Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web

Identifieur interne : 001050 ( Istex/Corpus ); précédent : 001049; suivant : 001051

Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web

Auteurs : Sabria Barka ; Jean-François Pavillon ; Claude Amiard-Triquet

Source :

RBID : ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B

English descriptors

Abstract

The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.

Url:
DOI: 10.1002/tox.20505

Links to Exploration step

ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<author>
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
<affiliation>
<mods:affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pavillon, Jean Rancois" sort="Pavillon, Jean Rancois" uniqKey="Pavillon J" first="Jean-François" last="Pavillon">Jean-François Pavillon</name>
<affiliation>
<mods:affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amiard Riquet, Claude" sort="Amiard Riquet, Claude" uniqKey="Amiard Riquet C" first="Claude" last="Amiard-Triquet">Claude Amiard-Triquet</name>
<affiliation>
<mods:affiliation>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/tox.20505</idno>
<idno type="url">https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001050</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001050</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<author>
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
<affiliation>
<mods:affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pavillon, Jean Rancois" sort="Pavillon, Jean Rancois" uniqKey="Pavillon J" first="Jean-François" last="Pavillon">Jean-François Pavillon</name>
<affiliation>
<mods:affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amiard Riquet, Claude" sort="Amiard Riquet, Claude" uniqKey="Amiard Riquet C" first="Claude" last="Amiard-Triquet">Claude Amiard-Triquet</name>
<affiliation>
<mods:affiliation>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Environmental Toxicology</title>
<title level="j" type="abbrev">Environ. Toxicol.</title>
<idno type="ISSN">1520-4081</idno>
<idno type="eISSN">1522-7278</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-08">2010-08</date>
<biblScope unit="volume">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="350">350</biblScope>
<biblScope unit="page" to="360">360</biblScope>
</imprint>
<idno type="ISSN">1520-4081</idno>
</series>
<idno type="istex">E3A839290B34B43BE8C242B40DDBBF00C0FA526B</idno>
<idno type="DOI">10.1002/tox.20505</idno>
<idno type="ArticleID">TOX20505</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1520-4081</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Tigriopus brevicornis</term>
<term>bioaccumulation</term>
<term>copepods</term>
<term>metals</term>
<term>tissular distribution</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Sabria Barka</name>
<affiliations>
<json:string>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</json:string>
<json:string>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean‐François Pavillon</name>
<affiliations>
<json:string>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Claude Amiard‐Triquet</name>
<affiliations>
<json:string>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>copepods</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tigriopus brevicornis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>metals</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bioaccumulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tissular distribution</value>
</json:item>
</subject>
<articleId>
<json:string>TOX20505</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>2310</abstractCharCount>
<pdfWordCount>6982</pdfWordCount>
<pdfCharCount>43595</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>357</abstractWordCount>
</qualityIndicators>
<title>Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>25</volume>
<publisherId>
<json:string>TOX</json:string>
</publisherId>
<pages>
<total>11</total>
<last>360</last>
<first>350</first>
</pages>
<issn>
<json:string>1520-4081</json:string>
</issn>
<issue>4</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1522-7278</json:string>
</eissn>
<title>Environmental Toxicology</title>
<doi>
<json:string>10.1002/(ISSN)1522-7278</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/tox.20505</json:string>
</doi>
<id>E3A839290B34B43BE8C242B40DDBBF00C0FA526B</id>
<score>0.049087018</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2009 Wiley Periodicals, Inc.</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<author xml:id="author-1">
<persName>
<forename type="first">Sabria</forename>
<surname>Barka</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</p>
</note>
<affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</affiliation>
<affiliation>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Jean‐François</forename>
<surname>Pavillon</surname>
</persName>
<affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Claude</forename>
<surname>Amiard‐Triquet</surname>
</persName>
<affiliation>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Environmental Toxicology</title>
<title level="j" type="abbrev">Environ. Toxicol.</title>
<idno type="pISSN">1520-4081</idno>
<idno type="eISSN">1522-7278</idno>
<idno type="DOI">10.1002/(ISSN)1522-7278</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-08"></date>
<biblScope unit="volume">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="350">350</biblScope>
<biblScope unit="page" to="360">360</biblScope>
</imprint>
</monogr>
<idno type="istex">E3A839290B34B43BE8C242B40DDBBF00C0FA526B</idno>
<idno type="DOI">10.1002/tox.20505</idno>
<idno type="ArticleID">TOX20505</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>copepods</term>
</item>
<item>
<term>Tigriopus brevicornis</term>
</item>
<item>
<term>metals</term>
</item>
<item>
<term>bioaccumulation</term>
</item>
<item>
<term>tissular distribution</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-01-10">Received</change>
<change when="2009-01-31">Registration</change>
<change when="2010-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1522-7278</doi>
<issn type="print">1520-4081</issn>
<issn type="electronic">1522-7278</issn>
<idGroup>
<id type="product" value="TOX"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ENVIRONMENTAL TOXICOLOGY">Environmental Toxicology</title>
<title type="short">Environ. Toxicol.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Environmental Toxicology and Water Quality</journalTitle>
<accessionId ref="info:x-wiley/issn/10534725">1053-4725</accessionId>
<accessionId ref="info:x-wiley/issn/10982256">1098-2256</accessionId>
<pubYear year="1998">1998</pubYear>
<vol>13</vol>
<issue>4</issue>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi origin="wiley" registered="yes">10.1002/tox.v25:4</doi>
<numberingGroup>
<numbering type="journalVolume" number="25">25</numbering>
<numbering type="journalIssue">4</numbering>
</numberingGroup>
<coverDate startDate="2010-08">August 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="50" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/tox.20505</doi>
<idGroup>
<id type="unit" value="TOX20505"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2009 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-01-10"></event>
<event type="manuscriptAccepted" date="2009-01-31"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2009-05-15"></event>
<event type="firstOnline" date="2009-05-15"></event>
<event type="publishedOnlineFinalForm" date="2010-07-13"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.15 mode:FullText source:FullText result:FullText mathml2tex" date="2010-07-21"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">350</numbering>
<numbering type="pageLast">360</numbering>
</numberingGroup>
<correspondenceTo>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:TOX.TOX20505.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="80"></count>
<count type="wordTotal" number="7957"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Metal distributions in
<i>Tigriopus brevicornis</i>
(Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<title type="short" xml:lang="en">Metal Distributions in
<fi>Tigriopus brevicornis</fi>
</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2" corresponding="yes">
<personName>
<givenNames>Sabria</givenNames>
<familyName>Barka</familyName>
</personName>
<contactDetails>
<email>sabriabarka2@yahoo.fr</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Jean‐François</givenNames>
<familyName>Pavillon</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Claude</givenNames>
<familyName>Amiard‐Triquet</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="TN" type="organization">
<unparsedAffiliation>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">copepods</keyword>
<keyword xml:id="kwd2">
<i>Tigriopus brevicornis</i>
</keyword>
<keyword xml:id="kwd3">metals</keyword>
<keyword xml:id="kwd4">bioaccumulation</keyword>
<keyword xml:id="kwd5">tissular distribution</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The marine copepod
<i>Tigriopus brevicornis</i>
is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in
<i>T. brevicornis</i>
experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Metal Distributions in Tigriopus brevicornis</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sabria</namePart>
<namePart type="family">Barka</namePart>
<affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</affiliation>
<affiliation>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax, Tunisia</affiliation>
<description>Correspondence: Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean‐François</namePart>
<namePart type="family">Pavillon</namePart>
<affiliation>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claude</namePart>
<namePart type="family">Amiard‐Triquet</namePart>
<affiliation>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-08</dateIssued>
<dateCaptured encoding="w3cdtf">2008-01-10</dateCaptured>
<dateValid encoding="w3cdtf">2009-01-31</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="references">80</extent>
<extent unit="words">7957</extent>
</physicalDescription>
<abstract lang="en">The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>copepods</topic>
<topic>Tigriopus brevicornis</topic>
<topic>metals</topic>
<topic>bioaccumulation</topic>
<topic>tissular distribution</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Environmental Toxicology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Environ. Toxicol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1520-4081</identifier>
<identifier type="eISSN">1522-7278</identifier>
<identifier type="DOI">10.1002/(ISSN)1522-7278</identifier>
<identifier type="PublisherID">TOX</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>350</start>
<end>360</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Environmental Toxicology and Water Quality</title>
</titleInfo>
<identifier type="ISSN">1053-4725</identifier>
<identifier type="ISSN">1098-2256</identifier>
<part>
<date point="end">1998</date>
<detail type="volume">
<caption>last vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>last no.</caption>
<number>4</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">E3A839290B34B43BE8C242B40DDBBF00C0FA526B</identifier>
<identifier type="DOI">10.1002/tox.20505</identifier>
<identifier type="ArticleID">TOX20505</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001050 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001050 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B
   |texte=   Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024