Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003709 ( Pmc/Corpus ); précédent : 0003708; suivant : 0003710 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">β-Xenophyllite-type Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</title>
<author>
<name sortKey="Marzouki, Riadh" sort="Marzouki, Riadh" uniqKey="Marzouki R" first="Riadh" last="Marzouki">Riadh Marzouki</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frigui, Wafa" sort="Frigui, Wafa" uniqKey="Frigui W" first="Wafa" last="Frigui">Wafa Frigui</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guesmi, Abderrahmen" sort="Guesmi, Abderrahmen" uniqKey="Guesmi A" first="Abderrahmen" last="Guesmi">Abderrahmen Guesmi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24098157</idno>
<idno type="pmc">3790335</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790335</idno>
<idno type="RBID">PMC:3790335</idno>
<idno type="doi">10.1107/S1600536813025233</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000370</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000370</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">β-Xenophyllite-type Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</title>
<author>
<name sortKey="Marzouki, Riadh" sort="Marzouki, Riadh" uniqKey="Marzouki R" first="Riadh" last="Marzouki">Riadh Marzouki</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Frigui, Wafa" sort="Frigui, Wafa" uniqKey="Frigui W" first="Wafa" last="Frigui">Wafa Frigui</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guesmi, Abderrahmen" sort="Guesmi, Abderrahmen" uniqKey="Guesmi A" first="Abderrahmen" last="Guesmi">Abderrahmen Guesmi</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zid, Mohamed Faouzi" sort="Zid, Mohamed Faouzi" uniqKey="Zid M" first="Mohamed Faouzi" last="Zid">Mohamed Faouzi Zid</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Driss, Ahmed" sort="Driss, Ahmed" uniqKey="Driss A" first="Ahmed" last="Driss">Ahmed Driss</name>
<affiliation>
<nlm:aff id="a">Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Acta Crystallographica Section E: Structure Reports Online</title>
<idno type="eISSN">1600-5368</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The title compound, tetrasodium lithium cobalt aluminium hexa­(orthoarsenate), was synthesized by a solid state reaction route. In the crystal structure, Co
<sup>2+</sup>
ions are partially substituted by Al
<sup>3+</sup>
in an octa­hedral environment [
<italic>M</italic>
1 with site symmetry 2/
<italic>m</italic>
; occupancy ratio Co:Al = 0.286 (10):0.714 (10)]. The charge compensation is ensured by Li
<sup>+</sup>
cations sharing a tetra­hedral site with Co
<sup>2+</sup>
ions [
<italic>M</italic>
2 with site symmetry 2; occupancy ratio Co:Li = 0.690 (5):0.310 (5)]. The anionic unit is formed by two octa­hedra and three tetra­hedra linked only by corners. The Co
<italic>M</italic>
1
<italic>M</italic>
2As
<sub>2</sub>
O
<sub>19</sub>
units associate to an open three-dimensional framework containing tunnels propagating along the
<italic>a-</italic>
axis direction. One Na
<sup>+</sup>
cation is located in the periphery of the tunnels while the other two are situated in the centres: all Na
<sup>+</sup>
cations exhibit half-occupancy. The structure of the studied material is compared with those of various related minerals reported in the literature.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="iso-abbrev">Acta Crystallogr Sect E Struct Rep Online</journal-id>
<journal-id journal-id-type="publisher-id">Acta Cryst. E</journal-id>
<journal-title-group>
<journal-title>Acta Crystallographica Section E: Structure Reports Online</journal-title>
</journal-title-group>
<issn pub-type="epub">1600-5368</issn>
<publisher>
<publisher-name>International Union of Crystallography</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24098157</article-id>
<article-id pub-id-type="pmc">3790335</article-id>
<article-id pub-id-type="publisher-id">vn2076</article-id>
<article-id pub-id-type="doi">10.1107/S1600536813025233</article-id>
<article-id pub-id-type="coden">ACSEBH</article-id>
<article-id pub-id-type="pii">S1600536813025233</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Inorganic Papers</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>β-Xenophyllite-type Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</article-title>
<alt-title>
<italic>Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Marzouki</surname>
<given-names>Riadh</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frigui</surname>
<given-names>Wafa</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guesmi</surname>
<given-names>Abderrahmen</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zid</surname>
<given-names>Mohamed Faouzi</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
<xref ref-type="corresp" rid="cor">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Driss</surname>
<given-names>Ahmed</given-names>
</name>
<xref ref-type="aff" rid="a">a</xref>
</contrib>
<aff id="a">
<label>a</label>
Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis,
<country>Tunisia</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor">Correspondence e-mail:
<email>faouzi.zid@fst.rnu.tn</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<day>01</day>
<month>10</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>21</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>69</volume>
<issue>Pt 10</issue>
<issue-id pub-id-type="publisher-id">e131000</issue-id>
<fpage>i65</fpage>
<lpage>i66</lpage>
<history>
<date date-type="received">
<day>02</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>11</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>© Marzouki et al. 2013</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0/uk/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://dx.doi.org/10.1107/S1600536813025233">A full version of this article is available from Crystallography Journals Online.</self-uri>
<abstract>
<p>The title compound, tetrasodium lithium cobalt aluminium hexa­(orthoarsenate), was synthesized by a solid state reaction route. In the crystal structure, Co
<sup>2+</sup>
ions are partially substituted by Al
<sup>3+</sup>
in an octa­hedral environment [
<italic>M</italic>
1 with site symmetry 2/
<italic>m</italic>
; occupancy ratio Co:Al = 0.286 (10):0.714 (10)]. The charge compensation is ensured by Li
<sup>+</sup>
cations sharing a tetra­hedral site with Co
<sup>2+</sup>
ions [
<italic>M</italic>
2 with site symmetry 2; occupancy ratio Co:Li = 0.690 (5):0.310 (5)]. The anionic unit is formed by two octa­hedra and three tetra­hedra linked only by corners. The Co
<italic>M</italic>
1
<italic>M</italic>
2As
<sub>2</sub>
O
<sub>19</sub>
units associate to an open three-dimensional framework containing tunnels propagating along the
<italic>a-</italic>
axis direction. One Na
<sup>+</sup>
cation is located in the periphery of the tunnels while the other two are situated in the centres: all Na
<sup>+</sup>
cations exhibit half-occupancy. The structure of the studied material is compared with those of various related minerals reported in the literature.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Related literature   </title>
<p>For applications of these and related phases, see: Aurivillius
<italic>et al.</italic>
(1964
<xref ref-type="bibr" rid="bb2"></xref>
); Nagpure
<italic>et al.</italic>
(2010
<xref ref-type="bibr" rid="bb21"></xref>
); Prabaharan
<italic>et al.</italic>
(1997
<xref ref-type="bibr" rid="bb23"></xref>
). For details of structurally related compounds, see: Alvarez-Vega
<italic>et al.</italic>
(2006
<xref ref-type="bibr" rid="bb1"></xref>
); Keller
<italic>et al.</italic>
(1981
<xref ref-type="bibr" rid="bb15"></xref>
); Frigui
<italic>et al.</italic>
(2012
<xref ref-type="bibr" rid="bb10"></xref>
); Goodenough
<italic>et al.</italic>
(1976
<xref ref-type="bibr" rid="bb11"></xref>
); Marzouki
<italic>et al.</italic>
(2012
<xref ref-type="bibr" rid="bb18"></xref>
); Ben Smida
<italic>et al.</italic>
(2013
<xref ref-type="bibr" rid="bb4"></xref>
); Guesmi & Driss (2012
<xref ref-type="bibr" rid="bb12"></xref>
); Moring & Kostiner (1986
<xref ref-type="bibr" rid="bb20"></xref>
); Kobashi
<italic>et al.</italic>
(1998
<xref ref-type="bibr" rid="bb16"></xref>
); Ben Smail
<italic>et al.</italic>
(1999
<xref ref-type="bibr" rid="bb3"></xref>
); Burke
<italic>et al.</italic>
(2006
<xref ref-type="bibr" rid="bb7"></xref>
); Redhammer
<italic>et al.</italic>
(2005
<xref ref-type="bibr" rid="bb24"></xref>
); Hatert
<italic>et al.</italic>
(2005
<xref ref-type="bibr" rid="bb14"></xref>
); Moore & Molin-Case (1974
<xref ref-type="bibr" rid="bb19"></xref>
). For the bond-valence method, see: Brown & Altermatt, (1985
<xref ref-type="bibr" rid="bb6"></xref>
).</p>
</sec>
<sec id="sec2">
<title>Experimental   </title>
<sec id="sec2.1">
<title></title>
<sec id="sec2.1.1">
<title>Crystal data   </title>
<p>
<list list-type="simple" id="l1">
<list-item>
<p>Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</p>
</list-item>
<list-item>
<p>
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 1283.06</p>
</list-item>
<list-item>
<p>Monoclinic,
<inline-formula>
<inline-graphic xlink:href="e-69-00i65-efi7.jpg" mimetype="image" mime-subtype="gif"></inline-graphic>
</inline-formula>
</p>
</list-item>
<list-item>
<p>
<italic>a</italic>
= 10.7444 (9) Å</p>
</list-item>
<list-item>
<p>
<italic>b</italic>
= 14.847 (2) Å</p>
</list-item>
<list-item>
<p>
<italic>c</italic>
= 6.7223 (8) Å</p>
</list-item>
<list-item>
<p>β = 105.51 (2)°</p>
</list-item>
<list-item>
<p>
<italic>V</italic>
= 1033.3 (2) Å
<sup>3</sup>
</p>
</list-item>
<list-item>
<p>
<italic>Z</italic>
= 2</p>
</list-item>
<list-item>
<p>Mo
<italic>K</italic>
α radiation</p>
</list-item>
<list-item>
<p>μ = 14.22 mm
<sup>−1</sup>
</p>
</list-item>
<list-item>
<p>
<italic>T</italic>
= 298 K</p>
</list-item>
<list-item>
<p>0.26 × 0.24 × 0.22 mm</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.2">
<title>Data collection   </title>
<p>
<list list-type="simple" id="l2">
<list-item>
<p>Enraf–Nonius CAD-4 diffractometer</p>
</list-item>
<list-item>
<p>Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968
<xref ref-type="bibr" rid="bb22"></xref>
)
<italic>T</italic>
<sub>min</sub>
= 0.033,
<italic>T</italic>
<sub>max</sub>
= 0.042</p>
</list-item>
<list-item>
<p>1615 measured reflections</p>
</list-item>
<list-item>
<p>1174 independent reflections</p>
</list-item>
<list-item>
<p>1048 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</p>
</list-item>
<list-item>
<p>
<italic>R</italic>
<sub>int</sub>
= 0.027</p>
</list-item>
<list-item>
<p>2 standard reflections every 120 min intensity decay: 1.4%</p>
</list-item>
</list>
</p>
</sec>
<sec id="sec2.1.3">
<title>Refinement   </title>
<p>
<list list-type="simple" id="l3">
<list-item>
<p>
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.026</p>
</list-item>
<list-item>
<p>
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.068</p>
</list-item>
<list-item>
<p>
<italic>S</italic>
= 1.13</p>
</list-item>
<list-item>
<p>1174 reflections</p>
</list-item>
<list-item>
<p>117 parameters</p>
</list-item>
<list-item>
<p>2 restraints</p>
</list-item>
<list-item>
<p>Δρ
<sub>max</sub>
= 0.87 e Å
<sup>−3</sup>
</p>
</list-item>
<list-item>
<p>Δρ
<sub>min</sub>
= −0.87 e Å
<sup>−3</sup>
</p>
</list-item>
</list>
</p>
</sec>
</sec>
<sec id="d5e770">
<title></title>
<p>Data collection:
<italic>CAD-4 EXPRESS</italic>
(Duisenberg, 1992
<xref ref-type="bibr" rid="bb8"></xref>
; Macíček & Yordanov, 1992
<xref ref-type="bibr" rid="bb17"></xref>
); cell refinement:
<italic>CAD-4 EXPRESS</italic>
; data reduction:
<italic>XCAD4</italic>
(Harms & Wocadlo, 1995
<xref ref-type="bibr" rid="bb13"></xref>
); program(s) used to solve structure:
<italic>SHELXS97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb25"></xref>
); program(s) used to refine structure:
<italic>SHELXL97</italic>
(Sheldrick, 2008
<xref ref-type="bibr" rid="bb25"></xref>
); molecular graphics:
<italic>DIAMOND</italic>
(Brandenburg, 1998
<xref ref-type="bibr" rid="bb5"></xref>
); software used to prepare material for publication:
<italic>WinGX</italic>
(Farrugia, 2012
<xref ref-type="bibr" rid="bb9"></xref>
).</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="loca-data">
<p>Crystal structure: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813025233/vn2076sup1.cif">10.1107/S1600536813025233/vn2076sup1.cif</ext-link>
</p>
<media mimetype="chemical" mime-subtype="x-cif" xlink:href="e-69-00i65-sup1.cif" xlink:type="simple" id="d35e160" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="loca-data">
<p>Structure factors: contains datablock(s) I. DOI:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S1600536813025233/vn2076Isup2.hkl">10.1107/S1600536813025233/vn2076Isup2.hkl</ext-link>
</p>
<media mimetype="text" mime-subtype="plain" xlink:href="e-69-00i65-Isup2.hkl" xlink:type="simple" id="d35e167" position="anchor"></media>
</supplementary-material>
<supplementary-material content-type="local-data">
<p>Additional supplementary materials:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsupfiles?vn2076&file=vn2076sup0.html&mime=text/html"> crystallographic information</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendcif?vn2076sup1&Qmime=cif">3D view</ext-link>
;
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/paper?vn2076&checkcif=yes">checkCIF report</ext-link>
</p>
</supplementary-material>
</sec>
</body>
<back>
<fn-group>
<fn id="fnu1">
<p>Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference:
<ext-link ext-link-type="uri" xlink:href="http://scripts.iucr.org/cgi-bin/sendsup?vn2076">VN2076</ext-link>
).</p>
</fn>
</fn-group>
<app-group>
<app>
<title>supplementary crystallographic information</title>
<sec id="comment">
<title>1. Comment </title>
<p>Les phosphates et les arséniates de métaux de transition ont un champ prometteur pour diverses applications: ferroélectriques, magnétiques (Aurivillius
<italic>et al.</italic>
, 1964; Nagpure
<italic>et al.</italic>
, 2010). Néanmoins, l'introduction d'ions monovalents dans ces oxydes peut conduire à des matériaux ayant des propriétés intéressantes, en particulier de conduction ionique (Prabaharan
<italic>et al.</italic>
, 1997).</p>
<p>Selon cette approche, les phosphates et arséniates mixtes de métaux de transition et de cations alcalins sont étudiés. Ces matériaux présentent une richesse structurale remarquable: type olivine (Alvarez-Vega
<italic>et al.</italic>
, 2006), type alluaudite (Keller
<italic>et al.</italic>
, 1981), structure wyllieite (Frigui
<italic>et al.</italic>
, 2012). En relation avec leurs structures, ces matériaux présentent de nombreuses propriétés physico-chimiques: conduction ionique, échange d'ions (Goodenough
<italic>et al.</italic>
, 1976).</p>
<p>Dans ce contexte, nous avons tenté d'explorer les systèmes
<italic>A</italic>
<sub>2</sub>
O–CoO–Al
<sub>2</sub>
O
<sub>3</sub>
<italic>X</italic>
<sub>2</sub>
O
<sub>5</sub>
(
<italic>A</italic>
= métal alcalin;
<italic>X</italic>
= P/As). Une nouvelle phase de formulation Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
a été synthétisée par réaction à l'état solide.</p>
<p>L'unité asymétrique Na
<sub>3</sub>
Co
<italic>M</italic>
1
<italic>M</italic>
2As
<sub>2</sub>
O
<sub>19</sub>
renferme en plus des deux octaèdres
<italic>M</italic>
1O
<sub>6</sub>
(
<italic>M</italic>
1=Co
<sub>0.29</sub>
Al
<sub>0.71</sub>
) et Co3O
<sub>6</sub>
, trois tétraèdres As1O
<sub>4</sub>
, As2O
<sub>4</sub>
et
<italic>M</italic>
2O
<sub>4</sub>
(
<italic>M</italic>
2=Co
<sub>0.69</sub>
Li
<sub>0.31</sub>
) où l'un des deux atomes d'arsenic est situé sur le miroir (Fig. 1). Dans la charpente anionique, les dimères Co
<sub>2</sub>
O
<sub>10</sub>
arrangés dans le plan
<italic>ac</italic>
sont liés entre eux par les tétraèdres As2O
<sub>4</sub>
, d'une part par partage d'arêtes avec les octaèdres Co3O
<sub>6</sub>
et d'autre part par formation de ponts triples (Fig. 2). Au sein de ces chaînes, les fenêtres quadrilatères résultantes sont occupées par les tétraèdres
<italic>M</italic>
2O
<sub>4</sub>
formant ainsi des rubans disposés selon la direction [100] (Fig. 3). La jonction entre ces derniers est assurée par mise en commun de sommets avec les tétraèdres As1O
<sub>4</sub>
. Elle est aussi renforcée par formation de ponts mixtes
<italic>M</italic>
1–O–Co3. De plus les polyèdres As1O
<sub>4</sub>
et
<italic>M</italic>
1O
<sub>4</sub>
, situés entre les rubans sont connectés par partage de sommets. Il en résulte des couches polyédriques disposées parallèlement au plan
<italic>ab</italic>
(Fig. 4). Ces dernières sont liées entre elles par des ponts mixtes Co3–O–As2 pour former une charpente tridimensionnelle possédant des tunnels, à section hexagonale, disposés selon la direction [100] où logent les cations Na
<sup>+</sup>
(Fig. 5).</p>
<p>L'examen des facteurs géométriques dans la structure montre qu'ils sont en bon accord avec ceux rencontrés dans la littérature (Marzouki
<italic>et al.</italic>
, 2012; Ben Smida
<italic>et al.</italic>
, 2013; Guesmi & Driss, 2012). D'autre part, le calcul des valences de liaisons (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des cations suivants: Na1(0.942), Na2(0.826), Na3(0.942), As1(5.010), As2(4.867),
<italic>M</italic>
1=Co
<sub>0.29</sub>
Al
<sub>0.71</sub>
(2.686),
<italic>M</italic>
2=Co
<sub>0.69</sub>
Li
<sub>0.31</sub>
(1.293) et Co3(1.981).</p>
<p>Un examen rigoureux de différentes structures trouvées dans la littérature révèle que le matériau étudié est un nouveau membre d'une famille de phases incluant Na
<sub>4</sub>
Ni
<sub>7</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(Moring & Kostiner, 1986), Na
<sub>4</sub>
Co
<sub>7</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(Kobashi
<italic>et al.</italic>
, 1998) et K
<sub>4</sub>
Ni
<sub>7</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
(Ben Smail
<italic>et al.</italic>
, 1999). Ce dernier cristallise dans le groupe d'espace
<italic>C</italic>
2/
<italic>m</italic>
tandis que les phosphates sont revendiqués pour être non-centrosymétriques (groupe d'espace:
<italic>Cm</italic>
). Mais dans le cas du Xenophyllite Na
<sub>4</sub>
Fe
<sup>II</sup>
<sub>7</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
(Burke
<italic>et al.</italic>
, 2006) ayant une formulation analogue (type
<italic>A</italic>
<sup>I</sup>
<sub>4</sub>
<italic>M</italic>
<sup>II</sup>
<sub>7</sub>
(
<italic>X</italic>
O
<sub>4</sub>
)
<sub>6</sub>
avec
<italic>X</italic>
= P/As), il cristallise dans le système triclinique groupe d'espace
<italic>P</italic>
1.</p>
<p>Une comparaison de la structure de Na
<sub>4</sub>
Co
<sub>4</sub>
(Co
<sub>0.69</sub>
Li
<sub>0.31</sub>
)
<sub>2</sub>
(Co
<sub>0.29</sub>
Al
<sub>0.71</sub>
)(AsO
<sub>4</sub>
)
<sub>6</sub>
avec celles de l'hagendorfite (Na
<sub>0.84</sub>
Ca
<sub>0.32</sub>
)Mn(Fe
<sub>1.74</sub>
Al
<sub>0.26</sub>
)(PO
<sub>4</sub>
)
<sub>3</sub>
de type alluaudite (Redhammer
<italic>et al.</italic>
, 2005), le rosemaryite (Mn
<sub>0.366</sub>
Na
<sub>0.325</sub>
)(Fe
<sub>0.911</sub>
Na
<sub>0.088</sub>
)(Al
<sub>0.708</sub>
Fe
<sub>0.296</sub>
)(Fe
<sub>0.791</sub>
Al
<sub>0.215</sub>
)(PO
<sub>4</sub>
)
<sub>3</sub>
(Hatert
<italic>et al.</italic>
, 2005) et le wyllieite Na
<sub>4.6</sub>
(CaMn)Fe
<sub>4</sub>
(Fe
<sub>0.75</sub>
Mg
<sub>0.25</sub>
)
<sub>4</sub>
(Fe
<sub>0.25</sub>
Al
<sub>0.75</sub>
)
<sub>4</sub>
(PO
<sub>4</sub>
)
<sub>12</sub>
(Moore & Molin-Case, 1974) montre que ces derniers cristallisent dans deux groupes d'espace différents (
<italic>P</italic>
2
<sub>1</sub>
/
<italic>n</italic>
(ou
<italic>P</italic>
2
<sub>1</sub>
/
<italic>c</italic>
) et
<italic>C</italic>
2/
<italic>c</italic>
) (Fig. 6). Une différence nette dans la charpente a été observée, surtout dans les types de connexion des dimères
<italic>M</italic>
3
<sub>2</sub>
O
<sub>10</sub>
mis en jeu. En effet, on remarque que dans le cas de l'alluaudite, du rosemaryite et du wyllieite les dimères (Fe/Al)
<sub>2</sub>
O
<sub>10</sub>
sont liés entre eux, seulement par les tétraèdres P2O
<sub>4</sub>
par partage de sommets. Dans ce cas, les polyèdres métalliques sont alors à l'extrémité des fenêtres quadrilatères résultantes. D'autre part, pour le wyllieite de formulation développée Na
<sub>4.6</sub>
(CaMn)Fe
<sub>4</sub>
(Fe
<sub>0.75</sub>
Mg
<sub>0.25</sub>
)
<sub>4</sub>
(Fe
<sub>0.25</sub>
Al
<sub>0.75</sub>
)
<sub>4</sub>
(PO
<sub>4</sub>
)
<sub>12</sub>
, les polyèdres (CaMn)O
<sub>6</sub>
renforcent la jonction des octaèdres (Fe/Mg)O
<sub>6</sub>
situés en dehors des fenêtres avec les autres dimères
<italic>M</italic>
3
<sub>2</sub>
O
<sub>10</sub>
(
<italic>M</italic>
3=Fe/Al).</p>
</sec>
<sec id="experimental">
<title>2. Experimental </title>
<p>Un mélange de Na
<sub>2</sub>
CO
<sub>3</sub>
(PROLABO, 27778), LiOH.H
<sub>2</sub>
O (FLUKA, 62530), Co(NO
<sub>3</sub>
).6H
<sub>2</sub>
O (FLUKA, 60832), Al
<sub>2</sub>
O
<sub>3</sub>
(FLUKA, 06285), NH
<sub>4</sub>
H
<sub>2</sub>
AsO
<sub>4</sub>
(préparé au laboratoire, ASTM 01–775) pris dans les proportions molaires 0.5:1:3:1:3 est mis dans un bécher contenant 15 ml d'eau distillée. Quelques gouttes d'acide nitrique ont été ajoutées pour dissocier totalement les réactifs. La solution est mise à l'étuve à une température de 340 K. Un précipité sous forme de poudre fine et de couleur rose a été obtenu. Ce dernier est finement broyé et mis dans un creuset en silice. Il est préchauffé à 673 K pendant 24 heures afin d'éliminer les produits volatils. Après refroidissement et broyage, le résidu est porté à une température de 1143 K pendant 5 jours. Un refroidissement lent (5°/24 h) a été appliqué jusqu'à 843 K, suivis d'un autre plus rapide (5°/12 h) jusqu'à l'ambiante. Des cristaux de couleur violette sous forme de parallélépipèdes sont apparus sur les parois du creuset. Des monocristaux de taille convenable sont séparés à l'eau bouillante. L'analyse par EDX sur microscope électronique à balayage (type quanta 200, marque FEI) confirme la présence des éléments chimiques attendus notamment Na, Co, Al, As, et l'oxygène. On note que le Li (
<italic>Z</italic>
< 6) est indétectable par ce type d'analyse.</p>
</sec>
<sec id="refinement">
<title>3. Refinement </title>
<p>Au début, les taux d 'occupation des sites
<italic>M</italic>
1 et
<italic>M</italic>
2 ont été librement affinés. Le résultat trouvé nous a conduit à les contraindre à 1.00 par l'utilisation d'une contrainte douce (restraint SUMP) avec une valeur sigma petite. L'utilisation de la commande EADP autorisée par le programme
<italic>SHELX</italic>
, pour les couples d'ions Co1/Al1 et Co2/Li2 conduit à des ellipsoïdes bien définis. De plus, les densités d'électrons maximum et minimum restantes dans la carte de Fourier-différence sont acceptables et sont situées respectivements à 0.76 Å de O4 et à 0.84 Å de As1.</p>
</sec>
<sec id="figures">
<title>Figures</title>
<fig id="Fap1">
<label>Fig. 1.</label>
<caption>
<p>L'unité asymétrique dans Na4Li0,62Co5,67Al0,71(AsO4)6. Les éllipsoïdes ont été définis avec 50% de probabilité. Codes de symétrie: (i) x, y, z + 1; (ii) x, y + 1, z; (iii) x, -y, z; (iv) -x + 3/2, -y + 3/2, -z + 1; (v) -x + 1, y, -z + 1; (vi) -x + 1, y + 1, -z + 1; (vii) x - 1, y + 1, z; (viii) x - 1/2, -y + 3/2, z; (ix) -x + 1/2, -y + 3/2, -z + 1; (x) -x + 1, -y, -z + 1.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig1"></graphic>
</fig>
<fig id="Fap2">
<label>Fig. 2.</label>
<caption>
<p>Vue selon b, montrant la jonction des dimères Co2O10 avec les tétraèdres As2O4.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig2"></graphic>
</fig>
<fig id="Fap3">
<label>Fig. 3.</label>
<caption>
<p>Projection d'un ruban dans le plan ac.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig3"></graphic>
</fig>
<fig id="Fap4">
<label>Fig. 4.</label>
<caption>
<p>Vue selon c, montrant la cohésion entre les rubans.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig4"></graphic>
</fig>
<fig id="Fap5">
<label>Fig. 5.</label>
<caption>
<p>Vue selon c, montrant la jonction entre les couches.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig5"></graphic>
</fig>
<fig id="Fap6">
<label>Fig. 6.</label>
<caption>
<p>Projection montrant la jonction des dimères dans: (a): le matériau Na4Co4(Co0.688Li0.309)2(Co0.285Al0.711)(AsO4)6, (b): l'alluaudite (Na0.84Ca0.32)Mn(Fe1.74Al0.26)(PO4)3, (c): le rosemaryite (Mn0.366Na0.325)(Fe0.911Na0.088)(Al0.708Fe0.296)(Fe0.791Al0,215)(PO4)3 et (d): le wyllieite Na4.6(CaMn)Fe4(Fe0.75Mg0.25)4(Fe0.25Al0.75)4(PO4)12.</p>
</caption>
<graphic xlink:href="e-69-00i65-fig6"></graphic>
</fig>
</sec>
<sec id="tablewrapcrystaldatalong">
<title>Crystal data</title>
<table-wrap position="anchor" id="d1e958">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Na
<sub>4</sub>
Li
<sub>0.62</sub>
Co
<sub>5.67</sub>
Al
<sub>0.71</sub>
(AsO
<sub>4</sub>
)
<sub>6</sub>
</td>
<td rowspan="1" colspan="1">
<italic>F</italic>
(000) = 1196</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>M</italic>
<italic>
<sub>r</sub>
</italic>
= 1283.06</td>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>x</sub>
= 4.124 Mg m
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Monoclinic,
<italic>C</italic>
2/
<italic>m</italic>
</td>
<td rowspan="1" colspan="1">Mo
<italic>K</italic>
α radiation, λ = 0.71073 Å</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Hall symbol: -C 2y</td>
<td rowspan="1" colspan="1">Cell parameters from 25 reflections</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
= 10.7444 (9) Å</td>
<td rowspan="1" colspan="1">θ = 11–15°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
= 14.847 (2) Å</td>
<td rowspan="1" colspan="1">µ = 14.22 mm
<sup></sup>
<sup>1</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
= 6.7223 (8) Å</td>
<td rowspan="1" colspan="1">
<italic>T</italic>
= 298 K</td>
</tr>
<tr>
<td rowspan="1" colspan="1">β = 105.51 (2)°</td>
<td rowspan="1" colspan="1">Prism, purple</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
= 1033.3 (2) Å
<sup>3</sup>
</td>
<td rowspan="1" colspan="1">0.26 × 0.24 × 0.22 mm</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>Z</italic>
= 2</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapdatacollectionlong">
<title>Data collection</title>
<table-wrap position="anchor" id="d1e1092">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Enraf–Nonius CAD-4 diffractometer</td>
<td rowspan="1" colspan="1">1048 reflections with
<italic>I</italic>
> 2σ(
<italic>I</italic>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Radiation source: fine-focus sealed tube</td>
<td rowspan="1" colspan="1">
<italic>R</italic>
<sub>int</sub>
= 0.027</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Graphite monochromator</td>
<td rowspan="1" colspan="1">θ
<sub>max</sub>
= 27.0°, θ
<sub>min</sub>
= 2.4°</td>
</tr>
<tr>
<td rowspan="1" colspan="1">ω/2θ scans</td>
<td rowspan="1" colspan="1">
<italic>h</italic>
= −13→13</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Absorption correction: ψ scan (North
<italic>et al.</italic>
, 1968)</td>
<td rowspan="1" colspan="1">
<italic>k</italic>
= −1→18</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>min</sub>
= 0.033,
<italic>T</italic>
<sub>max</sub>
= 0.042</td>
<td rowspan="1" colspan="1">
<italic>l</italic>
= −8→2</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1615 measured reflections</td>
<td rowspan="1" colspan="1">2 standard reflections every 120 min</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1174 independent reflections</td>
<td rowspan="1" colspan="1"> intensity decay: 1.4%</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewraprefinementdatalong">
<title>Refinement</title>
<table-wrap position="anchor" id="d1e1217">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="2">
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">Refinement on
<italic>F</italic>
<sup>2</sup>
</td>
<td rowspan="1" colspan="1">Primary atom site location: structure-invariant direct methods</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Least-squares matrix: full</td>
<td rowspan="1" colspan="1">Secondary atom site location: difference Fourier map</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>R</italic>
[
<italic>F</italic>
<sup>2</sup>
> 2σ(
<italic>F</italic>
<sup>2</sup>
)] = 0.026</td>
<td rowspan="1" colspan="1">
<italic>w</italic>
= 1/[σ
<sup>2</sup>
(
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
) + (0.0261
<italic>P</italic>
)
<sup>2</sup>
+ 8.122
<italic>P</italic>
] where
<italic>P</italic>
= (
<italic>F</italic>
<sub>o</sub>
<sup>2</sup>
+ 2
<italic>F</italic>
<sub>c</sub>
<sup>2</sup>
)/3</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>wR</italic>
(
<italic>F</italic>
<sup>2</sup>
) = 0.068</td>
<td rowspan="1" colspan="1">(Δ/σ)
<sub>max</sub>
= 0.001</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>S</italic>
= 1.13</td>
<td rowspan="1" colspan="1">Δρ
<sub>max</sub>
= 0.87 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">1174 reflections</td>
<td rowspan="1" colspan="1">Δρ
<sub>min</sub>
= −0.87 e Å
<sup></sup>
<sup>3</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">117 parameters</td>
<td rowspan="1" colspan="1">Extinction correction:
<italic>SHELXL</italic>
, Fc
<sup>*</sup>
=kFc[1+0.001xFc
<sup>2</sup>
λ
<sup>3</sup>
/sin(2θ)]
<sup>-1/4</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">2 restraints</td>
<td rowspan="1" colspan="1">Extinction coefficient: 0.00110 (14)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="specialdetails">
<title>Special details</title>
<table-wrap position="anchor" id="d1e1394">
<table rules="all" frame="box" style="table-layout:fixed">
<tr>
<td rowspan="1" colspan="1">Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Refinement. Refinement of
<italic>F</italic>
<sup>2</sup>
against ALL reflections. The weighted
<italic>R</italic>
-factor
<italic>wR</italic>
and goodness of fit
<italic>S</italic>
are based on
<italic>F</italic>
<sup>2</sup>
, conventional
<italic>R</italic>
-factors
<italic>R</italic>
are based on
<italic>F</italic>
, with
<italic>F</italic>
set to zero for negative
<italic>F</italic>
<sup>2</sup>
. The threshold expression of
<italic>F</italic>
<sup>2</sup>
> σ(
<italic>F</italic>
<sup>2</sup>
) is used only for calculating
<italic>R</italic>
-factors(gt)
<italic>etc</italic>
. and is not relevant to the choice of reflections for refinement.
<italic>R</italic>
-factors based on
<italic>F</italic>
<sup>2</sup>
are statistically about twice as large as those based on
<italic>F</italic>
, and
<italic>R</italic>
- factors based on ALL data will be even larger.</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapcoords">
<title>Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1494">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>x</italic>
</td>
<td rowspan="1" colspan="1">
<italic>y</italic>
</td>
<td rowspan="1" colspan="1">
<italic>z</italic>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sub>iso</sub>
*/
<italic>U</italic>
<sub>eq</sub>
</td>
<td rowspan="1" colspan="1">Occ. (<1)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2</td>
<td rowspan="1" colspan="1">0.59838 (4)</td>
<td rowspan="1" colspan="1">0.82118 (3)</td>
<td rowspan="1" colspan="1">0.79004 (7)</td>
<td rowspan="1" colspan="1">0.00867 (15)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1</td>
<td rowspan="1" colspan="1">0.81961 (6)</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.56316 (10)</td>
<td rowspan="1" colspan="1">0.01067 (18)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.67950 (6)</td>
<td rowspan="1" colspan="1">0.81829 (4)</td>
<td rowspan="1" colspan="1">0.31816 (9)</td>
<td rowspan="1" colspan="1">0.00996 (17)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.83579 (9)</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0144 (5)</td>
<td rowspan="1" colspan="1">0.690 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li2</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.83579 (9)</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0144 (5)</td>
<td rowspan="1" colspan="1">0.310 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0076 (6)</td>
<td rowspan="1" colspan="1">0.286 (10)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al1</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.5000</td>
<td rowspan="1" colspan="1">0.0076 (6)</td>
<td rowspan="1" colspan="1">0.714 (11)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.9266 (5)</td>
<td rowspan="1" colspan="1">0.8844 (3)</td>
<td rowspan="1" colspan="1">0.0071 (7)</td>
<td rowspan="1" colspan="1">0.0323 (11)</td>
<td rowspan="1" colspan="1">0.50</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.1821 (6)</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.9226 (9)</td>
<td rowspan="1" colspan="1">0.0199 (12)</td>
<td rowspan="1" colspan="1">0.50</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.4291 (12)</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">−0.0240 (13)</td>
<td rowspan="1" colspan="1">0.066 (4)</td>
<td rowspan="1" colspan="1">0.50</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.4915 (3)</td>
<td rowspan="1" colspan="1">0.7349 (2)</td>
<td rowspan="1" colspan="1">0.7760 (5)</td>
<td rowspan="1" colspan="1">0.0176 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.6883 (3)</td>
<td rowspan="1" colspan="1">0.7907 (2)</td>
<td rowspan="1" colspan="1">0.6291 (5)</td>
<td rowspan="1" colspan="1">0.0150 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.4874 (3)</td>
<td rowspan="1" colspan="1">−0.0941 (2)</td>
<td rowspan="1" colspan="1">0.7033 (5)</td>
<td rowspan="1" colspan="1">0.0127 (6)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.9410 (5)</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.7772 (8)</td>
<td rowspan="1" colspan="1">0.0239 (12)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.6804 (5)</td>
<td rowspan="1" colspan="1">0.0000</td>
<td rowspan="1" colspan="1">0.6305 (8)</td>
<td rowspan="1" colspan="1">0.0195 (11)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.6918 (3)</td>
<td rowspan="1" colspan="1">0.8497 (3)</td>
<td rowspan="1" colspan="1">0.0228 (5)</td>
<td rowspan="1" colspan="1">0.0180 (7)</td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.8273 (4)</td>
<td rowspan="1" colspan="1">−0.0903 (3)</td>
<td rowspan="1" colspan="1">0.4118 (6)</td>
<td rowspan="1" colspan="1">0.0252 (9)</td>
<td rowspan="1" colspan="1"></td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapadps">
<title>Atomic displacement parameters (Å
<sup>2</sup>
)</title>
<table-wrap position="anchor" id="d1e1749">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>11</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>22</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>33</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>12</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>13</sup>
</td>
<td rowspan="1" colspan="1">
<italic>U</italic>
<sup>23</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2</td>
<td rowspan="1" colspan="1">0.0063 (2)</td>
<td rowspan="1" colspan="1">0.0112 (2)</td>
<td rowspan="1" colspan="1">0.0081 (2)</td>
<td rowspan="1" colspan="1">0.00085 (16)</td>
<td rowspan="1" colspan="1">0.00117 (17)</td>
<td rowspan="1" colspan="1">−0.00121 (16)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1</td>
<td rowspan="1" colspan="1">0.0072 (3)</td>
<td rowspan="1" colspan="1">0.0091 (3)</td>
<td rowspan="1" colspan="1">0.0148 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0014 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3</td>
<td rowspan="1" colspan="1">0.0079 (3)</td>
<td rowspan="1" colspan="1">0.0123 (3)</td>
<td rowspan="1" colspan="1">0.0094 (3)</td>
<td rowspan="1" colspan="1">0.0006 (2)</td>
<td rowspan="1" colspan="1">0.0019 (2)</td>
<td rowspan="1" colspan="1">0.0006 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2</td>
<td rowspan="1" colspan="1">0.0101 (7)</td>
<td rowspan="1" colspan="1">0.0177 (8)</td>
<td rowspan="1" colspan="1">0.0154 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0034 (5)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Li2</td>
<td rowspan="1" colspan="1">0.0101 (7)</td>
<td rowspan="1" colspan="1">0.0177 (8)</td>
<td rowspan="1" colspan="1">0.0154 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0034 (5)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1</td>
<td rowspan="1" colspan="1">0.0055 (10)</td>
<td rowspan="1" colspan="1">0.0075 (10)</td>
<td rowspan="1" colspan="1">0.0097 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0019 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Al1</td>
<td rowspan="1" colspan="1">0.0055 (10)</td>
<td rowspan="1" colspan="1">0.0075 (10)</td>
<td rowspan="1" colspan="1">0.0097 (10)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.0019 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na1</td>
<td rowspan="1" colspan="1">0.040 (3)</td>
<td rowspan="1" colspan="1">0.025 (2)</td>
<td rowspan="1" colspan="1">0.025 (2)</td>
<td rowspan="1" colspan="1">−0.009 (2)</td>
<td rowspan="1" colspan="1">−0.003 (2)</td>
<td rowspan="1" colspan="1">0.0085 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na2</td>
<td rowspan="1" colspan="1">0.023 (3)</td>
<td rowspan="1" colspan="1">0.020 (3)</td>
<td rowspan="1" colspan="1">0.018 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.007 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Na3</td>
<td rowspan="1" colspan="1">0.171 (11)</td>
<td rowspan="1" colspan="1">0.013 (3)</td>
<td rowspan="1" colspan="1">0.025 (4)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.044 (7)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1</td>
<td rowspan="1" colspan="1">0.0134 (17)</td>
<td rowspan="1" colspan="1">0.0148 (17)</td>
<td rowspan="1" colspan="1">0.0213 (18)</td>
<td rowspan="1" colspan="1">−0.0011 (14)</td>
<td rowspan="1" colspan="1">−0.0010 (14)</td>
<td rowspan="1" colspan="1">0.0044 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2</td>
<td rowspan="1" colspan="1">0.0170 (17)</td>
<td rowspan="1" colspan="1">0.0176 (17)</td>
<td rowspan="1" colspan="1">0.0129 (16)</td>
<td rowspan="1" colspan="1">0.0088 (14)</td>
<td rowspan="1" colspan="1">0.0085 (13)</td>
<td rowspan="1" colspan="1">0.0025 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O3</td>
<td rowspan="1" colspan="1">0.0100 (14)</td>
<td rowspan="1" colspan="1">0.0109 (15)</td>
<td rowspan="1" colspan="1">0.0175 (16)</td>
<td rowspan="1" colspan="1">0.0019 (12)</td>
<td rowspan="1" colspan="1">0.0043 (12)</td>
<td rowspan="1" colspan="1">−0.0009 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4</td>
<td rowspan="1" colspan="1">0.015 (2)</td>
<td rowspan="1" colspan="1">0.023 (3)</td>
<td rowspan="1" colspan="1">0.026 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">−0.007 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5</td>
<td rowspan="1" colspan="1">0.011 (2)</td>
<td rowspan="1" colspan="1">0.020 (3)</td>
<td rowspan="1" colspan="1">0.028 (3)</td>
<td rowspan="1" colspan="1">0.000</td>
<td rowspan="1" colspan="1">0.006 (2)</td>
<td rowspan="1" colspan="1">0.000</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6</td>
<td rowspan="1" colspan="1">0.0162 (17)</td>
<td rowspan="1" colspan="1">0.0290 (19)</td>
<td rowspan="1" colspan="1">0.0081 (15)</td>
<td rowspan="1" colspan="1">−0.0074 (15)</td>
<td rowspan="1" colspan="1">0.0018 (13)</td>
<td rowspan="1" colspan="1">−0.0028 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7</td>
<td rowspan="1" colspan="1">0.0240 (18)</td>
<td rowspan="1" colspan="1">0.026 (2)</td>
<td rowspan="1" colspan="1">0.030 (2)</td>
<td rowspan="1" colspan="1">−0.0131 (16)</td>
<td rowspan="1" colspan="1">0.0150 (17)</td>
<td rowspan="1" colspan="1">−0.0160 (17)</td>
</tr>
</table>
</table-wrap>
</sec>
<sec id="tablewrapgeomlong">
<title>Geometric parameters (Å, º)</title>
<table-wrap position="anchor" id="d1e2071">
<table rules="all" frame="box" style="table-layout:fixed" summary="">
<colgroup span="4">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<tr>
<td rowspan="1" colspan="1">As2—O6
<sup>i</sup>
</td>
<td rowspan="1" colspan="1">1.672 (3)</td>
<td rowspan="1" colspan="1">Co1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.984 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O2</td>
<td rowspan="1" colspan="1">1.694 (3)</td>
<td rowspan="1" colspan="1">Co1—O3</td>
<td rowspan="1" colspan="1">1.984 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O1</td>
<td rowspan="1" colspan="1">1.706 (3)</td>
<td rowspan="1" colspan="1">Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">1.984 (3)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As2—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">1.724 (3)</td>
<td rowspan="1" colspan="1">Na1—O1
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.314 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O4</td>
<td rowspan="1" colspan="1">1.663 (5)</td>
<td rowspan="1" colspan="1">Na1—O4
<sup>xi</sup>
</td>
<td rowspan="1" colspan="1">2.342 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O5</td>
<td rowspan="1" colspan="1">1.674 (5)</td>
<td rowspan="1" colspan="1">Na1—O4
<sup>xii</sup>
</td>
<td rowspan="1" colspan="1">2.443 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O7</td>
<td rowspan="1" colspan="1">1.698 (4)</td>
<td rowspan="1" colspan="1">Na1—O1
<sup>xiii</sup>
</td>
<td rowspan="1" colspan="1">2.573 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">1.698 (4)</td>
<td rowspan="1" colspan="1">Na1—O6</td>
<td rowspan="1" colspan="1">2.605 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O7
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">2.056 (4)</td>
<td rowspan="1" colspan="1">Na2—O4
<sup>xiv</sup>
</td>
<td rowspan="1" colspan="1">2.512 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O6</td>
<td rowspan="1" colspan="1">2.078 (3)</td>
<td rowspan="1" colspan="1">Na2—O6
<sup>xv</sup>
</td>
<td rowspan="1" colspan="1">2.585 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O2</td>
<td rowspan="1" colspan="1">2.107 (3)</td>
<td rowspan="1" colspan="1">Na2—O6
<sup>xvi</sup>
</td>
<td rowspan="1" colspan="1">2.585 (5)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">2.119 (3)</td>
<td rowspan="1" colspan="1">Na2—O7
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.596 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.165 (3)</td>
<td rowspan="1" colspan="1">Na2—O7
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.596 (6)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.188 (3)</td>
<td rowspan="1" colspan="1">Na2—O4
<sup>xvii</sup>
</td>
<td rowspan="1" colspan="1">2.692 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O7
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">2.100 (4)</td>
<td rowspan="1" colspan="1">Na2—O5
<sup>xvii</sup>
</td>
<td rowspan="1" colspan="1">2.972 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O7
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">2.100 (4)</td>
<td rowspan="1" colspan="1">Na3—O3
<sup>xviii</sup>
</td>
<td rowspan="1" colspan="1">2.513 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O1
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">2.155 (4)</td>
<td rowspan="1" colspan="1">Na3—O3
<sup>xix</sup>
</td>
<td rowspan="1" colspan="1">2.513 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co2—O1
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">2.155 (4)</td>
<td rowspan="1" colspan="1">Na3—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">2.524 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O5</td>
<td rowspan="1" colspan="1">1.902 (5)</td>
<td rowspan="1" colspan="1">Na3—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">2.524 (8)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O5
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">1.902 (5)</td>
<td rowspan="1" colspan="1">Na3—O6
<sup>xx</sup>
</td>
<td rowspan="1" colspan="1">2.583 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Co1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">1.984 (3)</td>
<td rowspan="1" colspan="1">Na3—O6
<sup>xxi</sup>
</td>
<td rowspan="1" colspan="1">2.583 (7)</td>
</tr>
<tr>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
<td rowspan="1" colspan="1"></td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—As2—O2</td>
<td rowspan="1" colspan="1">111.31 (17)</td>
<td rowspan="1" colspan="1">O2—Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">89.99 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—As2—O1</td>
<td rowspan="1" colspan="1">117.96 (17)</td>
<td rowspan="1" colspan="1">O2
<sup>iv</sup>
—Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">164.89 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—As2—O1</td>
<td rowspan="1" colspan="1">104.74 (18)</td>
<td rowspan="1" colspan="1">O1
<sup>v</sup>
—Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">72.81 (12)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6
<sup>i</sup>
—As2—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">108.63 (17)</td>
<td rowspan="1" colspan="1">O7
<sup>vi</sup>
—Co2—O7
<sup>vii</sup>
</td>
<td rowspan="1" colspan="1">117.0 (2)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—As2—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">116.12 (16)</td>
<td rowspan="1" colspan="1">O7
<sup>vi</sup>
—Co2—O1
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">105.07 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O1—As2—O3
<sup>ii</sup>
</td>
<td rowspan="1" colspan="1">97.73 (16)</td>
<td rowspan="1" colspan="1">O7
<sup>vii</sup>
—Co2—O1
<sup>viii</sup>
</td>
<td rowspan="1" colspan="1">104.44 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—As1—O5</td>
<td rowspan="1" colspan="1">108.4 (3)</td>
<td rowspan="1" colspan="1">O7
<sup>vi</sup>
—Co2—O1
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">104.44 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—As1—O7</td>
<td rowspan="1" colspan="1">111.45 (18)</td>
<td rowspan="1" colspan="1">O7
<sup>vii</sup>
—Co2—O1
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">105.07 (14)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—As1—O7</td>
<td rowspan="1" colspan="1">110.63 (16)</td>
<td rowspan="1" colspan="1">O1
<sup>viii</sup>
—Co2—O1
<sup>ix</sup>
</td>
<td rowspan="1" colspan="1">121.69 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O4—As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">111.45 (18)</td>
<td rowspan="1" colspan="1">O5—Co1—O5
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">180.00 (13)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O5—As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">110.63 (16)</td>
<td rowspan="1" colspan="1">O5—Co1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">93.93 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7—As1—O7
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">104.2 (3)</td>
<td rowspan="1" colspan="1">O5
<sup>x</sup>
—Co1—O3
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">86.07 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—Co3—O6</td>
<td rowspan="1" colspan="1">84.43 (15)</td>
<td rowspan="1" colspan="1">O5—Co1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">86.07 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—Co3—O2</td>
<td rowspan="1" colspan="1">89.93 (15)</td>
<td rowspan="1" colspan="1">O5
<sup>x</sup>
—Co1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">93.93 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co3—O2</td>
<td rowspan="1" colspan="1">173.76 (14)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Co1—O3
<sup>iii</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—Co3—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">91.41 (15)</td>
<td rowspan="1" colspan="1">O5—Co1—O3</td>
<td rowspan="1" colspan="1">86.07 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co3—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">96.91 (14)</td>
<td rowspan="1" colspan="1">O5
<sup>x</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">93.93 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co3—O2
<sup>iv</sup>
</td>
<td rowspan="1" colspan="1">80.51 (14)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">90.49 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—Co3—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">173.12 (14)</td>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O3</td>
<td rowspan="1" colspan="1">89.51 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co3—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">96.60 (14)</td>
<td rowspan="1" colspan="1">O5—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">93.93 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2—Co3—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">89.32 (14)</td>
<td rowspan="1" colspan="1">O5
<sup>x</sup>
—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">86.07 (15)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O2
<sup>iv</sup>
—Co3—O1
<sup>v</sup>
</td>
<td rowspan="1" colspan="1">95.21 (13)</td>
<td rowspan="1" colspan="1">O3
<sup>v</sup>
—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">89.51 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O7
<sup>ii</sup>
—Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">100.36 (14)</td>
<td rowspan="1" colspan="1">O3
<sup>iii</sup>
—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">90.49 (19)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">O6—Co3—O3
<sup>vi</sup>
</td>
<td rowspan="1" colspan="1">93.66 (14)</td>
<td rowspan="1" colspan="1">O3—Co1—O3
<sup>x</sup>
</td>
<td rowspan="1" colspan="1">180.0</td>
</tr>
</table>
</table-wrap>
<p>Symmetry codes: (i)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
+1; (ii)
<italic>x</italic>
,
<italic>y</italic>
+1,
<italic>z</italic>
; (iii)
<italic>x</italic>
, −
<italic>y</italic>
,
<italic>z</italic>
; (iv) −
<italic>x</italic>
+3/2, −
<italic>y</italic>
+3/2, −
<italic>z</italic>
+1; (v) −
<italic>x</italic>
+1,
<italic>y</italic>
, −
<italic>z</italic>
+1; (vi) −
<italic>x</italic>
+1,
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (vii)
<italic>x</italic>
−1,
<italic>y</italic>
+1,
<italic>z</italic>
; (viii) −
<italic>x</italic>
+1/2, −
<italic>y</italic>
+3/2, −
<italic>z</italic>
+1; (ix)
<italic>x</italic>
−1/2, −
<italic>y</italic>
+3/2,
<italic>z</italic>
; (x) −
<italic>x</italic>
+1, −
<italic>y</italic>
, −
<italic>z</italic>
+1; (xi)
<italic>x</italic>
,
<italic>y</italic>
+1,
<italic>z</italic>
−1; (xii) −
<italic>x</italic>
+2, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (xiii)
<italic>x</italic>
+1/2, −
<italic>y</italic>
+3/2,
<italic>z</italic>
−1; (xiv)
<italic>x</italic>
−1,
<italic>y</italic>
,
<italic>z</italic>
; (xv) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
+1; (xvi) −
<italic>x</italic>
+1,
<italic>y</italic>
−1, −
<italic>z</italic>
+1; (xvii) −
<italic>x</italic>
+1, −
<italic>y</italic>
, −
<italic>z</italic>
+2; (xviii)
<italic>x</italic>
,
<italic>y</italic>
,
<italic>z</italic>
−1; (xix)
<italic>x</italic>
, −
<italic>y</italic>
,
<italic>z</italic>
−1; (xx) −
<italic>x</italic>
+1,
<italic>y</italic>
−1, −
<italic>z</italic>
; (xxi) −
<italic>x</italic>
+1, −
<italic>y</italic>
+1, −
<italic>z</italic>
.</p>
</sec>
</app>
</app-group>
<ref-list>
<title>References</title>
<ref id="bb1">
<mixed-citation publication-type="other">Alvarez-Vega, M., Gallardo-Amores, J. M., Garcia-Alvarado, F. & Amador, U. (2006).
<italic>Solid State Sci.</italic>
<bold>8</bold>
, 952–957.</mixed-citation>
</ref>
<ref id="bb2">
<mixed-citation publication-type="other">Aurivillius, B., Lindblom, C. I. & Stenson, P. (1964).
<italic>Acta Chem. Scand.</italic>
<bold>18</bold>
, 1555–1557.</mixed-citation>
</ref>
<ref id="bb3">
<mixed-citation publication-type="other">Ben Smail, R., Driss, A. & Jouini, T. (1999).
<italic>Acta Cryst.</italic>
C
<bold>55</bold>
, 284–286.</mixed-citation>
</ref>
<ref id="bb4">
<mixed-citation publication-type="other">Ben Smida, Y., Guesmi, A. & Driss, A. (2013).
<italic>Acta Cryst.</italic>
E
<bold>69</bold>
, i39.</mixed-citation>
</ref>
<ref id="bb5">
<mixed-citation publication-type="other">Brandenburg, K. (1998).
<italic>DIAMOND.</italic>
University of Bonn, Germany.</mixed-citation>
</ref>
<ref id="bb6">
<mixed-citation publication-type="other">Brown, I. D. & Altermatt, D. (1985).
<italic>Acta Cryst.</italic>
B
<bold>41</bold>
, 244–247.</mixed-citation>
</ref>
<ref id="bb7">
<mixed-citation publication-type="other">Burke, E. A. J., Ferraris, G. & Hatert, F. (2006).
<italic>New minerals approved in 2006.</italic>
Nomenclature modifications approved in 2006 by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association. http://pubsites.uws.edu.au/ima-cnmnc/minerals2006.pdf</mixed-citation>
</ref>
<ref id="bb8">
<mixed-citation publication-type="other">Duisenberg, A. J. M. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 92–96.</mixed-citation>
</ref>
<ref id="bb9">
<mixed-citation publication-type="other">Farrugia, L. J. (2012).
<italic>J. Appl. Cryst.</italic>
<bold>45</bold>
, 849–854.</mixed-citation>
</ref>
<ref id="bb10">
<mixed-citation publication-type="other">Frigui, W., Zid, M. F. & Driss, A. (2012).
<italic>Acta Cryst.</italic>
E
<bold>68</bold>
, i40–i41.</mixed-citation>
</ref>
<ref id="bb11">
<mixed-citation publication-type="other">Goodenough, J. B., Borel, H., Hong, Y.-P. & Kafalas, T. A. (1976).
<italic>Mater. Res. Bull.</italic>
<bold>11</bold>
, 203–220.</mixed-citation>
</ref>
<ref id="bb12">
<mixed-citation publication-type="other">Guesmi, A. & Driss, A. (2012).
<italic>Acta Cryst.</italic>
E
<bold>68</bold>
, i58.</mixed-citation>
</ref>
<ref id="bb13">
<mixed-citation publication-type="other">Harms, K. & Wocadlo, S. (1995).
<italic>XCAD4</italic>
University of Marburg, Germany.</mixed-citation>
</ref>
<ref id="bb14">
<mixed-citation publication-type="other">Hatert, F., Lefevre, P., Fransolet, A. M., Spirlet, M.-R., Rebbouh, L., Fontan, F. & Keller, P. (2005).
<italic>Eur. J. Mineral.</italic>
<bold>17</bold>
, 749–759.</mixed-citation>
</ref>
<ref id="bb15">
<mixed-citation publication-type="other">Keller, P., Riffel, H., Zettler, F. & Hess, H. (1981).
<italic>Z. Anorg. Allg. Chem.</italic>
<bold>474</bold>
, 123–134.</mixed-citation>
</ref>
<ref id="bb16">
<mixed-citation publication-type="other">Kobashi, D., Kohara, S., Yamakawa, J. & Kawahara, A. (1998).
<italic>Acta Cryst.</italic>
C
<bold>54</bold>
, 7–9.</mixed-citation>
</ref>
<ref id="bb17">
<mixed-citation publication-type="other">Macíček, J. & Yordanov, A. (1992).
<italic>J. Appl. Cryst.</italic>
<bold>25</bold>
, 73–80.</mixed-citation>
</ref>
<ref id="bb18">
<mixed-citation publication-type="other">Marzouki, R., Guesmi, A., Zid, M. F. & Driss, A. (2012).
<italic>Cryst. Struct. Theor. Appl.</italic>
<bold>1</bold>
, 68-73.</mixed-citation>
</ref>
<ref id="bb19">
<mixed-citation publication-type="other">Moore, P. B. & Molin-Case, J. (1974).
<italic>Am. Mineral.</italic>
<bold>59</bold>
, 280–290.</mixed-citation>
</ref>
<ref id="bb20">
<mixed-citation publication-type="other">Moring, J. & Kostiner, E. (1986).
<italic>J. Solid State Chem.</italic>
<bold>62</bold>
, 105–111.</mixed-citation>
</ref>
<ref id="bb21">
<mixed-citation publication-type="other">Nagpure, M., Shinde, K. N., Kumar, V., Ntwaeaborwa, O. M., Dhoble, S. J. & Swart, H. C. (2010).
<italic>J. Alloys Compd</italic>
,
<bold>492</bold>
, 384–388.</mixed-citation>
</ref>
<ref id="bb22">
<mixed-citation publication-type="other">North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).
<italic>Acta Cryst.</italic>
A
<bold>24</bold>
, 351–359.</mixed-citation>
</ref>
<ref id="bb23">
<mixed-citation publication-type="other">Prabaharan, S. R. S., Michael, M. S., Radhakrishna, S. & Julien, C. (1997).
<italic>J. Mater. Chem.</italic>
<bold>7</bold>
, 1791–1796.</mixed-citation>
</ref>
<ref id="bb24">
<mixed-citation publication-type="other">Redhammer, G. J., Tippelt, G., Bernroider, M., Lottermoser, W., Amthauer, G. & Roth, G. (2005).
<italic>Eur. J. Mineral.</italic>
<bold>17</bold>
, 915–932.</mixed-citation>
</ref>
<ref id="bb25">
<mixed-citation publication-type="other">Sheldrick, G. M. (2008).
<italic>Acta Cryst.</italic>
A
<bold>64</bold>
, 112–122.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003709 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003709 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024