Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging

Identifieur interne : 000280 ( Pmc/Checkpoint ); précédent : 000279; suivant : 000281

Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging

Auteurs : R. Matthew Ferguson

Source :

RBID : PMC:3064684

Abstract

Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0.

Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude H0=6 mT μ0−1 and frequency f0=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation.

Results: The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen f0.

Conclusions: The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions.


Url:
DOI: 10.1118/1.3554646
PubMed: 21520874
PubMed Central: 3064684


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3064684

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging</title>
<author>
<name sortKey="Ferguson, R Matthew" sort="Ferguson, R Matthew" uniqKey="Ferguson R" first="R. Matthew" last="Ferguson">R. Matthew Ferguson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21520874</idno>
<idno type="pmc">3064684</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064684</idno>
<idno type="RBID">PMC:3064684</idno>
<idno type="doi">10.1118/1.3554646</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000074</idno>
<idno type="wicri:Area/Pmc/Curation">000074</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000074</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000280</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging</title>
<author>
<name sortKey="Ferguson, R Matthew" sort="Ferguson, R Matthew" uniqKey="Ferguson R" first="R. Matthew" last="Ferguson">R. Matthew Ferguson</name>
</author>
</analytic>
<series>
<title level="j">Medical Physics</title>
<idno type="ISSN">0094-2405</idno>
<idno type="eISSN">0094-2405</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<bold>Purpose:</bold>
Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency
<italic>f</italic>
<sub>0</sub>
.</p>
<p>
<bold>Methods:</bold>
Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude
<italic>H</italic>
<sub>0</sub>
=6 mT μ
<sub>0</sub>
<sup>−1</sup>
and frequency
<italic>f</italic>
<sub>0</sub>
=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation.</p>
<p>
<bold>Results:</bold>
The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen
<italic>f</italic>
<sub>0</sub>
.</p>
<p>
<bold>Conclusions:</bold>
The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Med Phys</journal-id>
<journal-title-group>
<journal-title>Medical Physics</journal-title>
</journal-title-group>
<issn pub-type="ppub">0094-2405</issn>
<issn pub-type="epub">0094-2405</issn>
<publisher>
<publisher-name>American Association of Physicists in Medicine</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21520874</article-id>
<article-id pub-id-type="pmc">3064684</article-id>
<article-id pub-id-type="publisher-id">035103MPH</article-id>
<article-id pub-id-type="doi">10.1118/1.3554646</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Magnetic Resonance Physics</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ferguson</surname>
<given-names>R. Matthew</given-names>
</name>
</contrib>
<aff>Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, Washington 98195-2120</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Minard</surname>
<given-names>Kevin R.</given-names>
</name>
</contrib>
<aff>Biological Monitoring and Modeling, Pacific Northwest National Laboratories, 902 Battelle Boulevard, Box 999, MSIN P7-58 Richland, Washington 99352</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Khandhar</surname>
<given-names>Amit P.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Krishnan</surname>
<given-names>Kannan M.</given-names>
</name>
<xref ref-type="author-notes" rid="n1">a)</xref>
</contrib>
<aff>Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, Washington 98195-2120</aff>
</contrib-group>
<author-notes>
<fn id="n1">
<label>a)</label>
<p>Author to whom correspondence should be addressed. Electronic addresses:
<email>kannanmk@u.washington.edu</email>
and
<email>kannanmk@uw.edu</email>
</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>3</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>28</day>
<month>2</month>
<year>2011</year>
</pub-date>
<volume>38</volume>
<issue>3</issue>
<fpage>1619</fpage>
<lpage>1626</lpage>
<history>
<date date-type="received">
<day>27</day>
<month>7</month>
<year>2010</year>
</date>
<date date-type="rev-recd">
<day>20</day>
<month>1</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>1</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2011 American Association of Physicists in Medicine</copyright-statement>
<copyright-year>2011</copyright-year>
<copyright-holder>American Association of Physicists in Medicine</copyright-holder>
</permissions>
<abstract>
<p>
<bold>Purpose:</bold>
Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency
<italic>f</italic>
<sub>0</sub>
.</p>
<p>
<bold>Methods:</bold>
Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude
<italic>H</italic>
<sub>0</sub>
=6 mT μ
<sub>0</sub>
<sup>−1</sup>
and frequency
<italic>f</italic>
<sub>0</sub>
=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation.</p>
<p>
<bold>Results:</bold>
The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen
<italic>f</italic>
<sub>0</sub>
.</p>
<p>
<bold>Conclusions:</bold>
The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions.</p>
</abstract>
<kwd-group>
<kwd>magnetic particle imaging</kwd>
<kwd>magnetic nanoparticle spectroscopy</kwd>
<kwd>magnetization harmonics</kwd>
<kwd>magnetic relaxation</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>CCC information</meta-name>
<meta-value>0094-2405/2011/38(3)/1619/8/$30.00</meta-value>
</custom-meta>
<custom-meta>
<meta-name>sisac</meta-name>
<meta-value>0094-2405()38:3L.1619;1</meta-value>
</custom-meta>
<custom-meta>
<meta-name>edcode</meta-name>
<meta-value>10-926R1</meta-value>
</custom-meta>
<custom-meta>
<meta-name>aipkey</meta-name>
<meta-value>1.3554646</meta-value>
</custom-meta>
<custom-meta>
<meta-name>spin</meta-name>
<meta-value>
<named-content content-type="el-docanal">
<named-content content-type="el-pacs">
<named-content content-type="att-pacsyr">2010</named-content>
<named-content content-type="el-pacscode">8785Rs</named-content>
<named-content content-type="el-pacscode">8761-c</named-content>
<named-content content-type="el-pacscode">8785J-</named-content>
<named-content content-type="el-pacscode">7550Tt</named-content>
<named-content content-type="el-pacscode">7575-c</named-content>
<named-content content-type="el-pacscode">7560Ej</named-content>
</named-content>
</named-content>
<named-content content-type="el-jouidx">
<named-content content-type="el-country">US</named-content>
<named-content content-type="el-totalidx">10</named-content>
<named-content content-type="el-addidx">biomedical materials</named-content>
<named-content content-type="el-addidx">biomedical MRI</named-content>
<named-content content-type="el-addidx">disperse systems</named-content>
<named-content content-type="el-addidx">iron compounds</named-content>
<named-content content-type="el-addidx">magnetic particles</named-content>
<named-content content-type="el-addidx">magnetic relaxation</named-content>
<named-content content-type="el-addidx">magnetisation</named-content>
<named-content content-type="el-addidx">nanobiotechnology</named-content>
<named-content content-type="el-addidx">nanoparticles</named-content>
<named-content content-type="el-addidx">superparamagnetism</named-content>
</named-content>
</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ferguson, R Matthew" sort="Ferguson, R Matthew" uniqKey="Ferguson R" first="R. Matthew" last="Ferguson">R. Matthew Ferguson</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000280 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000280 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3064684
   |texte=   Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:21520874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024