Serveur d'exploration Tamazight

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0001900 ( Pmc/Corpus ); précédent : 0001899; suivant : 0001901 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells</title>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Chun Mei" sort="Li, Chun Mei" uniqKey="Li C" first="Chun-Mei" last="Li">Chun-Mei Li</name>
<affiliation>
<nlm:aff id="af2-ijmm-33-06-1451">Division of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhao Feng" sort="Chen, Zhao Feng" uniqKey="Chen Z" first="Zhao-Feng" last="Chen">Zhao-Feng Chen</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ji, Ri" sort="Ji, Ri" uniqKey="Ji R" first="Ri" last="Ji">Ri Ji</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Qing Hong" sort="Guo, Qing Hong" uniqKey="Guo Q" first="Qing-Hong" last="Guo">Qing-Hong Guo</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hong Ling" sort="Zhang, Hong Ling" uniqKey="Zhang H" first="Hong-Ling" last="Zhang">Hong-Ling Zhang</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yong Ning" sort="Zhou, Yong Ning" uniqKey="Zhou Y" first="Yong-Ning" last="Zhou">Yong-Ning Zhou</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24676394</idno>
<idno type="pmc">4055439</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055439</idno>
<idno type="RBID">PMC:4055439</idno>
<idno type="doi">10.3892/ijmm.2014.1713</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000190</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells</title>
<author>
<name sortKey="Liu, Min" sort="Liu, Min" uniqKey="Liu M" first="Min" last="Liu">Min Liu</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Chun Mei" sort="Li, Chun Mei" uniqKey="Li C" first="Chun-Mei" last="Li">Chun-Mei Li</name>
<affiliation>
<nlm:aff id="af2-ijmm-33-06-1451">Division of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Zhao Feng" sort="Chen, Zhao Feng" uniqKey="Chen Z" first="Zhao-Feng" last="Chen">Zhao-Feng Chen</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ji, Ri" sort="Ji, Ri" uniqKey="Ji R" first="Ri" last="Ji">Ri Ji</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Qing Hong" sort="Guo, Qing Hong" uniqKey="Guo Q" first="Qing-Hong" last="Guo">Qing-Hong Guo</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Hong Ling" sort="Zhang, Hong Ling" uniqKey="Zhang H" first="Hong-Ling" last="Zhang">Hong-Ling Zhang</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Yong Ning" sort="Zhou, Yong Ning" uniqKey="Zhou Y" first="Yong-Ning" last="Zhou">Yong-Ning Zhou</name>
<affiliation>
<nlm:aff id="af1-ijmm-33-06-1451">Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Medicine</title>
<idno type="ISSN">1107-3756</idno>
<idno type="eISSN">1791-244X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Gastric cancer, one of the most common malignancies worldwide, typically has a poor prognosis and poor survival rate. Previous studies have investigated the chemopreventive effect of celecoxib. In the present study, the SGC-7901 human gastric cancer cell line was utilized to examine the chemopreventive mechanisms of celecoxib. The inhibition of cell proliferation was determined using MTT assay, cell apoptosis was monitored by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and flow cytometry, and cell ultrastructural changes were assessed via transmission electron microscopy. The mRNA expression of Akt, caspase-8 and -9 was examined using quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) and p-Akt, procaspase-8 and -9 were analyzed via western blotting. The results showed that celecoxib inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. Additionally, celecoxib induced apoptosis as substantiated by typical apoptotic bodies, autophagosomes and an increased apoptotic rate. It was found that following celecoxib treatment, Akt mRNA expression was not significantly altered, and that p-Akt protein levels decreased in a time- and dose-dependent manner. Additionally, caspase-8 and -9 mRNA expression was significantly increased, while procaspase-8 and -9 protein expression decreased relative to the time- and dose-dependent effects. These results demonstrated that celecoxib induced apoptosis and autophagy of gastric cancer cells
<italic>in vitro</italic>
through the PI3K/Akt signaling pathway. Moreover, our findings suggested that celecoxib induces apoptosis in gastric cancer cells through the mitochondrial and death receptor pathways, providing additional understanding regarding the chemopreventive behaviors of celecoxib and its uses in cancer therapy.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Saukkonen, K" uniqKey="Saukkonen K">K Saukkonen</name>
</author>
<author>
<name sortKey="Rintahaka, J" uniqKey="Rintahaka J">J Rintahaka</name>
</author>
<author>
<name sortKey="Sivula, A" uniqKey="Sivula A">A Sivula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, Da" uniqKey="Jones D">DA Jones</name>
</author>
<author>
<name sortKey="Carlton, Dp" uniqKey="Carlton D">DP Carlton</name>
</author>
<author>
<name sortKey="Mcintyre, Tm" uniqKey="Mcintyre T">TM McIntyre</name>
</author>
<author>
<name sortKey="Zimmerman, Ga" uniqKey="Zimmerman G">GA Zimmerman</name>
</author>
<author>
<name sortKey="Prescott, Sm" uniqKey="Prescott S">SM Prescott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarkar, Fh" uniqKey="Sarkar F">FH Sarkar</name>
</author>
<author>
<name sortKey="Adsule, S" uniqKey="Adsule S">S Adsule</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Padhye, S" uniqKey="Padhye S">S Padhye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duan, L" uniqKey="Duan L">L Duan</name>
</author>
<author>
<name sortKey="Wu, Ah" uniqKey="Wu A">AH Wu</name>
</author>
<author>
<name sortKey="Sullivan Halley, J" uniqKey="Sullivan Halley J">J Sullivan-Halley</name>
</author>
<author>
<name sortKey="Bernstein, L" uniqKey="Bernstein L">L Bernstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fu, Sl" uniqKey="Fu S">SL Fu</name>
</author>
<author>
<name sortKey="Wu, Yl" uniqKey="Wu Y">YL Wu</name>
</author>
<author>
<name sortKey="Zhang, Yp" uniqKey="Zhang Y">YP Zhang</name>
</author>
<author>
<name sortKey="Qiao, Mm" uniqKey="Qiao M">MM Qiao</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ac" uniqKey="Lo A">AC Lo</name>
</author>
<author>
<name sortKey="Woo, Tt" uniqKey="Woo T">TT Woo</name>
</author>
<author>
<name sortKey="Wong, Rl" uniqKey="Wong R">RL Wong</name>
</author>
<author>
<name sortKey="Wong, D" uniqKey="Wong D">D Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, M" uniqKey="Su M">M Su</name>
</author>
<author>
<name sortKey="Mei, Y" uniqKey="Mei Y">Y Mei</name>
</author>
<author>
<name sortKey="Sinha, S" uniqKey="Sinha S">S Sinha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qadri, Ss" uniqKey="Qadri S">SS Qadri</name>
</author>
<author>
<name sortKey="Wang, Jh" uniqKey="Wang J">JH Wang</name>
</author>
<author>
<name sortKey="Coffey, Jc" uniqKey="Coffey J">JC Coffey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grosch, S" uniqKey="Grosch S">S Grösch</name>
</author>
<author>
<name sortKey="Maier, Tj" uniqKey="Maier T">TJ Maier</name>
</author>
<author>
<name sortKey="Schiffmann, S" uniqKey="Schiffmann S">S Schiffmann</name>
</author>
<author>
<name sortKey="Geisslinger, G" uniqKey="Geisslinger G">G Geisslinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baek, Jy" uniqKey="Baek J">JY Baek</name>
</author>
<author>
<name sortKey="Hur, W" uniqKey="Hur W">W Hur</name>
</author>
<author>
<name sortKey="Wang, Js" uniqKey="Wang J">JS Wang</name>
</author>
<author>
<name sortKey="Bae, Sh" uniqKey="Bae S">SH Bae</name>
</author>
<author>
<name sortKey="Yoon, Sk" uniqKey="Yoon S">SK Yoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jendrossek, V" uniqKey="Jendrossek V">V Jendrossek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, Xm" uniqKey="Fan X">XM Fan</name>
</author>
<author>
<name sortKey="Jiang, Xh" uniqKey="Jiang X">XH Jiang</name>
</author>
<author>
<name sortKey="Gu, Q" uniqKey="Gu Q">Q Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, N" uniqKey="Kim N">N Kim</name>
</author>
<author>
<name sortKey="Kim, Ch" uniqKey="Kim C">CH Kim</name>
</author>
<author>
<name sortKey="Ahn, Dw" uniqKey="Ahn D">DW Ahn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patru, Cl" uniqKey="Patru C">CL Patru</name>
</author>
<author>
<name sortKey="Surlin, V" uniqKey="Surlin V">V Surlin</name>
</author>
<author>
<name sortKey="Georgescu, I" uniqKey="Georgescu I">I Georgescu</name>
</author>
<author>
<name sortKey="Patru, E" uniqKey="Patru E">E Patru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Futagami, S" uniqKey="Futagami S">S Futagami</name>
</author>
<author>
<name sortKey="Suzuki, K" uniqKey="Suzuki K">K Suzuki</name>
</author>
<author>
<name sortKey="Hiratsuka, T" uniqKey="Hiratsuka T">T Hiratsuka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willoughby, Da" uniqKey="Willoughby D">DA Willoughby</name>
</author>
<author>
<name sortKey="Moore, Ar" uniqKey="Moore A">AR Moore</name>
</author>
<author>
<name sortKey="Colville Nash, Pr" uniqKey="Colville Nash P">PR Colville-Nash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenhough, A" uniqKey="Greenhough A">A Greenhough</name>
</author>
<author>
<name sortKey="Smartt, Hj" uniqKey="Smartt H">HJ Smartt</name>
</author>
<author>
<name sortKey="Moore, Ae" uniqKey="Moore A">AE Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Liu, Ba" uniqKey="Liu B">BA Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fulda, S" uniqKey="Fulda S">S Fulda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wurstle, Ml" uniqKey="Wurstle M">ML Würstle</name>
</author>
<author>
<name sortKey="Laussmann, Ma" uniqKey="Laussmann M">MA Laussmann</name>
</author>
<author>
<name sortKey="Rehm, M" uniqKey="Rehm M">M Rehm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allan, La" uniqKey="Allan L">LA Allan</name>
</author>
<author>
<name sortKey="Clarke, Pr" uniqKey="Clarke P">PR Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, E" uniqKey="White E">E White</name>
</author>
<author>
<name sortKey="Karp, C" uniqKey="Karp C">C Karp</name>
</author>
<author>
<name sortKey="Strohecker, Am" uniqKey="Strohecker A">AM Strohecker</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
<author>
<name sortKey="Mathew, R" uniqKey="Mathew R">R Mathew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorin, S" uniqKey="Lorin S">S Lorin</name>
</author>
<author>
<name sortKey="Hamai, A" uniqKey="Hamai A">A Hamaï</name>
</author>
<author>
<name sortKey="Mehrpour, M" uniqKey="Mehrpour M">M Mehrpour</name>
</author>
<author>
<name sortKey="Codogno, P" uniqKey="Codogno P">P Codogno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, E" uniqKey="White E">E White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Helgason, Gv" uniqKey="Helgason G">GV Helgason</name>
</author>
<author>
<name sortKey="Holyoake, Tl" uniqKey="Holyoake T">TL Holyoake</name>
</author>
<author>
<name sortKey="Ryan, Km" uniqKey="Ryan K">KM Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xie, Bs" uniqKey="Xie B">BS Xie</name>
</author>
<author>
<name sortKey="Zhao, Hc" uniqKey="Zhao H">HC Zhao</name>
</author>
<author>
<name sortKey="Yao, Sk" uniqKey="Yao S">SK Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Wu, Jm" uniqKey="Wu J">JM Wu</name>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ye, B" uniqKey="Ye B">B Ye</name>
</author>
<author>
<name sortKey="Jiang, Ll" uniqKey="Jiang L">LL Jiang</name>
</author>
<author>
<name sortKey="Xu, Ht" uniqKey="Xu H">HT Xu</name>
</author>
<author>
<name sortKey="Zhou, Dw" uniqKey="Zhou D">DW Zhou</name>
</author>
<author>
<name sortKey="Li, Zs" uniqKey="Li Z">ZS Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, X" uniqKey="Lin X">X Lin</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kang, Xh" uniqKey="Kang X">XH Kang</name>
</author>
<author>
<name sortKey="Xu, Zy" uniqKey="Xu Z">ZY Xu</name>
</author>
<author>
<name sortKey="Gong, Yb" uniqKey="Gong Y">YB Gong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, F" uniqKey="Chang F">F Chang</name>
</author>
<author>
<name sortKey="Lee, Jt" uniqKey="Lee J">JT Lee</name>
</author>
<author>
<name sortKey="Navolanic, Pm" uniqKey="Navolanic P">PM Navolanic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, G" uniqKey="Song G">G Song</name>
</author>
<author>
<name sortKey="Ouyang, G" uniqKey="Ouyang G">G Ouyang</name>
</author>
<author>
<name sortKey="Bao, S" uniqKey="Bao S">S Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falasca, M" uniqKey="Falasca M">M Falasca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Echeverria, C" uniqKey="Garcia Echeverria C">C Garcia-Echeverria</name>
</author>
<author>
<name sortKey="Sellers, Wr" uniqKey="Sellers W">WR Sellers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Lin, Y" uniqKey="Lin Y">Y Lin</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Deng, Q" uniqKey="Deng Q">Q Deng</name>
</author>
<author>
<name sortKey="Chen" uniqKey="Chen">Chen</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Y" uniqKey="Cheng Y">Y Cheng</name>
</author>
<author>
<name sortKey="Ren, X" uniqKey="Ren X">X Ren</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Djavaheri Mergny, M" uniqKey="Djavaheri Mergny M">M Djavaheri-Mergny</name>
</author>
<author>
<name sortKey="Maiuri, Mc" uniqKey="Maiuri M">MC Maiuri</name>
</author>
<author>
<name sortKey="Kroemer, G" uniqKey="Kroemer G">G Kroemer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Int. J. Mol. Med</journal-id>
<journal-id journal-id-type="publisher-id">IJMM</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1107-3756</issn>
<issn pub-type="epub">1791-244X</issn>
<publisher>
<publisher-name>D.A. Spandidos</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24676394</article-id>
<article-id pub-id-type="pmc">4055439</article-id>
<article-id pub-id-type="doi">10.3892/ijmm.2014.1713</article-id>
<article-id pub-id-type="publisher-id">ijmm-33-06-1451</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>LIU</surname>
<given-names>MIN</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
<xref rid="fn1-ijmm-33-06-1451" ref-type="author-notes">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LI</surname>
<given-names>CHUN-MEI</given-names>
</name>
<xref ref-type="aff" rid="af2-ijmm-33-06-1451">2</xref>
<xref rid="fn1-ijmm-33-06-1451" ref-type="author-notes">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>CHEN</surname>
<given-names>ZHAO-FENG</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>JI</surname>
<given-names>RI</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>GUO</surname>
<given-names>QING-HONG</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LI</surname>
<given-names>QIANG</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>ZHANG</surname>
<given-names>HONG-LING</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>ZHOU</surname>
<given-names>YONG-NING</given-names>
</name>
<xref ref-type="aff" rid="af1-ijmm-33-06-1451">1</xref>
<xref ref-type="corresp" rid="c1-ijmm-33-06-1451"></xref>
</contrib>
</contrib-group>
<aff id="af1-ijmm-33-06-1451">
<label>1</label>
Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</aff>
<aff id="af2-ijmm-33-06-1451">
<label>2</label>
Division of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China</aff>
<author-notes>
<corresp id="c1-ijmm-33-06-1451">Correspondence to: Dr Yong-Ning Zhou, Division of Gastroenterology and Hepatology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China, E-mail:
<email>yongningzhou@sina.com.cn</email>
</corresp>
<fn id="fn1-ijmm-33-06-1451">
<label>*</label>
<p>Contributed equally</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>6</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>27</day>
<month>3</month>
<year>2014</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>33</volume>
<issue>6</issue>
<fpage>1451</fpage>
<lpage>1458</lpage>
<history>
<date date-type="received">
<day>30</day>
<month>11</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>20</day>
<month>3</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014, Spandidos Publications</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0">
<license-p>This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Gastric cancer, one of the most common malignancies worldwide, typically has a poor prognosis and poor survival rate. Previous studies have investigated the chemopreventive effect of celecoxib. In the present study, the SGC-7901 human gastric cancer cell line was utilized to examine the chemopreventive mechanisms of celecoxib. The inhibition of cell proliferation was determined using MTT assay, cell apoptosis was monitored by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and flow cytometry, and cell ultrastructural changes were assessed via transmission electron microscopy. The mRNA expression of Akt, caspase-8 and -9 was examined using quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) and p-Akt, procaspase-8 and -9 were analyzed via western blotting. The results showed that celecoxib inhibited the proliferation of SGC-7901 cells in a time- and dose-dependent manner. Additionally, celecoxib induced apoptosis as substantiated by typical apoptotic bodies, autophagosomes and an increased apoptotic rate. It was found that following celecoxib treatment, Akt mRNA expression was not significantly altered, and that p-Akt protein levels decreased in a time- and dose-dependent manner. Additionally, caspase-8 and -9 mRNA expression was significantly increased, while procaspase-8 and -9 protein expression decreased relative to the time- and dose-dependent effects. These results demonstrated that celecoxib induced apoptosis and autophagy of gastric cancer cells
<italic>in vitro</italic>
through the PI3K/Akt signaling pathway. Moreover, our findings suggested that celecoxib induces apoptosis in gastric cancer cells through the mitochondrial and death receptor pathways, providing additional understanding regarding the chemopreventive behaviors of celecoxib and its uses in cancer therapy.</p>
</abstract>
<kwd-group>
<kwd>apoptosis</kwd>
<kwd>autophagy</kwd>
<kwd>celecoxib</kwd>
<kwd>cyclooxygenase 2</kwd>
<kwd>Akt</kwd>
<kwd>caspase-8</kwd>
<kwd>caspase-9</kwd>
<kwd>gastric carcinoma</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Gastric cancer is among the most common malignancies worldwide, with a 5-year survival rate of only 20% (
<xref rid="b1-ijmm-33-06-1451" ref-type="bibr">1</xref>
). Due to the fact that this type of cancer has a poor prognosis, attention has been drawn to the chemopreventive effect of celecoxib, a cyclooxygenase-2 (COX-2) inhibitor. COX, also known as prostaglandin synthase peroxidase, is the rate-limiting enzyme catalyzing arachidonic acid into prostaglandins, with COX-2 being involved in inflammatory diseases and certain types of tumor (
<xref rid="b2-ijmm-33-06-1451" ref-type="bibr">2</xref>
,
<xref rid="b3-ijmm-33-06-1451" ref-type="bibr">3</xref>
).
<italic>In vitro</italic>
and
<italic>in vivo</italic>
studies have shown that the long-term and widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) may contribute to the maintenance of gastric health, with epidemiological studies showing possible risk reduction (
<xref rid="b4-ijmm-33-06-1451" ref-type="bibr">4</xref>
,
<xref rid="b5-ijmm-33-06-1451" ref-type="bibr">5</xref>
).</p>
<p>Apoptosis, programmed cell death (PCD), occurs in multicellular organisms, with autophagy also triggering PCD through different apoptotic mechanisms (
<xref rid="b6-ijmm-33-06-1451" ref-type="bibr">6</xref>
,
<xref rid="b7-ijmm-33-06-1451" ref-type="bibr">7</xref>
). Celecoxib and related compounds have been shown to induce cell cycle arrest, inhibit tumor growth and suppress tumor angiogenesis, with celecoxib potently inducing apoptosis in tumor cells (
<xref rid="b8-ijmm-33-06-1451" ref-type="bibr">8</xref>
<xref rid="b11-ijmm-33-06-1451" ref-type="bibr">11</xref>
). An increased expression of COX-2 and Akt in gastric carcinomas relative to normal gastric mucosa, with celecoxib treatment inducing tumor apoptosis has also been shown (
<xref rid="b12-ijmm-33-06-1451" ref-type="bibr">12</xref>
). Further experimentation showed that COX-2 inhibitors may induce apoptosis by affecting Akt phosphorylation, thus activating the Akt signaling pathway (
<xref rid="b13-ijmm-33-06-1451" ref-type="bibr">13</xref>
). In this study, we used the selective COX-2 inhibitor celecoxib to treat the SGC-7901 gastric cancer cells and to induce cell apoptosis
<italic>in vitro</italic>
. The effects of celecoxib on apoptotic and autophagic cell death through the monitoring of mRNA and protein levels of Akt, caspase-8 and -9 were also examined. This approach aids in further characterization of the apoptotic effect of celecoxib via the PI3K/Akt signaling pathway in order to gain a better understanding of its antitumor effects.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Cell culture</title>
<p>SGC-7901 human gastric cancer cells (Type Culture Collection Committee, Chinese Academy of Sciences, Shanghai, China) were cultured in RPMI-1640 medium (Gibco, Long Island, NY, USA) with 2 mmol/l glutamine, supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA), 50 U/ml penicillin, and 50 mg/ml streptomycin. The cells were plated at a density of 1×10
<sup>5</sup>
cells/ml in 6-well tissue culture plates and grown to confluency at 37°C with 5% CO
<sub>2</sub>
. When 50% confluency was reached, serum-supplemented medium was replaced with the recommended serum-free RPMI-1640 medium for overnight culturing before celecoxib intervention. Celecoxib, provided by the Faculty of Medicine, the Chinese University of Hong Kong, stock solution was added to the serum-supplemented medium at different concentrations and cultured until the detection time.</p>
</sec>
<sec>
<title>MTT assay</title>
<p>The inhibition of cell proliferation in SGC-7901 cells following celecoxib treatment was evaluated using an MTT assay (Sigma-Aldrich, Shanghai, China) as per the manufacturer’s instructions. Briefly, 5×10
<sup>3</sup>
cells/well were seeded in 96-well plates, incubated in culture medium for 24 h, and treated with varying concentrations of celecoxib (0, 50, 75, 100 and 125 μmol/l) for 24, 48 and 72 h, with parallel samples treated with DMSO only serving as controls. Following treatment, the formation of formazan crystals was measured after 4 h of MTT incubation (10% v/v) at an optical density (OD) of 490 nm, with each experiment repeated in triplicate. The relative cell proliferation inhibition rate was calculated as: (1−OD490
<sub>Test</sub>
/OD490
<sub>Control</sub>
) ×100% to show a percentage value.</p>
</sec>
<sec>
<title>TUNEL assay</title>
<p>DNA breaks occur late in the apoptotic pathway and can be determined and analyzed by performing the TUNEL assay (Roche, Basel, Switzerland). Firstly, cells were seeded on coverslips and treated with 100 μmol/l celecoxib for 72 h. Following treatment, the cells were washed, fixed and stained as per the manufacturer’s instructions and apoptotic numbers evaluated using a confocal laser scanning microscope (Leica, Wetzlar, Germany) at 515–565 nm.</p>
</sec>
<sec>
<title>Flow cytometric (FCM) analysis of apoptosis</title>
<p>Apoptosis was assessed by flow cytometric analysis using the Annexin V-FITC/PI apoptosis detection kit (Invitrogen, Life Technologies Ltd., Carlsbad, CA, USA). SGC-7901 cells were seeded in 6-well plates at ~5×10
<sup>4</sup>
cells/well. Following treatment with celecoxib, the cells were trypsinized, centrifuged to remove the supernatant, washed with phosphate-buffered saline (PBS), suspended in 100 μl of 1X binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl
<sub>2</sub>
), and stained with Annexin V and PI as per the manufacturer’s instructions. FITC-positive and PI-negative cells were considered apoptotic cells, PI-positive cells were considered necrotic, and unstained cells were considered normal viable cells. The apoptotic rates of the various cell groups were calculated and comparisons of apoptotic rates were conducted among the various groups.</p>
</sec>
<sec>
<title>Transmission electron microscope (TEM) analysis of cell ultrastructure</title>
<p>Cells were seeded on coverslips, treated with 125 μmol/l celecoxib for 72 h (with a parallel untreated control), cultured in RPMI-1640 for 72 h, collected and fixed with 3% glutaraldehyde. The cells were washed with PBS, fixed in 1% osmium tetroxide, dehydrated by graded ethanol and acetone, and routinely embedded and polymerized. The slices were contrasted with an aqueous solution of uranyl acetate and lead citrate and examined by JEM-1230 transmission electron microscope (Jeol Ltd., Tokyo, Japan).</p>
</sec>
<sec>
<title>Quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) analysis</title>
<p>SGC-7901 cells were cultured at a density of 1×10
<sup>5</sup>
cells/ml in 6-well tissue culture plates. One group was treated with various concentrations of celecoxib (0, 75, 100 and 125 μmol/l) and cultured for 72 h, while an additional test group was treated with 125 μmol/l celecoxib for 0, 24, 48 and 72 h. Total RNA was extracted by a column RNA extraction kit (Sangon, Shanghai, China) and reverse-transcribed into cDNA at 37°C for 15 min, and 85°C for 5 sec. Diluted cDNA was subjected to qRT-PCR using a SYBR
<sup>®</sup>
Premix Ex Taq™ II kit (Takara Bio, Inc., Shiga, Japan) in 25 μl of reaction solution containing 2 μl of cDNA template, 1 μM of each primer, 10 μl of 2X SYBR-Green master mix, and brought to the final volume with RNase-free water. Reactions were performed in triplicate via a PCR thermal cycler (Roter-Gene 3000; Corbett, Sydney, Australia) under the following conditions: pre-denaturation at 95°C for 30 sec, 40 cycles of denaturation at 95°C for 5 sec, and annealing at 62°C for 30 sec. The relative expression was calculated by the 2
<sup>−ΔΔCT</sup>
formula. The primer pairs for qRT-PCR are listed in
<xref rid="tI-ijmm-33-06-1451" ref-type="table">Table I</xref>
.</p>
</sec>
<sec>
<title>Western blot analysis</title>
<p>Total protein was extracted and protein concentrations established via bicinchoninic acid (BCA) assay. Protein (25 μg) was denatured, separated by SDS-PAGE electrophoresis and transferred to a PVDF membrane. After blocking overnight at 4°C using 5% BSA, the membranes were incubated with primary antibodies (anti-procaspase-8 1:2,500 and procaspase-9 1:2,000; both from Abcam, Cambridge, MA, USA), p-Akt 1:800 (Bioworld, St. Louis Park, MN, USA) for 2 h at room temperature, washed by TBST and incubated with the corresponding horseradish peroxidase (HRP)-conjugated secondary antibody at 1:2,000 dilution for 2 h. Bands were visualized using enhanced chemiluminescence (ECL; Applygen, Beijing, China) detection reagents and scanned images were quantified using ImageJ software. Experiments were performed in triplicate with β-actin used as a housekeeping control for normalization. The ratio of target gene to β-actin was used for semi-quantification and comparison between different groups.</p>
</sec>
<sec>
<title>Statistical analysis</title>
<p>Triplicate data are presented as mean values and shown as the means ± standard deviation (SD). Samples were analyzed by one-way ANOVA, with P<0.05 considered to indicate statistical significance.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Celecoxib inhibits proliferation of SGC-7901 cells</title>
<p>Following
<italic>in vitro</italic>
treatment with celecoxib, the SGC-7901 gastric cancer cell line showed a significant inhibition of cell proliferation in a time- and dose-dependent manner, with the most pronounced effect evident at a concentration of 125 μmol/l for 72 h as identified by a proliferation inhibition rate of 85.6±4.51% (
<xref rid="f1-ijmm-33-06-1451" ref-type="fig">Fig. 1</xref>
).</p>
</sec>
<sec>
<title>Celecoxib induces apoptosis of SGC-7901 cells</title>
<p>Fluorescein- labeled dUTP was connected to DNA 3′-OH ends of apoptotic cells by the deoxynucleotidyl transferase enzyme. Apoptotic cells with green fluorescence were detected by laser scanning confocal microscopy at an excitation of 515–565 nm, while all cells were exhibited as red under bright field microscopy. The two images were superimposed to show the specificity of apoptotic cells (yellow) and their position. Celecoxib-treated cells (
<xref rid="f2-ijmm-33-06-1451" ref-type="fig">Fig. 2B</xref>
) showed significant levels of apoptosis relative to the control (
<xref rid="f2-ijmm-33-06-1451" ref-type="fig">Fig. 2A</xref>
), with a statistical significance of P<0.05.</p>
<p>Treatment with 0, 75, 100 and 125 μmol/l of celecoxib for 72 h yielded apoptotic rates of 4.0±0.91, 12.9±1.32, 24.6±3.63 and 35.7±2.73%, respectively, with a statistical significance of P<0.05 when compared to the control group. Treatment with 125 μmol/l of celecoxib for 0, 24, 48 and 72 h, yielded apoptotic rates of 2.2±0.32, 8.5±1.57, 20.3±2.84 and 35.7±2.73%, respectively. Both study sets demonstrated a gradual increase in apoptotic rates in a time-and dose-dependent manner (
<xref rid="f3-ijmm-33-06-1451" ref-type="fig">Fig. 3</xref>
).</p>
</sec>
<sec>
<title>Celecoxib alters the ultrastructure of SGC-7901 cells</title>
<p>Following treatment with 125 μmol/l celecoxib for 72 h, typical early apoptotic changes were found to include nuclear membrane shrinkage and retraction (
<xref rid="f4-ijmm-33-06-1451" ref-type="fig">Fig. 4A</xref>
), nuclear chromatin condensation, marginalization and crescents, with late apoptotic changes observed by nuclei cleavage into fragments and apoptotic body production (
<xref rid="f4-ijmm-33-06-1451" ref-type="fig">Fig. 4B</xref>
). Additionally, typical autophagic structures were found to include several cytoplasmic autophagic vacuoles and autophagosomes, which swallowed organelles (
<xref rid="f4-ijmm-33-06-1451" ref-type="fig">Fig. 4C and D</xref>
).</p>
</sec>
<sec>
<title>Effect of celecoxib on Akt, caspase-8 and -9 expression</title>
<p>No significant change in the mRNA levels of Akt was observed subsequent to treatment with celecoxib; however, the presence of p-Akt decreased in a time- and dose-dependent manner. Caspase-8 mRNA expression increased in a dose-dependent manner at concentrations of 75, 100 and 125 μmol/l of celecoxib. Caspase-9 mRNA expression levels increased significantly at a concentration of 100 and 125 μmol/l of celecoxib (
<xref rid="f5-ijmm-33-06-1451" ref-type="fig">Fig. 5A</xref>
). Following treatment with 125 μmol/l of celecoxib for 24, 48 and 72 h, caspase-8 and -9 mRNA expression increased significantly (
<xref rid="f5-ijmm-33-06-1451" ref-type="fig">Fig. 5B</xref>
). By contrast, procaspase-8 and -9 protein expression was significantly lower than the control group in a time- and dose-dependent manner (
<xref rid="f6-ijmm-33-06-1451" ref-type="fig">Fig. 6</xref>
). These results showed that celecoxib may inhibit Akt phosphorylation and promote caspase-8, -9 transcription and procaspase-8, -9 protein activation.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Gastric carcinoma is among the most common malignancies worldwide, with an elevated 5-year postoperative mortality rate (
<xref rid="b14-ijmm-33-06-1451" ref-type="bibr">14</xref>
) thus creating a need for an alternative treatment method. Currently, the role of celecoxib, a non-cytotoxic COX-2 inhibitor, in cancer therapy has been under scrutiny (
<xref rid="b14-ijmm-33-06-1451" ref-type="bibr">14</xref>
). COX, also known as prostaglandin synthetase, has three known isoenzymes in mammals, COX-1, COX-2 and COX-3 (
<xref rid="b15-ijmm-33-06-1451" ref-type="bibr">15</xref>
). COX-2 is present at low levels of expression in most normal tissues, but tumor factors, inflammatory cytokines and growth factors could promote its expression (
<xref rid="b16-ijmm-33-06-1451" ref-type="bibr">16</xref>
). COX-2 is related to the development of tumors by promoting tumor cell proliferation, enabling tumor evasion of the host immune surveillance and promoting tumor invasion/metastasis (
<xref rid="b5-ijmm-33-06-1451" ref-type="bibr">5</xref>
,
<xref rid="b17-ijmm-33-06-1451" ref-type="bibr">17</xref>
).</p>
<p>Multicellular organisms maintain their homeostasis through cell proliferation and PCD, with an imbalance possibly leading to the development of cancer. In this experiment, we found that the selective COX-2 inhibitor celecoxib induced apoptosis of SGC-7901 cells via reduced expression levels of COX-2, as obsreved by inhibited cell proliferation using MTT analysis and an increased number of apoptotic cells as detected by TUNEL and flow cytometry. Moreover, typical apoptotic changes were shown to include nuclear membrane shrinkage, nuclear chromatin condensation and apoptotic bodies using TEM to support the apoptotic effects of celecoxib.</p>
<p>Caspases are a type of protease associated with apoptosis and cytokine maturation, and are divided into initiator caspases, effector caspases and inflammatory mediators. Caspases are synthesized as relatively inactive zymogens and must undergo a process of activation during apoptosis. Caspase-8 is the initiator of the Fas-Fas ligand (FasL) pathway, and usually exists in the form of procaspase-8. When FasL binds to the corresponding Fas receptor, the intracellular death effector domain (DED) of the Fas receptor attracts Fas associated with death domain protein (FADD) and recruits procaspase-8 to form a death-inducing signaling complex (DISC). Procaspase-8 is then hydrolyzed to generate activated caspase-8, followed by the activation of procaspase-3 and other effector caspases that eventually induce apoptosis (
<xref rid="b18-ijmm-33-06-1451" ref-type="bibr">18</xref>
). Caspase-9 is the initiator of the mitochondrial pathway, also known as procaspase-9, an inactive zymogen. The initiator caspase-9 is activated by the assembly of a multimeric complex (dubbed apoptosome) involving Apaf-1 and cytochrome
<italic>c</italic>
. Cleaved caspase-9 and -3 are activated and these effector caspases degrade a large number of cell proteins, ultimately inducing cell apoptosis (
<xref rid="b19-ijmm-33-06-1451" ref-type="bibr">19</xref>
,
<xref rid="b20-ijmm-33-06-1451" ref-type="bibr">20</xref>
). In this study, we found that celecoxib significantly increased caspase-8 and -9 mRNA expression in a time- and dose-dependent manner in SGC-7901 cells, suggesting that celecoxib may activate caspase-8 and -9 to initiated apoptosis through the death receptor and mitochondrial pathways, respectively.</p>
<p>Autophagy is a crucial component of the cellular stress adaptation response that maintains mammalian homeostasis (
<xref rid="b21-ijmm-33-06-1451" ref-type="bibr">21</xref>
). There are three different forms of autophagy that are commonly described: macroautophagy, microautophagy and chaperone-mediated autophagy. Macroautophagy is the predominant pathway occurring mainly to eradicate damaged organelles or unused proteins. Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses long-lived proteins and portions of organelles for delivery to the lysosome (
<xref rid="b22-ijmm-33-06-1451" ref-type="bibr">22</xref>
,
<xref rid="b23-ijmm-33-06-1451" ref-type="bibr">23</xref>
). Autophagy may play different roles in cancer occurrence and progression, while also potentially promoting or inhibiting cell proliferation at different stages of tumor growth (
<xref rid="b24-ijmm-33-06-1451" ref-type="bibr">24</xref>
). For example, autophagy plays a protective role in tumor cells via degradation of organelles under nutritional deficiency. Conversely, autophagy can also inhibit tumor growth via beclin 1, UVRAG, Bif and Atg. Findings of a recent study showed that berberine extracts promoted autophagy by activating beclin 1 expression and activated caspase-9 to induce apoptosis in hepatoma cells (
<xref rid="b25-ijmm-33-06-1451" ref-type="bibr">25</xref>
). Plant lectin from
<italic>Polygonatum cyrtonema</italic>
induced apoptosis and autophagy by inhibiting the Ras/Raf and PI3K/Akt signaling pathways in murine fibrosarcoma cells (
<xref rid="b26-ijmm-33-06-1451" ref-type="bibr">26</xref>
). In this study, the selective COX-2 inhibitor celecoxib, not only generated morphological changes indicative of apoptosis, but also typical changes of autophagy to include cytoplasmic autophagic vacuoles and autophagosomes.</p>
<p>The molecular mechanism by which celecoxib induces apoptosis is not yet fully understood. The PI3K/Akt pathway widely presents in normal cells, but is abnormally activated in many malignant tumors (
<xref rid="b27-ijmm-33-06-1451" ref-type="bibr">27</xref>
<xref rid="b29-ijmm-33-06-1451" ref-type="bibr">29</xref>
). Akt, also known as protein kinase B (PKB), is a central component of the PI3K/Akt pathway, with Akt phosphoregulation impacting a variety of biological activities. In healthy and tumorigenic cells, Akt can be activated in an intracellular manner by hormones, growth factors, and extracellular matrix components (
<xref rid="b30-ijmm-33-06-1451" ref-type="bibr">30</xref>
). Akt regulates cell growth, survival and apoptosis through substrate phosphorylation, with Akt phosphoregulation observed at the Thr308 and Ser473 site, which are both required for activation. Akt is activated as follows: the activated PI3K produces a secondary messenger PIP3 at the plasma membrane, PIP3 then binds an inactive Akt inducing its shift from the cytoplasm to the plasma membrane where Ser124 and Thr450 are phosphorylated, making Akt undergo a conformational change exposing its Thr308 and Ser473 sites. Immediately, phosphoinositide-dependent kinase 1 (PDK1) and phosphoinositide-dependent kinase 2 (PDK2), which are in close proximity to Akt, respectively catalyze the phosphorylation of the exposed Thr308 and Ser473 sites, resulting in the complete activation of Akt. This may trigger a phosphorylation cascade of downstream targets, ultimately impacting the regulation of cell growth and survival, proliferation and apoptosis, angiogenesis, cell migration and numerous biological processes (
<xref rid="b30-ijmm-33-06-1451" ref-type="bibr">30</xref>
<xref rid="b33-ijmm-33-06-1451" ref-type="bibr">33</xref>
).</p>
<p>In the present study, following celecoxib treatment in SGC-7901 cells, p-Akt, or activated Akt, was distinctly downregulated, leading to the upregulation of caspase-8 and -9 mRNA expression and increased procaspase-8 and -9 activation. Thus, we hypothesized that celecoxib inhibited the PI3K/Akt pathway by reducing the level of phosphorylation of Akt, which in turn activated the expression and activation of caspase-8 and -9, resulting in apoptosis through the death receptor and mitochondrial pathways in SGC-7901 cells. Notably, we found changes in the cell ultrastructure to include apoptosis and autophagy, suggesting that celecoxib simultaneously induced apoptosis and autophagy, which is consistent with results of previous studies (
<xref rid="b5-ijmm-33-06-1451" ref-type="bibr">5</xref>
,
<xref rid="b13-ijmm-33-06-1451" ref-type="bibr">13</xref>
)). Autophagy is an evolutionarily conserved process that occurs during the growth and development process in many animals, but its specific mechanism of PCD is unclear. Autophagy and apoptosis could coadjust through p53 (
<xref rid="b35-ijmm-33-06-1451" ref-type="bibr">35</xref>
), PI3K/Akt (
<xref rid="b36-ijmm-33-06-1451" ref-type="bibr">36</xref>
) and Bcl-2-beclin 1 (
<xref rid="b37-ijmm-33-06-1451" ref-type="bibr">37</xref>
). Thus, celecoxib may impact both apoptosis and autophagy via the PI3K/Akt signaling pathway in the SGC-7901 gastric cancer cells. The results of this study provide a new theoretical foundation for the antitumor mechanisms of celecoxib and offers new targets for cancer therapy, although these findings should be verified in future investigations.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>This study was supported by a grant from the National Science Foundation of China (no. 81172366). We would like to thank LetPub for its linguistic assistance during the preparation of this manuscript.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="b1-ijmm-33-06-1451">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saukkonen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rintahaka</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sivula</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cyclooxygenase-2 and gastric carcinogenesis</article-title>
<source>APMIS</source>
<volume>111</volume>
<fpage>915</fpage>
<lpage>925</lpage>
<year>2003</year>
<pub-id pub-id-type="pmid">14616542</pub-id>
</element-citation>
</ref>
<ref id="b2-ijmm-33-06-1451">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Carlton</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>McIntyre</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Zimmerman</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines</article-title>
<source>J Biol Chem</source>
<volume>268</volume>
<fpage>9049</fpage>
<lpage>9054</lpage>
<year>1993</year>
<pub-id pub-id-type="pmid">8473346</pub-id>
</element-citation>
</ref>
<ref id="b3-ijmm-33-06-1451">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarkar</surname>
<given-names>FH</given-names>
</name>
<name>
<surname>Adsule</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Padhye</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy</article-title>
<source>Mini Rev Med Chem</source>
<volume>7</volume>
<fpage>599</fpage>
<lpage>608</lpage>
<year>2007</year>
<pub-id pub-id-type="pmid">17584158</pub-id>
</element-citation>
</ref>
<ref id="b4-ijmm-33-06-1451">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Sullivan-Halley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric adenocarcinomas in Los Angeles County</article-title>
<source>Cancer Epidemiol Biomarkers Prev</source>
<volume>17</volume>
<fpage>126</fpage>
<lpage>134</lpage>
<year>2008</year>
<pub-id pub-id-type="pmid">18187391</pub-id>
</element-citation>
</ref>
<ref id="b5-ijmm-33-06-1451">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fu</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YL</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Qiao</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Anti-cancer effects of COX-2 inhibitors and their correlation with angiogenesis and invasion in gastric cancer</article-title>
<source>World J Gastroenterol</source>
<volume>10</volume>
<fpage>1971</fpage>
<lpage>1974</lpage>
<year>2004</year>
<pub-id pub-id-type="pmid">15222049</pub-id>
</element-citation>
</ref>
<ref id="b6-ijmm-33-06-1451">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue</article-title>
<source>Ophthalmologica</source>
<volume>226</volume>
<issue>Suppl 1</issue>
<fpage>10</fpage>
<lpage>17</lpage>
<year>2011</year>
<pub-id pub-id-type="pmid">21778775</pub-id>
</element-citation>
</ref>
<ref id="b7-ijmm-33-06-1451">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sinha</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Role of the crosstalk between autophagy and apoptosis in cancer</article-title>
<source>J Oncol</source>
<volume>2013</volume>
<fpage>102735</fpage>
<year>2013</year>
<pub-id pub-id-type="pmid">23840208</pub-id>
</element-citation>
</ref>
<ref id="b8-ijmm-33-06-1451">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Qadri</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Coffey</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Surgically induced accelerated local and distant tumor growth is significantly attenuated by selective COX-2 inhibition</article-title>
<source>Ann Thorac Surg</source>
<volume>79</volume>
<fpage>990</fpage>
<lpage>995</lpage>
<year>2005</year>
<pub-id pub-id-type="pmid">15734421</pub-id>
</element-citation>
</ref>
<ref id="b9-ijmm-33-06-1451">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grösch</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Schiffmann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Geisslinger</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors</article-title>
<source>J Natl Cancer Inst</source>
<volume>98</volume>
<fpage>736</fpage>
<lpage>747</lpage>
<year>2006</year>
<pub-id pub-id-type="pmid">16757698</pub-id>
</element-citation>
</ref>
<ref id="b10-ijmm-33-06-1451">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baek</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Hur</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>Selective COX-2 inhibitor, NS-398, suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest</article-title>
<source>World J Gastroenterol</source>
<volume>13</volume>
<fpage>1175</fpage>
<lpage>1181</lpage>
<year>2007</year>
<pub-id pub-id-type="pmid">17451196</pub-id>
</element-citation>
</ref>
<ref id="b11-ijmm-33-06-1451">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jendrossek</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Targeting apoptosis pathways by celecoxib in cancer</article-title>
<source>Cancer Lett</source>
<volume>332</volume>
<fpage>313</fpage>
<lpage>324</lpage>
<year>2013</year>
<pub-id pub-id-type="pmid">21345578</pub-id>
</element-citation>
</ref>
<ref id="b12-ijmm-33-06-1451">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of Akt/PKB by a COX-2 inhibitor induces apoptosis in gastric cancer cells</article-title>
<source>Digestion</source>
<volume>73</volume>
<fpage>75</fpage>
<lpage>83</lpage>
<year>2006</year>
<pub-id pub-id-type="pmid">16641552</pub-id>
</element-citation>
</ref>
<ref id="b13-ijmm-33-06-1451">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Ahn</surname>
<given-names>DW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Anti-gastric cancer effects of Celecoxib, a selective COX-2 inhibitor, through inhibition of Akt signaling</article-title>
<source>J Gastroenterol Hepatol</source>
<volume>24</volume>
<fpage>480</fpage>
<lpage>487</lpage>
<year>2009</year>
<pub-id pub-id-type="pmid">18823436</pub-id>
</element-citation>
</ref>
<ref id="b14-ijmm-33-06-1451">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patru</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Surlin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Georgescu</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Patru</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Current issues in gastric cancer epidemiology</article-title>
<source>Rev Med Chir Soc Med Nat Iasi</source>
<volume>117</volume>
<fpage>199</fpage>
<lpage>204</lpage>
<year>2013</year>
<pub-id pub-id-type="pmid">24505915</pub-id>
</element-citation>
</ref>
<ref id="b15-ijmm-33-06-1451">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Futagami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hiratsuka</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chemopreventive effect of Celecoxib in gastric cancer</article-title>
<source>Inflammopharmacology</source>
<volume>15</volume>
<fpage>1</fpage>
<lpage>4</lpage>
<year>2007</year>
<pub-id pub-id-type="pmid">17323186</pub-id>
</element-citation>
</ref>
<ref id="b16-ijmm-33-06-1451">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willoughby</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Colville-Nash</surname>
<given-names>PR</given-names>
</name>
</person-group>
<article-title>COX-1, COX-2, and COX-3 and the future treatment of chronic inflammatory disease</article-title>
<source>Lancet</source>
<volume>355</volume>
<fpage>646</fpage>
<lpage>648</lpage>
<year>2000</year>
<pub-id pub-id-type="pmid">10696997</pub-id>
</element-citation>
</ref>
<ref id="b17-ijmm-33-06-1451">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenhough</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Smartt</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>AE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment</article-title>
<source>Carcinogenesis</source>
<volume>30</volume>
<fpage>377</fpage>
<lpage>386</lpage>
<year>2009</year>
<pub-id pub-id-type="pmid">19136477</pub-id>
</element-citation>
</ref>
<ref id="b18-ijmm-33-06-1451">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>BA</given-names>
</name>
</person-group>
<article-title>Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin</article-title>
<source>World J Gastroenterol</source>
<volume>17</volume>
<fpage>2674</fpage>
<lpage>2680</lpage>
<year>2011</year>
<pub-id pub-id-type="pmid">21677839</pub-id>
</element-citation>
</ref>
<ref id="b19-ijmm-33-06-1451">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fulda</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Caspase-8 in cancer biology and therapy</article-title>
<source>Cancer Lett</source>
<volume>281</volume>
<fpage>128</fpage>
<lpage>133</lpage>
<year>2009</year>
<pub-id pub-id-type="pmid">19111387</pub-id>
</element-citation>
</ref>
<ref id="b20-ijmm-33-06-1451">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Würstle</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Laussmann</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rehm</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome</article-title>
<source>Exp Cell Res</source>
<volume>318</volume>
<fpage>1213</fpage>
<lpage>1220</lpage>
<year>2012</year>
<pub-id pub-id-type="pmid">22406265</pub-id>
</element-citation>
</ref>
<ref id="b21-ijmm-33-06-1451">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allan</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>PR</given-names>
</name>
</person-group>
<article-title>Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation</article-title>
<source>FEBS J</source>
<volume>276</volume>
<fpage>6063</fpage>
<lpage>6073</lpage>
<year>2009</year>
<pub-id pub-id-type="pmid">19788417</pub-id>
</element-citation>
</ref>
<ref id="b22-ijmm-33-06-1451">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Karp</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Strohecker</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mathew</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Role of autophagy in suppression of inflammation and cancer</article-title>
<source>Curr Opin Cell Biol</source>
<volume>22</volume>
<fpage>212</fpage>
<lpage>217</lpage>
<year>2010</year>
<pub-id pub-id-type="pmid">20056400</pub-id>
</element-citation>
</ref>
<ref id="b23-ijmm-33-06-1451">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hamaï</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mehrpour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Codogno</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Autophagy regulation and its role in cancer</article-title>
<source>Semin Cancer Biol</source>
<volume>23</volume>
<fpage>361</fpage>
<lpage>379</lpage>
<year>2013</year>
<pub-id pub-id-type="pmid">23811268</pub-id>
</element-citation>
</ref>
<ref id="b24-ijmm-33-06-1451">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Deconvoluting the context-dependent role for autophagy in cancer</article-title>
<source>Nat Rev Cancer</source>
<volume>12</volume>
<fpage>401</fpage>
<lpage>410</lpage>
<year>2012</year>
<pub-id pub-id-type="pmid">22534666</pub-id>
</element-citation>
</ref>
<ref id="b25-ijmm-33-06-1451">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Helgason</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Holyoake</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Role of autophagy in cancer prevention, development and therapy</article-title>
<source>Essays Biochem</source>
<volume>55</volume>
<fpage>133</fpage>
<lpage>151</lpage>
<year>2013</year>
<pub-id pub-id-type="pmid">24070477</pub-id>
</element-citation>
</ref>
<ref id="b26-ijmm-33-06-1451">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xie</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>SK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Autophagy inhibition enhances etoposide-induced cell death in human hepatoma G2 cells</article-title>
<source>Int J Mol Med</source>
<volume>27</volume>
<fpage>599</fpage>
<lpage>606</lpage>
<year>2011</year>
<pub-id pub-id-type="pmid">21274505</pub-id>
</element-citation>
</ref>
<ref id="b27-ijmm-33-06-1451">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>Polygonatum cyrtonema</italic>
lectin induces murine fibrosarcoma L929 cell apoptosis and autophagy via blocking Ras-Raf and PI3K-Akt signaling pathways</article-title>
<source>Biochimie</source>
<volume>92</volume>
<fpage>1934</fpage>
<lpage>1938</lpage>
<year>2010</year>
<pub-id pub-id-type="pmid">20713122</pub-id>
</element-citation>
</ref>
<ref id="b28-ijmm-33-06-1451">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ye</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>ZS</given-names>
</name>
</person-group>
<article-title>Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis</article-title>
<source>Int J Immunopathol Pharmacol</source>
<volume>25</volume>
<fpage>627</fpage>
<lpage>636</lpage>
<year>2012</year>
<pub-id pub-id-type="pmid">23058013</pub-id>
</element-citation>
</ref>
<ref id="b29-ijmm-33-06-1451">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Perifosine downregulates MDR1 gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-kappaB signaling pathway in a human breast cancer cell line</article-title>
<source>Neoplasma</source>
<volume>59</volume>
<fpage>248</fpage>
<lpage>256</lpage>
<year>2012</year>
<pub-id pub-id-type="pmid">22329846</pub-id>
</element-citation>
</ref>
<ref id="b30-ijmm-33-06-1451">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kang</surname>
<given-names>XH</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>YB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bufalin reverses HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via blockage of Met/PI3k/Akt pathway and induction of apoptosis</article-title>
<source>Evid Based Complement Alternat Med</source>
<volume>2013</volume>
<fpage>243859</fpage>
<year>2013</year>
<pub-id pub-id-type="pmid">23533466</pub-id>
</element-citation>
</ref>
<ref id="b31-ijmm-33-06-1451">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Navolanic</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy</article-title>
<source>Leukemia</source>
<volume>17</volume>
<fpage>590</fpage>
<lpage>603</lpage>
<year>2003</year>
<pub-id pub-id-type="pmid">12646949</pub-id>
</element-citation>
</ref>
<ref id="b32-ijmm-33-06-1451">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The activation of Akt/PKB signaling pathway and cell survival</article-title>
<source>J Cell Mol Med</source>
<volume>9</volume>
<fpage>59</fpage>
<lpage>71</lpage>
<year>2005</year>
<pub-id pub-id-type="pmid">15784165</pub-id>
</element-citation>
</ref>
<ref id="b33-ijmm-33-06-1451">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falasca</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs</article-title>
<source>Curr Pharm Des</source>
<volume>16</volume>
<fpage>1410</fpage>
<lpage>1416</lpage>
<year>2010</year>
<pub-id pub-id-type="pmid">20166984</pub-id>
</element-citation>
</ref>
<ref id="b34-ijmm-33-06-1451">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Echeverria</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sellers</surname>
<given-names>WR</given-names>
</name>
</person-group>
<article-title>Drug discovery approaches targeting the PI3K/Akt pathway in cancer</article-title>
<source>Oncogene</source>
<volume>27</volume>
<fpage>5511</fpage>
<lpage>5526</lpage>
<year>2008</year>
<pub-id pub-id-type="pmid">18794885</pub-id>
</element-citation>
</ref>
<ref id="b35-ijmm-33-06-1451">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Chen</surname>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The expression of p33(ING1), p53, and autophagy-related gene Beclin1 in patients with non-small cell lung cancer</article-title>
<source>Tumor Biol</source>
<volume>32</volume>
<fpage>1113</fpage>
<lpage>1121</lpage>
<year>2011</year>
</element-citation>
</ref>
<ref id="b36-ijmm-33-06-1451">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206</article-title>
<source>Cancer Res</source>
<volume>71</volume>
<fpage>2654</fpage>
<lpage>2663</lpage>
<year>2011</year>
<pub-id pub-id-type="pmid">21307130</pub-id>
</element-citation>
</ref>
<ref id="b37-ijmm-33-06-1451">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Djavaheri-Mergny</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Maiuri</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Kroemer</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1</article-title>
<source>Oncogene</source>
<volume>29</volume>
<fpage>1717</fpage>
<lpage>1719</lpage>
<year>2010</year>
<pub-id pub-id-type="pmid">20101204</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Inhibitory effects of celecoxib on cell proliferation of the SGC-7901 gastric cancer cell line detected by MTT analysis. Following treatment with celecoxib at the indicated concentrations and time-points, SGC-7901 cells showed a significant inhibition of cell proliferation in a time- and dose-dependent manner.</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g00"></graphic>
</fig>
<fig id="f2-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) analysis for SGC-7901 human gastric cancer cells. (A) Control group; (B) group treated with 100 μmol/l celecoxib for 72 h. The apoptotic cell number of the group treated with 100 μmol/l celecoxib for 72 h increased significantly relative to the control. Apoptotic cells with green fluorescence were detected by laser scanning confocal microscopy at an excitation of 515–565 nm, while all the cells exhibit a red image under bright field microscopy. The two images were superimposed to show the specificity of apoptotic cells (yellow) and their position..</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g01"></graphic>
</fig>
<fig id="f3-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Apoptotic rates of human gastric cancer cell SGC-7901 after treatment with celecoxib at different doses and time-points as detected by flow cytometry. The apoptotic rates of SGC-7901 cells markedly increased in a time- and dose-dependent manner following treatment with 0, 75, 100 and 125 μmol/l of celecoxib for 72 h (A and B). The apoptotic rates of SGC-7901 cells markedly increased in a time- and dose-dependent manner following treatment with 125 μmol/l of celecoxib for 0, 24, 48 and 72 h (C and D).
<sup>*</sup>
P<0.05 or
<sup>#</sup>
P<0.01 when compared with the control group.</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g02"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g03"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g04"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g05"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g06"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g07"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g08"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g09"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g10"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g11"></graphic>
</fig>
<fig id="f4-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Ultrastructure changes of SGC-7901 cells following treatment with 125 μmol/l celecoxib for 72 h. We observed nuclear membrane shrinkage and retraction in early apoptosis (×5,000) (A), apoptotic body in late apoptosis (×3,000) (B), and changes in autophagy: autophagic vacuolar and autophagosomes (×40,000 or ×30,000) (C and D) by TEM.</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g12"></graphic>
</fig>
<fig id="f5-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Akt, caspase-8 and -9 mRNA expression of SGC-7901 human gastric cancer cells following treatment with celecoxib at different doses and time-points with the first group including: the control, 75, 100 and 125 μmol/l celecoxib for 72 h (A) and group two including: the control, 125 μmol/l celecoxib for 24, 48 and 72 h (B).
<sup>*</sup>
P<0.05 or
<sup>#</sup>
P<0.01 relative to the control group from three independent experiments.</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g13"></graphic>
<graphic xlink:href="IJMM-33-06-1451-g14"></graphic>
</fig>
<fig id="f6-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>p-Akt, procaspase-8 and -9 protein expression in SGC-7901 human gastric cancer cells following treatment with celecoxib at different doses and time-points. SGC-7901 cells were treated with 0, 75, 100 and 125 μmol/l celecoxib for 72 h (lanes 1–4) and treated with 125 μmol/l celecoxib for 0, 24, 48 and 72 h (lanes 5–8). Procaspase-8, -9 and p-Akt protein expression were significantly lower than the control group in a time- and dose-dependent manner. Aliquots of protein extracts (40 μg) were immunoblotted with the indicated antibodies.</p>
</caption>
<graphic xlink:href="IJMM-33-06-1451-g15"></graphic>
</fig>
<table-wrap id="tI-ijmm-33-06-1451" orientation="portrait" position="float">
<label>Table I</label>
<caption>
<p>Primer pairs for qRT-PCR.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" valign="bottom" rowspan="1" colspan="1">Gene name</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Accession</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Sequence (5′-3′)</th>
<th align="center" valign="bottom" rowspan="1" colspan="1">Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Caspase-9</td>
<td align="center" valign="top" rowspan="1" colspan="1">NM_001229</td>
<td align="left" valign="top" rowspan="1" colspan="1">F: CCCATATGATCGAGGACATCCA
<break></break>
R: ACAACTTTGCTGCTTGCCTGTTAG</td>
<td align="right" valign="top" rowspan="1" colspan="1">186</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Caspase-8</td>
<td align="center" valign="top" rowspan="1" colspan="1">NM_001228</td>
<td align="left" valign="top" rowspan="1" colspan="1">F: GGTACATCCAGTCACTTTGCCAGA
<break></break>
R: GTTCACTTCAGTCAGGATGGTGAGA</td>
<td align="right" valign="top" rowspan="1" colspan="1">83</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">Akt</td>
<td align="center" valign="top" rowspan="1" colspan="1">NM_005163</td>
<td align="left" valign="top" rowspan="1" colspan="1">F: GTGGCAGCACGTGTACGAGAA
<break></break>
R: GTGATCATCTGGGCCGTGAA</td>
<td align="right" valign="top" rowspan="1" colspan="1">108</td>
</tr>
<tr>
<td align="left" valign="top" rowspan="1" colspan="1">β-actin</td>
<td align="center" valign="top" rowspan="1" colspan="1">NM_001101</td>
<td align="left" valign="top" rowspan="1" colspan="1">F: TGGCACCCAGCACAATGAA
<break></break>
R: CTAAGTCATAGTCCGCCTAGAAGCA</td>
<td align="right" valign="top" rowspan="1" colspan="1">126</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Linguistique/explor/TamazightV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0001900 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0001900 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Linguistique
   |area=    TamazightV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed Nov 15 18:28:35 2017. Site generation: Sat Feb 10 16:46:27 2024