. The first layer is formed by pairs of edge-sharing (Cu/Co)O
<sub>5</sub>
square pyramids linked
<italic>via</italic>
a common edge of each end of the (Cu/Co)
<sub>2</sub>
O
<sub>8</sub>
dimer to PO
<sub>4</sub>
tetra­hedra. The second layer is undulating and is built up from edge-sharing CoO
<sub>6</sub>
octa­hedra. The linkage between the two layers is accomplished by PO
<sub>4</sub>
tetra­hedra. The presence of water mol­ecules in the CoO
<sub>4</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
octa­hedron also contributes to the cohesion of the layers through O—H⋯O hydrogen bonding.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Related literature</title>
<p>For the properties of and background to metal phosphates, see: Clearfield (1988
<xref ref-type="bibr" rid="bb4"></xref>
); Gao & Gao (2005
<xref ref-type="bibr" rid="bb7"></xref>
); Viter & Nagornyi (2009
<xref ref-type="bibr" rid="bb13"></xref>
); Harrison
<italic>et al.</italic>
(1995
<xref ref-type="bibr" rid="bb8"></xref>
). For compounds with the same structure, see: Anderson
<italic>et al.</italic>
(1976
<xref ref-type="bibr" rid="bb1"></xref>
); Liao
<italic>et al.</italic>
(1995
<xref ref-type="bibr" rid="bb9"></xref>
); Sørensen
<italic>et al.</italic>
(2004
<xref ref-type="bibr" rid="bb12"></xref>
); Moore & Araki (1975
<xref ref-type="bibr" rid="bb10"></xref>
).</p>
</sec>
<sec sec-type="" id="sec2">
<title>Experimental</title>
<sec id="sec2.1">
<title></title>
<sec id="sec2.1.1">
<title>Crystal data</title>
<p>
<list list-type="simple">
<list-item>
<p>Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</p>
</list-item>
<list-item>
<p>
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 387.57</p>
</list-item>
<list-item>
<p>Monoclinic,
<inline-formula>
<inline-graphic xlink:href="e-66-00i44-efi1.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</p>
</list-item>
<list-item>
<p>
<italic>a</italic>
= 8.086 (2) Å</p>
</list-item>
<list-item>
<p>
<italic>b</italic>
= 9.826 (3) Å</p>
</list-item>
<list-item>
<p>
<italic>c</italic>
= 9.042 (3) Å</p>
</list-item>
<list-item>
<p>β = 114.621 (1)°</p>
</list-item>
<list-item>
<p>
<italic>V</italic>
= 653.1 (3) Å
<sup>3</sup>
</p>
</list-item>
<list-item>
<p>
<italic>Z</italic>
= 4</p>
</list-item>
<list-item>
<p>Mo
<italic>K</italic>
α radiation</p>
</list-item>
<list-item>
<p>μ = 8.49 mm
<sup>−1</sup>
</p>
</list-item>
<list-item>
<p>
<italic>T</italic>
= 296 K</p>
</list-item>
<list-item>
<p>0.24 × 0.12 × 0.06 mm</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.2">
<title>Data collection</title>
<p>
<list list-type="simple">
<list-item>
<p>Bruker X8 APEX diffractometer</p>
</list-item>
<list-item>
<p>Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker, 2005
<xref ref-type="bibr" rid="bb3"></xref>
)
<italic>T</italic>
<sub>min</sub>
= 0.306,
<italic>T</italic>
<sub>max</sub>
= 0.601</p>
</list-item>
<list-item>
<p>13678 measured reflections</p>
</list-item>
<list-item>
<p>3531 independent reflections</p>
</list-item>
<list-item>
<p>3278 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</p>
</list-item>
<list-item>
<p>
<italic>R</italic>
<sub>int</sub>
= 0.023</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.3">
<title>Refinement</title>
<p>
<list list-type="simple">
<list-item>
<p>
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.022</p>
</list-item>
<list-item>
<p>
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.051</p>
</list-item>
<list-item>
<p>
<italic>S</italic>
= 1.10</p>
</list-item>
<list-item>
<p>3531 reflections</p>
</list-item>
<list-item>
<p>129 parameters</p>
</list-item>
<list-item>
<p>H-atom parameters constrained</p>
</list-item>
<list-item>
<p>Δρ
<sub>max</sub>
= 1.01 e Å
<sup>−3</sup>
</p>
</list-item>
<list-item>
<p>Δρ
<sub>min</sub>
= −0.79 e Å
<sup>−3</sup>
</p>
</list-item>
</list>
</p>
</sec>
</sec>
<sec id="d5e554">
<title></title>
<p>Data collection:
<italic>APEX2</italic>
(Bruker, 2005
<xref ref-type="bibr" rid="bb3"></xref>
); cell refinement:
<italic>SAINT</italic>
(Bruker, 2005
<xref ref-type="bibr" rid="bb3"></xref>
); data reduction:
<italic>SAINT</italic>
; program(s) used to solve structure:
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb11"></xref>
); program(s) used to refine structure:
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb11"></xref>
); molecular graphics:
<italic>ORTEP-3 for Windows</italic>
(Farrugia, 1997
<xref ref-type="bibr" rid="bb5"></xref>
) and
<italic>DIAMOND</italic>
(Brandenburg, 2006
<xref ref-type="bibr" rid="bb2"></xref>
); software used to prepare material for publication:
<italic>WinGX</italic>
(Farrugia, 1999
<xref ref-type="bibr" rid="bb6"></xref>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" xlink:href="e-66-00i44-sup1.cif" position="float" xlink:type="simple">
<p>Crystal structure: contains datablocks I, global. DOI:
<ext-link ext-link-type="uri" xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536810015382/wm2323sup1.cif">10.1107/S1600536810015382/wm2323sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-66-00i44-sup1.cif" position="float" xlink:type="simple"></media>
</supplementary-material>
<supplementary-material content-type="local-data" xlink:href="e-66-00i44-Isup2.hkl" position="float" xlink:type="simple">
<p>Structure factors: contains datablocks I. DOI:
<ext-link ext-link-type="uri" xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536810015382/wm2323Isup2.hkl">10.1107/S1600536810015382/wm2323Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-66-00i44-Isup2.hkl" position="float" xlink:type="simple"></media>
</supplementary-material>
<supplementary-material position="float" xlink:type="simple">
<p>Additional supplementary materials:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2323&file=wm2323sup0.html&mime=text/html" xlink:type="simple"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?wm2323sup1&Qmime=cif" xlink:type="simple">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?wm2323&checkcif=yes" xlink:type="simple">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fnu1">
<p>Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsup?wm2323">WM2323</ext-link>
).</p>
</fn>
</fn-group>
<ack>
<p>The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.</p>
</ack>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="comment">
<title>Comment </title>
<p>Metal-phosphates have received great attention owing to their applications such as catalysts (Viter & Nagornyi, 2009; Gao & Gao, 2005) and as ion-exchangers (Clearfield, 1988)). Mainly, the flexibility of the metal coordination and the possibility to generate anionic frameworks
<italic>M</italic>
<sup>II</sup>
PO
<sub>4</sub>
<sup>-</sup>
, analogous to AlSiO
<sub>4</sub>
<sup>-</sup>
in the well known aluminosilicate zeolites, offer a rich structural diversity of this family of compounds.</p>
<p>Our interest is particularly focused on the hydrothermally synthesized orthophosphates with formula
<italic>MM'</italic>
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O (
<italic>M</italic>
and
<italic>M'</italic>
= bivalent cations). In this work, a new dicobalt copper bis[orthophosphate] monohydrate, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O was synthesized and structurally characterized.</p>
<p>A three-dimensional view of the crystal structure of the title compound is given in Fig. 1. It shows that the metal cations are located in three crystallographically different sites, two octahedra entirely occupied by cobalt and one square-pyramid statistically filled with Co/Cu. Refinement of the occupancy of this metal site has led to the following composition, Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O. The cationic distributions indicate that Cu prefers the site with a lower coordination number, whereas Co prefers coordination number of 6. This may be attributed to a gain in crystal field stabilisation energy for Co
<sup>2+</sup>
in the octahedral sites and to the small difference between the sizes of the two cations Co
<sup>2+</sup>
and Cu
<sup>2+</sup>
.</p>
<p>The network is built up from three different types of polyhedra more or less distorted: CoO
<sub>6</sub>
octahedra , (Cu/Co)O
<sub>5</sub>
square-pyramids and PO
<sub>4</sub>
tetrahedra. One octahedron (Co1), slightly distorted, has a coordination sphere composed of O atoms from PO
<sub>4</sub>
groups, while that of the other (Co2) is made up of four O atoms from PO
<sub>4</sub>
groups and by two water molecules (O9). This fact explains its more pronounced distortion, with Co—O bond lengths in the range 2.0407 (11)-2.3310 (13) Å.</p>
<p>All CoO
<sub>6</sub>
octahedra are linked together by edge-sharing and sharing three corners of PO
<sub>4</sub>
tetrahedra, in the way to built a layer parallel to (010) as shown in Fig. 2. Therefore, the presence of the water molecule involved in the formation of the CoO
<sub>4</sub>
(H
<sub>2</sub>
O)
<sub>2</sub>
octahedron causes a corrugation in this layer through O—H···O hydrogen bonds. Furthermore, Fig. 3 shows that each pair of distorted square-pyramids share an edge and built up a dimer linked to two regular PO
<sub>4</sub>
tetrahedra via a common edge. The sequence of (Cu/Co)O
<sub>5</sub>
and PO
<sub>4</sub>
polyhedra leads to the formation of another layer (Fig. 3). As a matter of fact, the network of this structure can be described by stacking these two types of layers as represented in Fig. 4.</p>
<p>Compounds isotypic with the title phase are relatively rare, however, there are four known compounds which adopt this structure, viz. Co
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O (Anderson
<italic>et al.</italic>
, 1976), CuMn
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O (Liao
<italic>et al.</italic>
, 1995), Co
<sub>2.59</sub>
Zn
<sub>0.41</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O (Sørensen
<italic>et al.</italic>
, 2004) and Fe
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O (Moore & Araki, 1975).</p>
</sec>
<sec id="experimental">
<title>Experimental </title>
<p>The crystals of the title compound were hydrothermally synthesized starting from a mixture of metallic copper (0.0381 g), basic cobalt(II) carbonate (0.0318 g), 85 %
<sub>wt</sub>
phosphoric acid (0.10 ml) and 10 ml distilled water. The hydrothermal synthesis was carried out in 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K during 24 h. The product was filtered off, washed with deionized water and air dried. The reaction product consists of two types of crystals. The first one, dark violet crystals, corresponds to the title compound with the refined composition Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
.H
<sub>2</sub>
O. An elemental chemical analysis (EDS) confirms the presence of copper in the crystal. The second type of crystals is identified to be the known cobalt hydroxy phosphate Co
<sub>2</sub>
(OH)PO
<sub>4</sub>
(Harrison
<italic>et al.</italic>
, 1995).</p>
</sec>
<sec id="refinement">
<title>Refinement </title>
<p>All H atoms were initially located in a difference map and refined with a O—H distance restraint of 0.84 (1) Å. Later they were refined in the riding model approximation with U
<sub>iso</sub>
(H) set to 1.5 U
<sub>eq</sub>
(O). Refinements of the site ocupancy factors of the metal sites revealed the octahedrally coordinated sites solely occupied by Co, whereas the 5-coordinated site shows a mixed occupancy of Co:Cu = 0.387 (11):0.613 (11).</p>
</sec>
<sec id="figures">
<title>Figures</title>
<fig id="Fap1">
<label>Fig. 1.</label>
<caption>
<p>A three-dimensional view of the crystal structure of the Co2.39Cu0.61(PO4)2.H2O compound drawn with displacement parameters at the 60% probability level. H atoms are given as small spheres of arbitrary radius. For symmetry operators, see geometric parameters Table.</p>
</caption>
<graphic xlink:href="e-66-00i44-fig1"></graphic>
</fig>
<fig id="Fap2">
<label>Fig. 2.</label>
<caption>
<p>The undulated layer built up from edge sharing CoO6 octahedra and water molecules.</p>
</caption>
<graphic xlink:href="e-66-00i44-fig2"></graphic>
</fig>
<fig id="Fap3">
<label>Fig. 3.</label>
<caption>
<p>A copper phosphate layer formed by (Cu/Co)2P2O12 linked to PO4 tetrahedra.</p>
</caption>
<graphic xlink:href="e-66-00i44-fig3"></graphic>
</fig>
<fig id="Fap4">
<label>Fig. 4.</label>
<caption>
<p>Stacking of the two types of layers projected approximately along [101].</p>
</caption>
<graphic xlink:href="e-66-00i44-fig4"></graphic>
</fig>
</sec>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e362">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Co
<sub>2.39</sub>
Cu
<sub>0.61</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 745</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 387.57</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 3.942 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>P</italic>
2
<sub>1</sub>
/
<italic>n</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -P 2yn</td>
<td rowspan="1" colspan="1">Cell parameters from 13678 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 8.086 (2) Å</td>
<td rowspan="1" colspan="1">θ = 2.9–38.0°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 9.826 (3) Å</td>
<td rowspan="1" colspan="1">µ = 8.49 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 9.042 (3) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 296 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 114.621 (1)°</td>
<td rowspan="1" colspan="1">Block, dark violet</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 653.1 (3) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.24 × 0.12 × 0.06 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 4</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e496">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Bruker X8 APEX diffractometer</td>
<td rowspan="1" colspan="1">3531 independent reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">3278 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">graphite</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.023</td>
</tr>
<tr>
<td rowspan="1" colspan="1">φ and ω scans</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 38.0°, θ
<sub>min</sub>
= 2.9°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: multi-scan (
<italic>SADABS</italic>
; Bruker, 2005)</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −11→14</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.306,
<italic>T</italic>
<sub>max</sub>
= 0.601</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −16→16</td>
</tr>
<tr>
<td rowspan="1" colspan="1">13678 measured reflections</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −15→15</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e613">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Hydrogen site location: inferred from neighbouring sites</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.022</td>
<td rowspan="1" colspan="1">H-atom parameters constrained</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.051</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0196
<italic>P</italic>
)
<sup>2</sup>
+ 0.5902
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.10</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">3531 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 1.01 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">129 parameters</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.79 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">0 restraints</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL97</italic>
(Sheldrick, 2008), Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.0034 (3)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e794">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor wR and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt) etc. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e886">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3</td>
<td rowspan="1" colspan="1">0.14535 (2)</td>
<td rowspan="1" colspan="1">0.125674 (19)</td>
<td rowspan="1" colspan="1">−0.43994 (2)</td>
<td rowspan="1" colspan="1">0.00920 (5)</td>
<td rowspan="1" colspan="1">0.613 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.14535 (2)</td>
<td rowspan="1" colspan="1">0.125674 (19)</td>
<td rowspan="1" colspan="1">−0.43994 (2)</td>
<td rowspan="1" colspan="1">0.00920 (5)</td>
<td rowspan="1" colspan="1">0.387 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.51531 (2)</td>
<td rowspan="1" colspan="1">0.129584 (19)</td>
<td rowspan="1" colspan="1">0.27594 (2)</td>
<td rowspan="1" colspan="1">0.00646 (4)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.11526 (2)</td>
<td rowspan="1" colspan="1">0.133641 (19)</td>
<td rowspan="1" colspan="1">0.03006 (2)</td>
<td rowspan="1" colspan="1">0.00808 (4)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">0.38414 (4)</td>
<td rowspan="1" colspan="1">0.16385 (4)</td>
<td rowspan="1" colspan="1">−0.13938 (4)</td>
<td rowspan="1" colspan="1">0.00589 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.20915 (4)</td>
<td rowspan="1" colspan="1">−0.08141 (3)</td>
<td rowspan="1" colspan="1">−0.67010 (4)</td>
<td rowspan="1" colspan="1">0.00519 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.57091 (13)</td>
<td rowspan="1" colspan="1">0.22680 (11)</td>
<td rowspan="1" colspan="1">−0.09698 (12)</td>
<td rowspan="1" colspan="1">0.01030 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.36035 (14)</td>
<td rowspan="1" colspan="1">0.13059 (11)</td>
<td rowspan="1" colspan="1">0.01540 (12)</td>
<td rowspan="1" colspan="1">0.00958 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.35326 (13)</td>
<td rowspan="1" colspan="1">0.03970 (11)</td>
<td rowspan="1" colspan="1">−0.25406 (12)</td>
<td rowspan="1" colspan="1">0.00944 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.22753 (13)</td>
<td rowspan="1" colspan="1">0.25872 (11)</td>
<td rowspan="1" colspan="1">−0.25036 (12)</td>
<td rowspan="1" colspan="1">0.00952 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.08457 (14)</td>
<td rowspan="1" colspan="1">−0.02059 (11)</td>
<td rowspan="1" colspan="1">−0.59509 (12)</td>
<td rowspan="1" colspan="1">0.01044 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.08992 (13)</td>
<td rowspan="1" colspan="1">−0.18315 (10)</td>
<td rowspan="1" colspan="1">−0.80105 (11)</td>
<td rowspan="1" colspan="1">0.00813 (15)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.37173 (13)</td>
<td rowspan="1" colspan="1">−0.15475 (11)</td>
<td rowspan="1" colspan="1">−0.53900 (12)</td>
<td rowspan="1" colspan="1">0.00950 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.27312 (13)</td>
<td rowspan="1" colspan="1">0.03376 (10)</td>
<td rowspan="1" colspan="1">−0.74946 (12)</td>
<td rowspan="1" colspan="1">0.00871 (16)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9</td>
<td rowspan="1" colspan="1">−0.10961 (14)</td>
<td rowspan="1" colspan="1">0.08498 (12)</td>
<td rowspan="1" colspan="1">0.07202 (12)</td>
<td rowspan="1" colspan="1">0.01199 (18)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H9A</td>
<td rowspan="1" colspan="1">−0.2021</td>
<td rowspan="1" colspan="1">0.1199</td>
<td rowspan="1" colspan="1">−0.0001</td>
<td rowspan="1" colspan="1">0.018*</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">H9B</td>
<td rowspan="1" colspan="1">−0.1031</td>
<td rowspan="1" colspan="1">0.0899</td>
<td rowspan="1" colspan="1">0.1749</td>
<td rowspan="1" colspan="1">0.018*</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1168">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3</td>
<td rowspan="1" colspan="1">0.01172 (8)</td>
<td rowspan="1" colspan="1">0.00784 (8)</td>
<td rowspan="1" colspan="1">0.00548 (7)</td>
<td rowspan="1" colspan="1">0.00309 (5)</td>
<td rowspan="1" colspan="1">0.00105 (6)</td>
<td rowspan="1" colspan="1">−0.00054 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.01172 (8)</td>
<td rowspan="1" colspan="1">0.00784 (8)</td>
<td rowspan="1" colspan="1">0.00548 (7)</td>
<td rowspan="1" colspan="1">0.00309 (5)</td>
<td rowspan="1" colspan="1">0.00105 (6)</td>
<td rowspan="1" colspan="1">−0.00054 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.00605 (7)</td>
<td rowspan="1" colspan="1">0.00578 (8)</td>
<td rowspan="1" colspan="1">0.00694 (7)</td>
<td rowspan="1" colspan="1">0.00026 (5)</td>
<td rowspan="1" colspan="1">0.00208 (5)</td>
<td rowspan="1" colspan="1">−0.00043 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.00620 (7)</td>
<td rowspan="1" colspan="1">0.00832 (8)</td>
<td rowspan="1" colspan="1">0.00848 (7)</td>
<td rowspan="1" colspan="1">−0.00025 (5)</td>
<td rowspan="1" colspan="1">0.00182 (6)</td>
<td rowspan="1" colspan="1">0.00165 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1</td>
<td rowspan="1" colspan="1">0.00590 (11)</td>
<td rowspan="1" colspan="1">0.00584 (13)</td>
<td rowspan="1" colspan="1">0.00529 (12)</td>
<td rowspan="1" colspan="1">0.00016 (10)</td>
<td rowspan="1" colspan="1">0.00170 (9)</td>
<td rowspan="1" colspan="1">−0.00011 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P2</td>
<td rowspan="1" colspan="1">0.00508 (11)</td>
<td rowspan="1" colspan="1">0.00526 (13)</td>
<td rowspan="1" colspan="1">0.00475 (11)</td>
<td rowspan="1" colspan="1">−0.00017 (9)</td>
<td rowspan="1" colspan="1">0.00156 (9)</td>
<td rowspan="1" colspan="1">0.00037 (9)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0077 (4)</td>
<td rowspan="1" colspan="1">0.0124 (5)</td>
<td rowspan="1" colspan="1">0.0107 (4)</td>
<td rowspan="1" colspan="1">−0.0029 (3)</td>
<td rowspan="1" colspan="1">0.0037 (3)</td>
<td rowspan="1" colspan="1">−0.0035 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0093 (4)</td>
<td rowspan="1" colspan="1">0.0125 (4)</td>
<td rowspan="1" colspan="1">0.0068 (4)</td>
<td rowspan="1" colspan="1">−0.0004 (3)</td>
<td rowspan="1" colspan="1">0.0033 (3)</td>
<td rowspan="1" colspan="1">0.0012 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0091 (4)</td>
<td rowspan="1" colspan="1">0.0081 (4)</td>
<td rowspan="1" colspan="1">0.0081 (4)</td>
<td rowspan="1" colspan="1">0.0015 (3)</td>
<td rowspan="1" colspan="1">0.0006 (3)</td>
<td rowspan="1" colspan="1">−0.0024 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.0093 (4)</td>
<td rowspan="1" colspan="1">0.0095 (4)</td>
<td rowspan="1" colspan="1">0.0086 (4)</td>
<td rowspan="1" colspan="1">0.0038 (3)</td>
<td rowspan="1" colspan="1">0.0026 (3)</td>
<td rowspan="1" colspan="1">0.0017 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.0102 (4)</td>
<td rowspan="1" colspan="1">0.0120 (4)</td>
<td rowspan="1" colspan="1">0.0115 (4)</td>
<td rowspan="1" colspan="1">−0.0003 (3)</td>
<td rowspan="1" colspan="1">0.0069 (3)</td>
<td rowspan="1" colspan="1">−0.0029 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0088 (4)</td>
<td rowspan="1" colspan="1">0.0067 (4)</td>
<td rowspan="1" colspan="1">0.0067 (3)</td>
<td rowspan="1" colspan="1">−0.0016 (3)</td>
<td rowspan="1" colspan="1">0.0011 (3)</td>
<td rowspan="1" colspan="1">−0.0004 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.0087 (4)</td>
<td rowspan="1" colspan="1">0.0090 (4)</td>
<td rowspan="1" colspan="1">0.0076 (4)</td>
<td rowspan="1" colspan="1">0.0012 (3)</td>
<td rowspan="1" colspan="1">0.0002 (3)</td>
<td rowspan="1" colspan="1">0.0017 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8</td>
<td rowspan="1" colspan="1">0.0082 (3)</td>
<td rowspan="1" colspan="1">0.0081 (4)</td>
<td rowspan="1" colspan="1">0.0092 (4)</td>
<td rowspan="1" colspan="1">−0.0017 (3)</td>
<td rowspan="1" colspan="1">0.0029 (3)</td>
<td rowspan="1" colspan="1">0.0024 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9</td>
<td rowspan="1" colspan="1">0.0104 (4)</td>
<td rowspan="1" colspan="1">0.0165 (5)</td>
<td rowspan="1" colspan="1">0.0094 (4)</td>
<td rowspan="1" colspan="1">0.0019 (3)</td>
<td rowspan="1" colspan="1">0.0045 (3)</td>
<td rowspan="1" colspan="1">0.0015 (3)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, °)</title>
<table-wrap position="anchor" id="d1e1469">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Cu3—O5</td>
<td rowspan="1" colspan="1">1.9236 (11)</td>
<td rowspan="1" colspan="1">P1—O4</td>
<td rowspan="1" colspan="1">1.5558 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.9411 (11)</td>
<td rowspan="1" colspan="1">P2—O7</td>
<td rowspan="1" colspan="1">1.5343 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3—O3</td>
<td rowspan="1" colspan="1">2.0026 (11)</td>
<td rowspan="1" colspan="1">P2—O8</td>
<td rowspan="1" colspan="1">1.5402 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3—O4</td>
<td rowspan="1" colspan="1">2.0347 (12)</td>
<td rowspan="1" colspan="1">P2—O6</td>
<td rowspan="1" colspan="1">1.5427 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Cu3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.2614 (11)</td>
<td rowspan="1" colspan="1">P2—O5</td>
<td rowspan="1" colspan="1">1.5496 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.0274 (11)</td>
<td rowspan="1" colspan="1">O1—Co3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">1.9411 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.0791 (11)</td>
<td rowspan="1" colspan="1">O1—Cu3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">1.9411 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.0976 (11)</td>
<td rowspan="1" colspan="1">O3—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.0274 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.1321 (11)</td>
<td rowspan="1" colspan="1">O4—Co1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">2.1320 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O2</td>
<td rowspan="1" colspan="1">2.1588 (12)</td>
<td rowspan="1" colspan="1">O5—Co3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.2613 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.1779 (12)</td>
<td rowspan="1" colspan="1">O5—Cu3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.2613 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O2</td>
<td rowspan="1" colspan="1">2.0407 (11)</td>
<td rowspan="1" colspan="1">O6—Co1
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.0790 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O9</td>
<td rowspan="1" colspan="1">2.0625 (11)</td>
<td rowspan="1" colspan="1">O6—Co2
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.1010 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O7
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.0818 (13)</td>
<td rowspan="1" colspan="1">O7—Co2
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.0818 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.1010 (11)</td>
<td rowspan="1" colspan="1">O7—Co1
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">2.1779 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.1088 (11)</td>
<td rowspan="1" colspan="1">O8—Co1
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.0976 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.3310 (13)</td>
<td rowspan="1" colspan="1">O8—Co2
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.1087 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1—O2</td>
<td rowspan="1" colspan="1">1.5254 (11)</td>
<td rowspan="1" colspan="1">O9—Co2
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.3310 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1—O1</td>
<td rowspan="1" colspan="1">1.5257 (11)</td>
<td rowspan="1" colspan="1">O9—H9A</td>
<td rowspan="1" colspan="1">0.8342</td>
</tr>
<tr>
<td rowspan="1" colspan="1">P1—O3</td>
<td rowspan="1" colspan="1">1.5525 (11)</td>
<td rowspan="1" colspan="1">O9—H9B</td>
<td rowspan="1" colspan="1">0.9111</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Cu3—O1
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">96.74 (5)</td>
<td rowspan="1" colspan="1">O9—Co2—O7
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">104.98 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Cu3—O3</td>
<td rowspan="1" colspan="1">99.61 (5)</td>
<td rowspan="1" colspan="1">O2—Co2—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">109.20 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Cu3—O3</td>
<td rowspan="1" colspan="1">145.59 (4)</td>
<td rowspan="1" colspan="1">O9—Co2—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">80.81 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Cu3—O4</td>
<td rowspan="1" colspan="1">171.47 (4)</td>
<td rowspan="1" colspan="1">O7
<sup>iv</sup>
—Co2—O6
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">79.25 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Cu3—O4</td>
<td rowspan="1" colspan="1">91.68 (5)</td>
<td rowspan="1" colspan="1">O2—Co2—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">80.38 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Cu3—O4</td>
<td rowspan="1" colspan="1">72.46 (4)</td>
<td rowspan="1" colspan="1">O9—Co2—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">87.19 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—Cu3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">77.63 (4)</td>
<td rowspan="1" colspan="1">O7
<sup>iv</sup>
—Co2—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">115.29 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1
<sup>i</sup>
—Cu3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">114.90 (4)</td>
<td rowspan="1" colspan="1">O6
<sup>ii</sup>
—Co2—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">163.32 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3—Cu3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">98.14 (5)</td>
<td rowspan="1" colspan="1">O2—Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">79.64 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—Cu3—O5
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">100.04 (4)</td>
<td rowspan="1" colspan="1">O9—Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">89.19 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O6
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">172.66 (4)</td>
<td rowspan="1" colspan="1">O7
<sup>iv</sup>
—Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">158.15 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">97.15 (5)</td>
<td rowspan="1" colspan="1">O6
<sup>ii</sup>
—Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">86.90 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O8
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">90.19 (4)</td>
<td rowspan="1" colspan="1">O8
<sup>v</sup>
—Co2—O9
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">81.36 (4)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">86.13 (5)</td>
<td rowspan="1" colspan="1">O2—P1—O1</td>
<td rowspan="1" colspan="1">110.26 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">86.65 (4)</td>
<td rowspan="1" colspan="1">O2—P1—O3</td>
<td rowspan="1" colspan="1">113.44 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>v</sup>
—Co1—O4
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">167.68 (4)</td>
<td rowspan="1" colspan="1">O1—P1—O3</td>
<td rowspan="1" colspan="1">110.69 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O2</td>
<td rowspan="1" colspan="1">89.25 (4)</td>
<td rowspan="1" colspan="1">O2—P1—O4</td>
<td rowspan="1" colspan="1">109.89 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O2</td>
<td rowspan="1" colspan="1">92.14 (4)</td>
<td rowspan="1" colspan="1">O1—P1—O4</td>
<td rowspan="1" colspan="1">111.95 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>v</sup>
—Co1—O2</td>
<td rowspan="1" colspan="1">77.97 (4)</td>
<td rowspan="1" colspan="1">O3—P1—O4</td>
<td rowspan="1" colspan="1">100.30 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>vi</sup>
—Co1—O2</td>
<td rowspan="1" colspan="1">90.24 (4)</td>
<td rowspan="1" colspan="1">O7—P2—O8</td>
<td rowspan="1" colspan="1">111.04 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">101.61 (4)</td>
<td rowspan="1" colspan="1">O7—P2—O6</td>
<td rowspan="1" colspan="1">110.42 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>iv</sup>
—Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">77.57 (4)</td>
<td rowspan="1" colspan="1">O8—P2—O6</td>
<td rowspan="1" colspan="1">110.02 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O8
<sup>v</sup>
—Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">96.78 (4)</td>
<td rowspan="1" colspan="1">O7—P2—O5</td>
<td rowspan="1" colspan="1">110.30 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4
<sup>vi</sup>
—Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">94.16 (4)</td>
<td rowspan="1" colspan="1">O8—P2—O5</td>
<td rowspan="1" colspan="1">109.04 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">168.52 (4)</td>
<td rowspan="1" colspan="1">O6—P2—O5</td>
<td rowspan="1" colspan="1">105.87 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co2—O9</td>
<td rowspan="1" colspan="1">164.36 (4)</td>
<td rowspan="1" colspan="1">H9A—O9—H9B</td>
<td rowspan="1" colspan="1">115.3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co2—O7
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">89.00 (4)</td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i)
<italic>x</italic>
−1/2, −
<italic>y</italic>
+1/2,
<italic>z</italic>
−1/2; (ii) −
<italic>x</italic>
, −
<italic>y</italic>
, −
<italic>z</italic>
−1; (iii) −
<italic>x</italic>
+1, −
<italic>y</italic>
, −
<italic>z</italic>
; (iv) −
<italic>x</italic>
+1/2,
<italic>y</italic>
+1/2, −
<italic>z</italic>
−1/2; (v)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
+1; (vi)
<italic>x</italic>
+1/2, −
<italic>y</italic>
+1/2,
<italic>z</italic>
+1/2; (vii) −
<italic>x</italic>
, −
<italic>y</italic>
, −
<italic>z</italic>
; (viii) −
<italic>x</italic>
+1/2,
<italic>y</italic>
−1/2, −
<italic>z</italic>
−1/2; (ix)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
−1.</p>
</sec>
<sec id="tablewraphbondslong">
<title>Hydrogen-bond geometry (Å, °)</title>
<table-wrap position="anchor" id="d1e2181">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="5">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H</td>
<td rowspan="1" colspan="1">H···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
···
<italic>A</italic>
</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
—H···
<italic>A</italic>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—H9A···O1i</td>
<td rowspan="1" colspan="1">0.83</td>
<td rowspan="1" colspan="1">1.97</td>
<td rowspan="1" colspan="1">2.768 (2)</td>
<td rowspan="1" colspan="1">159</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—H9B···O5
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">0.92</td>
<td rowspan="1" colspan="1">2.27</td>
<td rowspan="1" colspan="1">2.942 (2)</td>
<td rowspan="1" colspan="1">130</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O9—H9B···O4
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">0.92</td>
<td rowspan="1" colspan="1">2.30</td>
<td rowspan="1" colspan="1">2.905 (2)</td>
<td rowspan="1" colspan="1">123</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: i; (v)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
+1; (x)
<italic>x</italic>
−1/2, −
<italic>y</italic>
+1/2,
<italic>z</italic>
+1/2.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Anderson, J., Kostiner, E. & Ruszala, F. A. (1976).
<italic>Inorg. Chem.</italic>
<bold>15</bold>
2744–2748.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Brandenburg, K. (2006).
<italic>DIAMOND</italic>
Crystal Impact GbR, Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Bruker (2005).
<italic>APEX2</italic>
,
<italic>SAINT</italic>
and
<italic>SADABS</italic>
Bruker AXS Inc., Madison, Wisconsin, USA.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Clearfield, A. (1988).
<italic>Chem. Rev.</italic>
<bold>88</bold>
, 125–148,</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Farrugia, L. J. (1997).
<italic>J. Appl. Cryst.</italic>
<bold>30</bold>
, 565.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Farrugia, L. J. (1999).
<italic>J. Appl. Cryst.</italic>
<bold>32</bold>
, 837–838.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Gao, D. & Gao, Q. (2005).
<italic>Micropor. Mesopor. Mater.</italic>
<bold>85</bold>
365–373.</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Harrison, W. T. A., Vaughey, J. T., Dussack, L. L., Jacobson, A. J., Martin, T. E. & Stucky, G. D. (1995).
<italic>J. Solid State Chem.</italic>
<bold>114</bold>
, 151–158.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Liao, J. H., Leroux, F., Guyomard, D., Piffard, Y. & Tournoux, M. (1995).
<italic>Eur. J. Solid State Inorg. Chem.</italic>
<bold>32</bold>
, 403–414.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Moore, P. B. & Araki, T. (1975).
<italic>Am. Mineral.</italic>
<bold>60</bold>
, 454–459.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Sørensen, M. B., Hazell, R. G., Bentien, A., Bond, A. D. & Jensen, T. R. (2004).
<italic>Dalton Trans.</italic>
pp. 598–606.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Viter, V. N. & Nagornyi, P. G. (2009).
<italic>Russ. J. Appl. Chem.</italic>
<bold>82</bold>
, 935–939.</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<table-wrap id="table1" position="float">
<label>Table 1</label>
<caption>
<title>Hydrogen-bond geometry (Å, °)</title>
</caption>
<table frame="hsides" rules="groups">
<thead valign="bottom">
<tr>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">H⋯
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
<italic>A</italic>
</th>
<th style="border-bottom:1px solid black;" rowspan="1" colspan="1" align="left" valign="bottom">
<italic>D</italic>
—H⋯
<italic>A</italic>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">O9—H9
<italic>A</italic>
⋯O1</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0.83</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">1.97</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.768 (2)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">159</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">O9—H9
<italic>B</italic>
⋯O5
<sup>i</sup>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0.92</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.27</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.942 (2)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">130</td>
</tr>
<tr>
<td style="" rowspan="1" colspan="1" align="left" valign="top">O9—H9
<italic>B</italic>
⋯O4
<sup>ii</sup>
</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">0.92</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.30</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">2.905 (2)</td>
<td style="" rowspan="1" colspan="1" align="left" valign="top">123</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Symmetry codes: (i)
<inline-formula>
<inline-graphic xlink:href="e-66-00i44-efi2.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
; (ii)
<inline-formula>
<inline-graphic xlink:href="e-66-00i44-efi3.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
.</p>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000388 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000388 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2979060
   |texte=   Dicobalt copper bis­[orthophosphate(V)] monohydrate, Co2.39Cu0.61(PO4)2·H2O
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:21578990" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024